
HP NonStop SQL/MP
Reference Manual
Abstract

This manual describes HP NonStop™ SQL/MP, the HP relational database
management system that uses SQL to describe and manipulate data in a NonStop
SQL/MP database. The manual includes information about SQLCI, the conversational
interface to NonStop SQL/MP.

Product Version

NonStop SQL/MP G07 and H01

Supported Release Version Updates (RVUs)

This publication supports J06.03 and all subsequent J-series RVUs, H06.03 and all
subsequent H-series RVUs, G06.27 and all subsequent G-series RVUs, and D46.00
and all subsequent D-series RVUs, until otherwise indicated by its replacement
publications.

Part Number Published

523352-013 April 2013

Document History
Part Number Product Version Published

523352-009 NonStop SQL/MP G07 and H01 July 2008

523352-010 NonStop SQL/MP G07 and H01 August 2008

523352-011 NonStop SQL/MP G07 and H01 November 2008

523352-012 NonStop SQL/MP G07 and H01 August 2010

523352-013 NonStop SQL/MP G07 and H01 April 2013

Legal Notices
 Copyright 2013 Hewlett-Packard Development Company L.P.

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under
vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HP
products and services are set forth in the express warranty statements accompanying such products
and services. Nothing herein should be construed as constituting an additional warranty. HP shall not be
liable for technical or editorial errors or omissions contained herein.

Export of the information contained in this publication may require authorization from the U.S.
Department of Commerce.

Microsoft, Windows, and Windows NT are U.S. registered trademarks of Microsoft Corporation.

Intel, Itanium, Pentium, and Celeron are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

Java is a U.S. trademark of Oracle and/or its affiliates.

Motif, OSF/1, UNIX, X/Open, and the "X" device are registered trademarks and IT DialTone and The
Open Group are trademarks of The Open Group in the U.S. and other countries.

Open Software Foundation, OSF, the OSF logo, OSF/1, OSF/Motif, and Motif are trademarks of the
Open Software Foundation, Inc.

OSF MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THE OSF MATERIAL PROVIDED
HEREIN, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

OSF shall not be liable for errors contained herein or for incidental consequential damages in
connection with the furnishing, performance, or use of this material.

© 1990, 1991, 1992, 1993 Open Software Foundation, Inc. This documentation and the software to
which it relates are derived in part from materials supplied by the following:

© 1987, 1988, 1989 Carnegie-Mellon University. © 1989, 1990, 1991 Digital Equipment Corporation.
© 1985, 1988, 1989, 1990 Encore Computer Corporation. © 1988 Free Software Foundation, Inc.
© 1987, 1988, 1989, 1990, 1991 Hewlett-Packard Company. © 1985, 1987, 1988, 1989, 1990, 1991,
1992 International Business Machines Corporation. © 1988, 1989 Massachusetts Institute of
Technology. © 1988, 1989, 1990 Mentat Inc. © 1988 Microsoft Corporation. © 1987, 1988, 1989,
1990, 1991, 1992 SecureWare, Inc. © 1990, 1991 Siemens Nixdorf Informationssysteme AG. © 1986,
1989, 1996, 1997 Sun Microsystems, Inc. © 1989, 1990, 1991 Transarc Corporation.

This software and documentation are based in part on the Fourth Berkeley Software Distribution
under license from The Regents of the University of California. OSF acknowledges the following
individuals and institutions for their role in its development: Kenneth C.R.C. Arnold,
Gregory S. Couch, Conrad C. Huang, Ed James, Symmetric Computer Systems, Robert Elz. © 1980,
1981, 1982, 1983, 1985, 1986, 1987, 1988, 1989 Regents of the University of California.

Printed in the US

HP NonStop SQL/MP Reference
Manual
Index Examples Tables
Legal Notices

What’s New in This Manual xxix

Manual Information xxix

New and Changed Information xxx

About This Manual xxxiii

Related Manuals xxxiii

Notation Conventions xxxv

HP Encourages Your Comments xxxvii

A.
Access Options A-1

Access Options on DML Statements A-1

Access Options on DDL Statements A-2

Summary: Effect of Access Options on Concurrency A-3

ADD DEFINE Command A-4

Considerations—ADD DEFINE A-5

Examples—ADD DEFINE A-5

AGGREGATE Functions A-6

Alias A-6

ALLOCATE File Attribute A-7

Considerations—ALLOCATE A-7

ALTER CATALOG Statement A-8

Considerations—ALTER CATALOG A-8

Example—ALTER CATALOG A-9

ALTER COLLATION Statement A-10

Considerations—ALTER COLLATION A-10

Examples—ALTER COLLATION A-11

ALTER DEFINE Command A-11

Considerations—ALTER DEFINE A-12

Example—ALTER DEFINE A-12

ALTER INDEX Statement A-13
 Hewlett-Packard Company—523352-013
i

Contents A. (continued)
A. (continued)
Considerations—ALTER INDEX A-19

Examples—ALTER INDEX A-26

ALTER PROGRAM Statement A-27

Considerations—ALTER PROGRAM A-28

Example—ALTER PROGRAM A-29

ALTER TABLE Statement A-29

Considerations—ALTER TABLE A-37

Examples—ALTER TABLE A-48

ALTER VIEW Statement A-50

Considerations—ALTER VIEW A-51

Example—ALTER VIEW A-52

APPEND Command A-52

Considerations—APPEND A-53

APPENDCANCEL Command A-56

Considerations—APPENDCANCEL A-57

APPENDRESTART Command A-58

Considerations—APPENDRESTART A-59

AS Clause A-60

Decorations A-64

Examples—AS A-65

AS DATE/TIME Clause A-67

Examples—AS DATE/TIME A-69

ASCII Character Set A-70

AUDIT File Attribute A-74

Considerations—AUDIT A-74

AUDITCOMPRESS File Attribute A-75

Considerations—AUDITCOMPRESS A-75

Audited Tables A-76

AVG Function A-76

Considerations—AVG A-77

Examples—AVG A-77

B.
BACKUP Utility B-1

BASETABS Table B-1

BEGIN DECLARE SECTION Directive B-2

Examples—BEGIN DECLARE SECTION B-2

BEGIN WORK Statement B-3
HP NonStop SQL/MP Reference Manual—523352-013
ii

Contents B. (continued)
B. (continued)
Example—BEGIN WORK B-3

BETWEEN Predicate B-4

Considerations—BETWEEN B-4

Examples—BETWEEN B-4

BLOCKSIZE File Attribute B-5

Considerations—BLOCKSIZE B-5

BREAK FOOTING Command B-6

Considerations—BREAK FOOTING B-6

Example—BREAK FOOTING B-7

BREAK ON Command B-8

Considerations—BREAK ON B-8

Examples—BREAK ON B-9

BREAK TITLE Command B-10

Considerations—BREAK TITLE B-10

Example—BREAK TITLE B-11

BUFFERED File Attribute B-11

Considerations—BUFFERED B-11

C.
CANCEL Command C-1

Consideration—CANCEL C-1

Example—CANCEL C-1

CASE Expression C-2

Considerations—CASE Expression C-3

Examples—CASE Expression C-4

CAST Function C-4

Valid Considerations—CAST C-5

Examples—CAST C-6

CATALOG Command C-7

Considerations—CATALOG C-7

Example—CATALOG C-7

Catalogs C-8

Operations on Catalog Tables C-9

CATALOGS Table C-11

CENTER_REPORT Option C-12

Consideration—CENTER_REPORT C-12

Example—CENTER REPORT C-12

Character Data Types C-13
HP NonStop SQL/MP Reference Manual—523352-013
iii

Contents C. (continued)
C. (continued)
Character Expressions C-14

Considerations—Character Expressions C-15

Examples—Character Expressions C-17

Character Sets C-17

ISO 8859 Character Sets C-18

Kanji Character Set C-18

KSC5601 Character Set C-19

CHAR_LENGTH Function C-20

Considerations—CHAR_LENGTH Function C-20

Examples—CHAR_LENGTH Function C-20

CLEANUP Command C-21

Considerations—CLEANUP C-22

CLEANUP Exception Cases C-24

Example—CLEANUP C-25

CLEARONPURGE File Attribute C-26

Considerations—CLEARONPURGE C-26

CLOSE Statement C-26

Considerations—CLOSE C-27

Example—CLOSE C-27

Clustering Keys C-28

Example—CLUSTERING KEYS C-28

COLLATE Clause C-29

Collation Definitions C-30

Comment and Escape Characters in Collation Definitions C-30

The LC_COLLATE Section of a Collation Definition C-32

The LC_CTYPE Section of a Collation Definition C-35

The LC_TDMCODESET Section of a Collation Definition C-37

Considerations—Collation Definitions C-38

Examples—Collation Definitions C-38

Collations C-43

Column Identifier C-44

Example—Column Identifiers C-44

Columns C-45

COLUMNS Table C-46

COMMENT Statement C-48

Considerations—COMMENT C-48

Examples—COMMENT C-49

Comments C-50
HP NonStop SQL/MP Reference Manual—523352-013
iv

Contents C. (continued)
C. (continued)
Example—Comments C-50

COMMENTS Table C-51

COMMIT Option C-52

Considerations—COMMIT Option C-55

Example—COMMIT Option C-55

COMMIT WORK Statement C-56

Considerations—COMMIT WORK C-57

Example—COMMIT WORK C-57

Comparison Predicate C-58

Considerations—Comparison Predicate C-58

Examples—Comparison Predicate C-60

COMPUTE_TIMESTAMP Function C-62

Considerations—COMPUTE_TIMESTAMP C-62

Example—COMPUTE_TIMESTAMP C-63

CONCAT Clause C-63

Considerations—CONCAT C-64

Example—CONCAT C-64

Concurrency C-65

Effect of VSBB on Concurrency C-68

Constraints C-69

CONSTRNT Table C-70

CONTINUE Statement C-70

Considerations—CONTINUE C-71

Examples—CONTINUE C-72

CONTROL EXECUTOR Directive C-73

Considerations—CONTROL EXECUTOR C-73

Example—CONTROL EXECUTOR C-73

CONTROL QUERY Directive C-74

Considerations—CONTROL QUERY C-76

Examples—CONTROL QUERY C-76

CONTROL TABLE Directive C-77

Considerations—CONTROL TABLE C-85

Examples—CONTROL TABLE C-92

CONVERT Command C-94

CONVERT Behavior C-99

Enscribe Files and DDL Record Definitions C-100

DDL Primary Keys and Alternate Keys C-100

DDL Clause Mapping C-101
HP NonStop SQL/MP Reference Manual—523352-013
v

Contents C. (continued)
C. (continued)
Conversion of DDL Elementary Items C-103

DDL Groups C-107

Physical File Attributes of Tables and Indexes C-107

Partition Attributes of Tables and Indexes C-108

Examples—CONVERT C-108

CONVERTTIMESTAMP Function C-113

Example—CONVERTTIMESTAMP C-113

COPY Command C-113

Considerations—COPY C-122

Enscribe Field Formats C-126

Field Conversions C-126

Examples—COPY C-127

Correlation Names C-128

COUNT Function C-130

Considerations—COUNT C-130

Example—COUNT C-130

CPRLSRCE Table C-131

CPRULES Table C-131

CREATE CATALOG Statement C-132

Considerations—CREATE CATALOG C-134

Examples—CREATE CATALOG C-135

CREATE COLLATION Statement C-137

Consideration—CREATE COLLATION C-138

Example—CREATE COLLATION C-138

CREATE CONSTRAINT Statement C-139

Considerations—CREATE CONSTRAINT C-140

Examples—CREATE CONSTRAINT C-141

CREATE INDEX Statement C-142

Considerations—CREATE INDEX C-147

Examples—CREATE INDEX C-150

CREATE SYSTEM CATALOG Command C-152

Considerations—CREATE SYSTEM CATALOG C-152

Examples—CREATE SYSTEM CATALOG C-153

CREATE TABLE Statement C-154

Considerations—CREATE TABLE C-161

Examples—CREATE TABLE C-162

CREATE VIEW Statement C-166

Considerations—CREATE VIEW C-169
HP NonStop SQL/MP Reference Manual—523352-013
vi

Contents C. (continued)
C. (continued)
Examples—CREATE VIEW C-171

CURRENT Function C-173

Example—CURRENT C-173

CURRENT_TIMESTAMP Function C-174

Considerations—CURRENT_TIMESTAMP C-174

Example—CURRENT_TIMESTAMP C-174

Cursors C-175

Cursor Position C-176

Cursor Stability C-176

C89 C-176

D.
Data Dictionary D-1

Data Types D-1

DATE Data Type D-8

Example—DATE Data Type D-8

DATE_FORMAT Option D-8

Example—DATE_FORMAT D-8

Date-Time Data Types D-9

Date-Time Functions D-10

Date-Time Literals D-10

Examples—Date-Time Literals D-13

DATEFORMAT Function D-14

Example—DATEFORMAT D-14

DATETIME Data Type D-15

Considerations—DATETIME DATA TYPE D-15

Example—DATETIME D-16

DAYOFWEEK Function D-17

Example—DAYOFWEEK D-17

DCL (Data Control Language) Statements D-18

DCOMPRESS File Attribute D-18

Considerations—DCOMPRESS D-18

DDL (Data Definition Language) Statements D-20

DDL Statements D-20

Deadlocks D-22

DECIMAL_POINT Option D-22

Considerations—DECIMAL_POINT D-22

Examples—DECIMAL_POINT D-23
HP NonStop SQL/MP Reference Manual—523352-013
vii

Contents D. (continued)
D. (continued)
DECLARE CURSOR Statement D-23

Considerations—DECLARE CURSOR D-24

Examples—DECLARE CURSOR D-25

DEFAULT Clause D-26

Example—DEFAULT D-27

DEFINEs D-27

Using DEFINEs D-28

Using DEFINEs From SQLCI D-30

Using DEFINEs With SQL Programs D-31

DEFINE Attributes D-32

DEFINEs of Class CATALOG D-33

DEFINEs of Class DEFAULT D-33

DEFINEs of Class MAP D-33

Summary of DEFINE Attributes D-34

Examples—DEFINEs Used With SQL Programs D-37

DELETE DEFINE Command D-38

Examples—DELETE DEFINE D-38

DELETE Statement D-39

Considerations—DELETE D-40

Examples—DELETE D-40

DESCRIBE INPUT Statement D-41

Example—DESCRIBE INPUT D-43

DESCRIBE Statement D-43

Example—DESCRIBE D-45

Detail Alias D-46

DETAIL Command D-47

Considerations—DETAIL D-50

Examples—DETAIL D-51

DISPLAY STATISTICS Command D-52

Considerations—DISPLAY STATISTICS D-52

Example—DISPLAY STATISTICS D-53

DISPLAY USE OF Command D-54

Considerations—DISPLAY USE OF D-54

Examples—DISPLAY USE OF D-56

DML Statements D-58

DOWNGRADE CATALOG Command D-58

Considerations—DOWNGRADE CATALOG D-59

Examples—DOWNGRADE CATALOG D-60
HP NonStop SQL/MP Reference Manual—523352-013
viii

Contents D.
D.
(continued)DOWNGRADE SYSTEM CATALOG Command D-61

Considerations—DOWNGRADE SYSTEM CATALOG D-61

Example—DOWNGRADE SYSTEM CATALOG D-62

DROP Statement D-63

Considerations—DROP D-63

Example—DROP D-66

DROP SYSTEM CATALOG Command D-66

Considerations—DROP SYSTEM CATALOG D-66

Examples—DROP SYSTEM CATALOG D-67

DSL Statements D-67

DSLACK File Attribute D-68

Considerations—DSLACK D-68

DUP Command D-69

Considerations—DUP D-74

Examples—DUP D-78

Dynamic SQL D-80

Summary of Dynamic SQL Statements D-80

Determining When to Use Dynamic SQL D-80

Features of Dynamic SQL D-81

E.
EDIT Command E-1

Examples—EDIT E-1

Embedded SQL E-2

END DECLARE SECTION Directive E-3

Example—END DECLARE SECTION E-3

ENV Command E-3

Considerations—ENV E-3

Example—ENV E-4

ERROR Command E-4

Examples—ERROR E-5

Error Messages E-6

EXECUTE Statement E-7

Considerations—EXECUTE E-9

Examples—EXECUTE E-10

EXECUTE IMMEDIATE Statement E-11

Considerations—EXECUTE IMMEDIATE E-11

Example—EXECUTE IMMEDIATE E-11
HP NonStop SQL/MP Reference Manual—523352-013
ix

Contents E. (continued)
E. (continued)
EXISTS Predicate E-12

Examples—EXISTS E-12

EXIT Command E-13

Example—EXIT E-13

EXPLAIN Directive E-13

Considerations—EXPLAIN E-13

Examples—EXPLAIN E-20

Expressions E-21

Numeric, Date-Time, and Interval Expressions E-22

Considerations—Expressions E-23

Examples—Expressions E-26

EXTEND Function E-28

Considerations—EXTEND E-29

Examples—EXTEND E-29

EXTENT File Attribute E-30

Considerations—EXTENT E-31

F.
FC Command F-1

Considerations—FC F-1

Examples—FC F-2

FETCH Statement F-3

Considerations—FETCH F-4

Examples—FETCH F-4

File Attributes F-6

File Attributes of SQL Objects F-7

File Organizations F-8

FILEINFO Command F-9

Considerations—FILEINFO F-11

BRIEF Display for SQL Objects and Guardian Files F-11

DETAIL Display for Objects (Except Views) and Guardian Files F-14

DETAIL Display for Views F-20

BRIEF and DETAIL Display for OSS Files F-21

EXTENTS Display F-21

STATISTICS Display F-22

Examples—FILEINFO F-22

FILENAMES Command F-25

Example—FILENAMES F-25
HP NonStop SQL/MP Reference Manual—523352-013
x

Contents F. (continued)
F. (continued)
FILES Command F-26

Example—FILES F-26

FILES Table F-27

Filesets F-29

Examples—Filesets F-29

FORMAT File Attribute F-30

Considerations—FORMAT F-30

FREE RESOURCES Statement F-30

Considerations—FREE RESOURCES F-31

Examples—FREE RESOURCES F-31

Functions F-32

FUP Command F-33

FUP Commands and SQL Objects F-33

Considerations—FUP F-35

Examples—FUP F-35

G.
Generalized Owner G-1

GET CATALOG OF SYSTEM Statement G-1

Considerations—GET CATALOG OF SYSTEM G-1

Examples—GET CATALOG OF SYSTEM G-2

GET VERSION Statement G-2

Consideration—GET VERSION G-3

Examples—GET VERSION G-3

GET VERSION OF PROGRAM Statement G-4

Consideration—GET VERSION OF PROGRAM G-4

Examples—GET VERSION OF PROGRAM G-5

GOAWAY Command G-6

Considerations—GOAWAY G-6

Examples—GOAWAY G-6

Group Manager G-7

Guardian Names G-7

Considerations—Guardian Names G-8

Example—Guardian Names G-8
HP NonStop SQL/MP Reference Manual—523352-013
xi

Contents H.
H.
HEADING Clause H-1

Consideration—HEADING H-1

Example—HEADING H-1

HEADINGS Option H-2

Example—HEADINGS H-2

HELP Command H-2

Considerations—HELP H-3

Examples—HELP H-3

HELP TEXT Statement H-4

Consideration—HELP TEXT H-4

Example—HELP TEXT H-4

HISTORY Command H-5

Example—HISTORY H-5

Host Identifiers H-5

Host Programs H-6

Host Variables H-6

I.
ICOMPRESS File Attribute I-1

Considerations—ICOMPRESS I-1

IF/THEN/ELSE Clause I-1

Considerations—IF/THEN/ELSE I-2

Examples—IF/THEN/ELSE I-2

IN Predicate I-3

Considerations—IN I-3

Examples—IN I-4

INCLUDE SQLCA Directive I-4

Consideration—INCLUDE SQLCA I-4

Example—INCLUDE SQLCA I-4

INCLUDE SQLDA Directive I-4

Consideration—INCLUDE SQLDA I-6

Example—INCLUDE SQLDA I-6

INCLUDE SQLSA Directive I-6

Consideration—INCLUDE SQLSA I-6

Example—INCLUDE SQLSA I-6

INCLUDE STRUCTURES Directive I-7

Considerations—INCLUDE STRUCTURES I-8

Examples—INCLUDE STRUCTURES I-8
HP NonStop SQL/MP Reference Manual—523352-013
xii

Contents I. (continued)
I. (continued)
Index Keys I-9

INDEXES Table I-10

Indicator Variables and Indicator Parameters I-11

INFO DEFINE Command I-12

Consideration—INFO DEFINE I-12

Examples—INFO DEFINE I-12

INITIALIZE SQL Command I-13

Considerations—INITIALIZE SQL I-13

Example—INITIALIZE SQL I-13

INSERT Statement I-14

Considerations—INSERT I-16

Examples—INSERT I-18

INTERVAL Data Type I-19

Considerations—INTERVAL Data Type I-20

Example—INTERVAL Data Type I-21

INTERVAL Literals I-22

Example—Interval Literals I-24

INVOKE Directive and Command I-25

Considerations—INVOKE I-28

Examples—INVOKE I-28

ISLACK File Attribute I-29

Considerations—ISLACK I-29

J.
Joins J-1

Examples - Joins J-1

JULIANTIMESTAMP Function J-4

Example—JULIANTIMESTAMP J-4

K.
Keys K-1

KEYS Table K-1

L.
LEFT_MARGIN Option L-1

Example—LEFT_MARGIN L-1

LIKE Predicate L-2

Considerations—LIKE L-2

Examples—LIKE L-5
HP NonStop SQL/MP Reference Manual—523352-013
xiii

Contents L. (continued)
L. (continued)
Limits L-6

LINE_NUMBER Function L-14

Considerations—LINE_NUMBER L-15

Examples—LINE_NUMBER L-15

LINE_SPACING Option L-16

Examples—LINE_SPACING L-16

LIST Command L-16

Considerations—LIST L-17

Example—LIST L-17

Literals L-18

LOAD Command L-18

Considerations—LOAD L-33

Example—LOAD L-45

LOCK TABLE Statement L-45

Considerations—LOCK TABLE L-46

Examples—LOCK TABLE L-47

Locking L-48

Lock Duration L-48

Lock Mode L-50

Lock Holder L-50

LOCKLENGTH File Attribute L-51

Consideration—LOCKLENGTH L-51

Example—LOCKLENGTH L-51

LOG Command L-52

Example—LOG L-52

LOGICAL_FOLDING Option L-53

Considerations—LOGICAL_FOLDING L-53

Example—LOGICAL_FOLDING L-53

M.
MAX Function M-1

Considerations—MAX M-1

Example—MAX M-2

MAXEXTENTS File Attribute M-2

Considerations—MAXEXTENTS M-2

Message File M-3

MIN Function M-3

Considerations—MIN M-4
HP NonStop SQL/MP Reference Manual—523352-013
xiv

Contents M. (continued)
M. (continued)
Example—MIN M-4

MODIFY CATALOG M-4

MODIFY CATALOG with REPLACE NODENAME M-4

Considerations—MODIFY CATALOG with REPLACE NODENAME M-8

Examples—MODIFY CATALOG with REPLACE NODENAME M-10

MODIFY CATALOG with REPLACE VOLUME M-11

Considerations-MODIFY CATALOG with REPLACE VOLUME M-15

Examples-MODIFY CATALOG with REPLACE VOLUME M-18

MODIFY LABEL M-19

MODIFY LABEL with REPLACE NODENUMBER M-19

Considerations—MODIFY LABEL with REPLACE NODENUMBER M-24

Examples—MODIFY LABEL with REPLACE NODENUMBER M-27

MODIFY LABEL with REPLACE VOLUME M-30

Considerations-MODIFY LABEL with REPLACE VOLUME M-34

Examples-MODIFY LABEL with REPLACE VOLUME M-37

MODIFY LABEL with REPLACE VOLUME and Partitioned Objects M-38

MODIFY REGISTER Command M-40

Considerations—MODIFY REGISTER M-42

Examples—MODIFY REGISTER M-42

Multibyte Character Sets M-43

System Default National Character Set M-43

N.
NAME Command N-1

Consideration—NAME Command N-1

Example—NAME Command N-1

NAME Option N-2

Consideration—NAME Option N-2

Example—NAME Option N-2

Name Resolution N-2

Names N-3

NEWLINE_CHAR Option N-4

Consideration—NEWLINE_CHAR N-4

Example—NEWLINE_CHAR N-4

Nonaudited Tables N-4

NOPURGEUNTIL File Attribute N-5

Defaults N-5

Example—NOPURGEUNTIL N-5
HP NonStop SQL/MP Reference Manual—523352-013
xv

Contents N. (continued)
N. (continued)
NULL Predicate N-6

Considerations—NULL N-6

Examples—NULL N-6

Null Values N-7

Using Null Values Versus Default Values N-7

Defining Columns That Allow or Prohibit Nulls N-8

Determining Whether a Column Allows Nulls N-8

Specifying Null Values in Host Programs N-9

DISTINCT, GROUP BY, and ORDER BY With Null Values N-9

Null Values and Expression Evaluation N-10

NULL_DISPLAY Option N-10

Example—NULL_DISPLAY N-10

Numeric Data Types N-11

Considerations—Numeric Data Types N-12

Numeric Literals N-13

Example—Numeric Literals N-13

O.
OBEY Command O-1

Considerations—OBEY O-1

Examples—OBEY O-3

OCTET_LENGTH Function O-4

Considerations—OCTET LENGTH Function O-4

Examples—OCTET LENGTH Function O-4

OPEN Statement O-5

Considerations—OPEN O-5

Example—OPEN O-6

OSS NAMES O-6

OUT Command O-7

Consideration—OUT O-7

Example—OUT O-8

OUT_REPORT COMMAND O-8

Considerations—OUT_REPORT O-9

Examples—OUT_REPORT O-9

OVERFLOW_ CHAR OPTION O-10

Consideration—OVERFLOW_CHAR O-10

Example—OVERFLOW_CHAR O-10

OWNER FILE ATTRIBUTE O-10
HP NonStop SQL/MP Reference Manual—523352-013
xvi

Contents P.
P.
PAGE_COUNT Option P-1

Consideration—PAGE_COUNT P-1

Example—PAGE_COUNT P-1

PAGE FOOTING Command P-1

Considerations—PAGE FOOTING P-2

Example—PAGE FOOTING P-2

PAGE_LENGTH Option P-2

Considerations—PAGE_LENGTH P-3

Example—PAGE_LENGTH P-3

PAGE_NUMBER Function P-3

Considerations—PAGE_NUMBER P-3

Example—PAGE_NUMBER P-3

PAGE TITLE Command P-4

Considerations—PAGE TITLE P-4

Example—PAGE TITLE P-4

Parallel Index Loading P-5

Default Configuration for Parallel Index Loading P-5

Specifying Configuration for Parallel Index Loading P-6

Consideration—Parallel Index Loading P-10

Sample Configuration File P-11

Parameters P-11

Considerations—Parameters P-13

Example—Parameters P-15

PARTITION Clause P-16

Consideration—PARTITION P-18

Example—PARTITION P-18

Partitions P-19

PARTNS Table P-20

PERUSE Command P-21

Example—PERUSE P-21

Plans P-22

POSITION Function P-23

Considerations—POSITION Function P-23

Examples—POSITION Function P-24

Predicates P-24

PREPARE Statement P-25

Considerations—PREPARE P-26

Examples—PREPARE P-26
HP NonStop SQL/MP Reference Manual—523352-013
xvii

Contents P. (continued)
P. (continued)
Primary Keys P-27

Print Item P-28

PROGID File Attribute P-28

Program Invalidation P-28

Operations That Invalidate a Program P-29

Preventing Program Invalidation Caused by DDL Operations P-29

PROGRAMS Table P-31

Protection View P-32

PURGE Command P-33

Considerations—PURGE P-34

Examples—PURGE P-36

PURGEDATA Command P-36

Considerations—PURGEDATA P-38

Examples—PURGEDATA P-39

Q.
Qualified Fileset List Q-1

Examples—Qualified Fileset List Q-5

Quantified Predicate Q-6

Considerations—Quantified Predicate Q-6

Examples—Quantified Predicate Q-6

R.
RECLENGTH File Attribute R-1

Considerations—RECLENGTH R-1

RELEASE Statement R-1

REPORT FOOTING Command R-2

Considerations—REPORT FOOTING R-2

Example—REPORT FOOTING R-2

REPORT Option R-3

Considerations—REPORT Option R-3

Examples—REPORT Option R-3

REPORT TITLE Command R-6

Considerations—REPORT TITLE R-6

Examples—REPORT TITLE R-6

Report Writer R-7

Reserved Words R-11

RESET DEFINE Command R-12
HP NonStop SQL/MP Reference Manual—523352-013
xviii

Contents R. (continued)
R. (continued)
Considerations—RESET DEFINE R-12

Example—RESET DEFINE R-13

RESET LAYOUT Command R-13

Example—RESET LAYOUT R-14

RESET PARAM Command R-14

Considerations—RESET PARAM R-14

Examples—RESET PARAM R-14

RESET PREPARED Command R-16

Example—RESET PREPARED R-16

RESET REPORT Command R-16

Consideration—RESET REPORT R-18

Examples—RESET REPORT R-18

RESET SESSION Command R-19

Example—RESET SESSION R-19

RESET STYLE Command R-19

Example—RESET STYLE R-20

RESETBROKEN File Attribute R-20

RIGHT_MARGIN Option R-20

Consideration—RIGHT_MARGIN R-21

Example—RIGHT_MARGIN R-21

ROLLBACK WORK Statement R-21

Considerations—ROLLBACK WORK R-22

Example—ROLLBACK WORK R-22

ROWCOUNT Option R-23

Example—ROWCOUNT R-23

S.
Sample Database S-1

SAVE Command S-2

Example—SAVE S-4

Search Conditions S-5

Considerations—Search Conditions S-6

Examples—Search Conditions S-6

SECURE Command S-7

Considerations—SECURE Command S-9

Examples—SECURE Command S-10

SECURE File Attribute S-11

Considerations—SECURE File Attribute S-11
HP NonStop SQL/MP Reference Manual—523352-013
xix

Contents S. (continued)
S. (continued)
Examples—SECURE File Attribute S-11

Security S-11

User IDs S-12

Group Manager and Super ID S-12

Process Access IDs S-13

File Ownership S-14

Security Strings S-14

Authorization Requirements for SQL Statements S-15

SELECT Statement S-18

Considerations—SELECT S-24

Considerations for UNION S-25

Characteristics of UNION Columns S-25

ORDER BY clause and UNION operator S-26

GROUP BY Clause, HAVING Clause, and the UNION Operator S-27

UNION ALL and Associativity S-27

Examples—SELECT S-27

SERIALWRITES File Attribute S-32

Considerations—SERIALWRITES S-32

SET DEFINE Command S-32

Considerations—SET DEFINE S-33

Example—SET DEFINE S-33

SET DEFMODE Command S-34

Example—SET DEFMODE S-34

SET LAYOUT Command S-34

Example—SET LAYOUT S-35

SET PARAM Command S-35

Considerations—SET PARAM S-36

Examples—SET PARAM S-37

SET SESSION Command S-39

Considerations—SET SESSION S-42

Examples—SET SESSION S-44

SET STYLE Command S-45

Consideration—SET STYLE S-46

Example—SET STYLE S-46

SETSCALE Function S-46

Consideration—SETSCALE S-46

Examples—SETSCALE S-47

Shorthand View S-48
HP NonStop SQL/MP Reference Manual—523352-013
xx

Contents S. (continued)
S. (continued)
SHOW CONTROL Command S-48

Example—SHOW CONTROL S-48

SHOW DEFINE Command S-48

Consideration—SHOW DEFINE S-49

Examples—SHOW DEFINE S-49

SHOW DEFMODE Command S-49

Example—SHOW DEFMODE S-49

SHOW LAYOUT Command S-50

Example—SHOW LAYOUT S-50

SHOW PARAM Command S-50

Examples—SHOW PARAM S-51

SHOW PREPARED Command S-51

Example—SHOW PREPARED S-51

SHOW REPORT Command S-52

Example—SHOW REPORT S-52

SHOW SESSION Command S-53

Example—SHOW SESSION S-53

SHOW STYLE Command S-54

Example—SHOW STYLE S-54

Similarity Checks S-54

General Rules for Similarity S-55

Similarity Between Protection Views S-55

Similarity Between Tables S-55

Similarity Between Collations S-57

Displaying the Similarity Check Attribute S-57

SLACK File Attribute S-57

Purpose of SLACK S-57

SPACE Option S-58

Considerations—SPACE S-58

Examples—SPACE S-58

SQL Directive S-59

SQL Identifiers S-59

SQLCI S-60

An SQLCI Session S-60

The SQLCI Command S-61

Considerations—SQLCI S-62

Example—SQLCI S-63

SQLCI Commands S-63
HP NonStop SQL/MP Reference Manual—523352-013
xxi

Contents S. (continued)
S. (continued)
SQLCODE S-67

SQLCOMP Command S-67

Standards Conformance S-67

Exceptions to Conformance With Entry Level SQL 1992 S-67

SQL/MP Features From Intermediate Level SQL 1992 S-70

SQL/MP Features From Full Level SQL 1992 S-71

SQL/MP Extensions to SQL 1992 S-71

Statements S-73

Static SQL S-77

Statistics S-78

Storage Management Foundation (SMF) S-78

Considerations—SMF S-79

String Functions S-80

String Literals S-80

Considerations—String Literals S-81

Examples—String Literals S-82

Subqueries S-82

Considerations—Subqueries S-83

SUBSTRING Function S-84

Considerations—SUBSTRING Function S-85

Examples—SUBSTRING Function S-85

SUBTOTAL Command S-86

Considerations—SUBTOTAL S-86

Examples—SUBTOTAL S-87

SUBTOTAL_LABEL Option S-88

Considerations—SUBTOTAL_LABEL S-88

Example—SUBTOTAL_LABEL S-89

SUM Function S-89

Considerations—SUM S-89

Example—SUM S-90

Super ID S-90

Syskeys S-90

System Catalog S-92

SYSTEM Command S-93

Considerations—SYSTEM S-93

Example—SYSTEM S-93

System DEFINEs S-94
HP NonStop SQL/MP Reference Manual—523352-013
xxii

Contents T.
T.
TABLECODE File Attribute T-1

Tables T-1

TABLES Table T-2

TEDIT Command T-3

Example—TEDIT T-3

Temporary Tables T-4

TIME_FORMAT Option T-4

Example—TIME_FORMAT T-4

TIME Data Type T-5

Example—TIME Data Type T-5

TIMESTAMP Data Type T-5

Example—TIMESTAMP Data Type T-5

TMF Transactions T-6

Transaction Control Statements T-6

User-Defined and System-Defined Transactions T-6

Rules for DDL and DML Statements T-7

Rules for SQLCI T-8

Rules for Host Programs T-8

TOTAL Command T-9

Considerations—TOTAL T-9

Examples—TOTAL T-10

TRANSIDS Table T-11

TRIM Function T-11

Consideration—TRIM Function T-12

Examples—TRIM Function T-12

U.
UNDERLINE_CHAR Option U-1

Example—UNDERLINE_CHAR U-1

UNLOCK TABLE Statement U-1

Considerations—UNLOCK TABLE U-1

Examples—UNLOCK TABLE U-2

UPDATE Statement U-3

Considerations—UPDATE U-4

Examples—UPDATE U-6

UPDATE STATISTICS Statement U-7

Considerations—UPDATE STATISTICS U-8

Examples—UPDATE STATISTICS U-10
HP NonStop SQL/MP Reference Manual—523352-013
xxiii

Contents U. (continued)
U. (continued)
UPGRADE CATALOG Command U-11

Considerations—UPGRADE CATALOG U-12

Examples—UPGRADE CATALOG U-12

UPGRADE SYSTEM CATALOG Command U-13

Considerations—UPGRADE SYSTEM CATALOG U-13

Example—UPGRADE SYSTEM CATALOG U-13

UPSHIFT Function U-14

Considerations—UPSHIFT U-14

Examples—UPSHIFT U-14

USAGES Table U-15

User-Defined Keys U-16

Utilities U-16

V.
VARCHAR_WIDTH Option V-1

Consideration—VARCHAR_WIDTH V-1

Example—VARCHAR_WIDTH V-1

VERIFIEDWRITES File Attribute V-1

Consideration—VERIFIEDWRITES V-2

VERIFY Command V-2

Considerations—VERIFY V-3

Examples-VERIFY V-5

Versions V-6

SQL/MP Component Versions V-7

Catalog Versions V-7

Object Versions V-7

Program Versions V-8

Host language compiler versions V-8

VERSIONS Table V-9

Views V-9

VIEWS Table V-10

VOLUME Command V-11

Considerations—VOLUME V-11

Examples—VOLUME V-11
HP NonStop SQL/MP Reference Manual—523352-013
xxiv

Contents W.
W.
WHENEVER DIRECTIVE W-1

Consideration—WHENEVER Directive W-2

WHERE CLAUSE W-2

WINDOW OPTION W-2

Consideration—WINDOW W-3

Examples—WINDOW W-3

WITH SHARED ACCESS OPTION W-4

Considerations—WITH SHARED ACCESS W-5

Example—WITH SHARED ACCESS W-8

Z.
! Command Z-1

Examples—! Z-1

=_AUDSERV_XSWAP_node DEFINE Z-2

Consideration—=_AUDSERV_XSWAP_node Z-2

Example—=_AUDSERV_XSWAP_node Z-2

=_DEFAULTS DEFINE Z-3

Considerations—=_DEFAULTS Z-3

Examples—=_DEFAULTS Z-4

=_SORT_DEFAULTS DEFINE Z-4

Considerations—=_SORT_DEFAULTS Z-5

Example—=_SORT_DEFAULTS Z-6

=_SQL_CAT_HEAP_LIMIT DEFINE Z-6

Considerations—=_SQL_CAT_HEAP_LIMIT Z-6

Examples—=_SQL_CAT_HEAP_LIMIT Z-6

=_SQL_CMP_CPUS_node DEFINE Z-7

Considerations—=_SQL_CMP_CPUS_node Z-7

=_SQL_CMP_DOUBLE_SBB_OFF DEFINE Z-8

Consideration—=_SQL_CMP_DOUBLE_SBB_OFF Z-9

=_SQL_CMP_DOUBLE_SBB_ON DEFINE Z-9

Considerations—=_SQL_CMP_DOUBLE_SBB_ON Z-9

=_SQL_CMP_EQ_LIMIT DEFINE Z-10

Consideration—=_SQL_CMP_EQ_LIMIT Z-10

Examples—=_SQL_CMP_EQ_LIMIT Z-10

=_SQL_CMP_EVENT DEFINE Z-11

Format of SQL Compiler Event Messages Z-11

Considerations—=_SQL_CMP_EVENT Z-12

Examples—=_SQL_CMP_EVENT Z-12
HP NonStop SQL/MP Reference Manual—523352-013
xxv

Contents Z. (continued)
Z. (continued)
=_SQL_CMP_EVENT_NO0 DEFINE Z-12

Default Event Messages Z-13

Consideration—=_SQL_CMP_EVENT_NO0 Z-13

Example—=_SQL_CMP_EVENT_NO0 Z-13

=_SQL_CMP_NO_KS_MJOIN DEFINE Z-14

Examples—=_SQL_CMP_NO_KS_MJOIN Z-14

=_SQL_cmp_node DEFINE Z-14

Consideration—=_SQL_cmp_node Z-15

Example—=_SQL_cmp_node Z-15

=_SQL_EXE_DOUBLE_SHUTOFF DEFINE Z-15

Considerations—=_SQL_EXE_DOUBLE_SHUTOFF Z-15

=_SQL_EXE_ESPS_CK_CMON DEFINE Z-16

Consideration—=_SQL_EXE_ESPS_CK_CMON Z-16

Example—=_SQL_EXE_ESPS_CK_CMON Z-16

=_SQL_EXE_USE_SWAPVOL DEFINE Z-17

Considerations—=_SQL_EXE_USE_SWAPVOL Z-17

Examples—=_SQL_EXE_USE_SWAPVOL Z-17

=_SQL_MSG_node DEFINE Z-18

Considerations—=_SQL_MSG_node Z-18

Examples—=_SQL_MSG_node Z-19

=_SQL_RECGEN_node DEFINE Z-20

Example—=_SQL_RECGEN_node Z-20

=_SQL_TM_node_vol DEFINE Z-20

Considerations—=_SQL_TM_node_vol Z-21

Examples—=_SQL_TM_node_vol Z-21

 Index

Examples
Example R-1. Report Example R-4

Tables
Table A-1. Transaction Concurrency Depending on Access Option A-3

Table A-2. Display Descriptors for Character Items A-61

Table A-3. Display Descriptors for Numeric Items A-61

Table A-4. Scale-Sign Descriptors A-62

Table A-5. Modifiers A-62

Table A-6. ASCII Character Set A-70

Table B-1. The BASETABS Table B-1
HP NonStop SQL/MP Reference Manual—523352-013
xxvi

Contents Tables (continued)
Tables (continued)
Table C-1. Catalog Tables and Indexes C-8

Table C-2. The SQL.CATALOGS Table C-11

Table C-3. The COLUMNS Table C-46

Table C-4. The COMMENTS Table C-51

Table C-5. Summary of Concurrent DDL and DML Operations C-65

Table C-6. ALTER Operation Effects on Timestamps C-67

Table C-7. Limits on Concurrent Utility and DML Operations C-68

Table C-8. The CONSTRNT Table C-70

Table C-9. The CPRLSRCE Table C-131

Table C-10. The CPRULES Table C-131

Table D-1. Attributes of DEFINEs (by Class) D-34

Table E-1. EXPLAIN Plan Header Lines E-16

Table F-1. FILEINFO BRIEF Display Information Line F-11

Table F-2. The FILES Table F-27

Table F-3. FUP Commands and SQL Objects F-34

Table I-1. The INDEXES Table I-10

Table K-1. The KEYS Table K-1

Table L-1. Lock Release Summary L-49

Table N-1. Numeric Data Types in SQL—Binary Types N-11

Table N-2. Numeric Data Types in SQL—Floating Point Types N-12

Table N-3. Numeric Data Types in SQL—Decimal Types N-12

Table P-1. The PARTNS Table P-20

Table P-2. The PROGRAMS Table P-31

Table R-1. SQLCI Commands Used to Write Reports R-8

Table R-2. Style and Layout Options for Reports R-10

Table R-3. Report Writer Clauses R-10

Table R-4. Report Writer Functions R-11

Table R-5. Reserved Words R-11

Table S-1. Authorization Requirements for SQL Statements S-15

Table S-2. Summary of SQLCI Commands S-64

Table S-3. Summary of SQL Statements S-73

Table S-4. Summary of SQL Statements S-77

Table T-1. The TABLES Table T-2

Table T-2. TRANSIDS Table T-11

Table U-1. The USAGES Table U-15

Table V-1. The VERSIONS Table V-9

Table V-2. The VIEWS Table V-10
HP NonStop SQL/MP Reference Manual—523352-013
xxvii

Contents
HP NonStop SQL/MP Reference Manual—523352-013
xxviii

What’s New in This Manual

Manual Information
HP NonStop SQL/MP Reference Manual

Abstract

This manual describes HP NonStop™ SQL/MP, the HP relational database
management system that uses SQL to describe and manipulate data in a NonStop
SQL/MP database. The manual includes information about SQLCI, the conversational
interface to NonStop SQL/MP.

Product Version

NonStop SQL/MP G07 and H01

Supported Release Version Updates (RVUs)

This publication supports J06.03 and all subsequent J-series RVUs, H06.03 and all
subsequent H-series RVUs, G06.27 and all subsequent G-series RVUs, and D46.00
and all subsequent D-series RVUs, until otherwise indicated by its replacement
publications.

Document History

Part Number Published

523352-013 April 2013

Part Number Product Version Published

523352-009 NonStop SQL/MP G07 and H01 July 2008

523352-010 NonStop SQL/MP G07 and H01 August 2008

523352-011 NonStop SQL/MP G07 and H01 November 2008

523352-012 NonStop SQL/MP G07 and H01 August 2010

523352-013 NonStop SQL/MP G07 and H01 April 2013
HP NonStop SQL/MP Reference Manual—523352-013
xxix

What’s New in This Manual New and Changed Information
New and Changed Information
Changes to the 523352-013 manual:

 Updated the section Examples—CREATE INDEX on page C-151.

 Updated the section MAXEXTENTS File Attribute on page M-2.

Changes to the 523352-012 manual:

 Updated Considerations—PURGEDATA on page P-38.

 Update header size for Format 2 key-sequenced tables on page L-13.

 Added consideration for LOAD command on page L-45.

 Updated Lock Holder on page L-50.

 Updated SYSKEY information on S-91.

Changes to the H06.16/J06.05 Manual

 Updated the CREATE CATALOG Statement on page C-132.

 Updated the maximum number of expression allowed in the expression list for the
IN Predicate on page I-3.

Changes to the H06.15/J06.04 Manual

 Supported release statements have been updated to include J-series RVUs.

 Updated information about the MODIFY CATALOG replace specifications as:

 MODIFY CATALOG with REPLACE NODENAME on page M-5.

 MODIFY CATALOG with REPLACE VOLUME on page M-12.

 Updated information about the MODIFY LABEL replace specifications as:

 MODIFY LABEL with REPLACE NODENUMBER on page M-20.

 MODIFY LABEL with REPLACE VOLUME on page M-31.

 Updated the index to include command entries.

Changes to the G06.32 Manual

 Updated the considerations for the CAST function under Valid Considerations—
CAST on page C-5.

 Updated the description of AUDITONLY option under COMMIT WORK Statement
on page C-56.
HP NonStop SQL/MP Reference Manual—523352-013
xxx

What’s New in This Manual Changes to the G06.30 Manual
 Modified the description for setting the PROBABALISTIC option under UPDATE
STATISTICS Statement on page U-7.

Changes to the G06.30 Manual

 Modified the renaming tables description under Considerations—ALTER TABLE on
page A-38.

 Modified the directives under Considerations—CONTROL TABLE on pages C-85
and C-86.

 Updated the description for setting the ERROR ABORT parameter on page S-40
under SET SESSION Command.

 Added the considerations for interactive SQLCI under Considerations—SET
SESSION on page S-43.
HP NonStop SQL/MP Reference Manual—523352-013
xxxi

What’s New in This Manual Changes to the G06.30 Manual
HP NonStop SQL/MP Reference Manual—523352-013
xxxii

About This Manual
This manual is the main reference text for NonStop SQL/MP, the HP relational
database management system based on SQL. This manual includes reference
information about the programmatic and conversational interfaces to NonStop SQL/MP,
in addition to information about utilities used to install and maintain a NonStop SQL/MP
database.

This manual is structured as an encyclopedia-style reference text. Entries that describe
statements, commands, and conceptual information are intermixed in an alphabetic
order for easy look-up. If you know what you are looking for, you can probably turn
directly to a specific entry, but there is no introductory or overview information.

If you are new to NonStop SQL/MP, read the Introduction to NonStop SQL/MP before
you begin to use this manual. If you have read the Introduction to NonStop SQL/MP
and you are browsing this manual, begin with the table of contents or one of these
entries:

 Statements
 SQLCI
 SQLCI Commands

The text of this manual is also available online through SQLCI. For information about
displaying manual entries through SQLCI, see HELP Command on page H-2.

Related Manuals
You might want to use some books other than the SQL/MP library set with this
reference manual. The complete library includes:

Manual Title Description

Introduction to NonStop
SQL/MP

Provides an overview of the NonStop SQL/MP relational
database management system.

SQL/MP Glossary Provides definitions of terms used in the SQL/MP
documentation.

SQL/MP Installation and
Management Guide

Explains how to plan, install, create, and manage a NonStop
SQL database.

SQL/MP Messages
Manual

Describes messages returned by NonStop SQL/MP.

SQL/MP Query Guide Describes how to write SQL/MP queries, and how to optimize
queries for enhanced performance.

SQL/MP Report Writer
Guide

Describes how to use SQLCI report writer commands to
design and produce reports.
HP NonStop SQL/MP Reference Manual—523352-013
xxxiii

About This Manual Related Manuals
This figure shows the manuals in the SQL/MP library:

SQL/MP Version
Management Guide

Describes the rules that govern the version management for
the NonStop SQL/MP relational database management
system.

SQL/MP Programming
Manual for C and
SQL/MP Programming
Manual for COBOL

Describe the NonStop SQL/MP programmatic interfaces for C
and COBOL, respectively.

SQL Programming
Manual for Pascal and
SQL Programming
Manual for TAL

Describe the NonStop SQL/MP programmatic interfaces for
Pascal and TAL, respectively.

Manual Title Description

Programming
Manuals

Reference
Manuals

Guides

VST001.vsd

Introductory Manuals

SQL/MP
Glossary

Introduction
to NonStop
SQL/MP

SQL/MP
Messages
Manual

SQL/MP
Reference
Manual

SQL/MP
Programming
Manual for
C

SQL/MP
Programming
Manual for
COBOL

SQL/MP
Installation
and
Management
Guide

SQL/MP
Version
Management
Guide

SQL/MP
Query
Guide

SQL/MP
Report Writer
Guide
HP NonStop SQL/MP Reference Manual—523352-013
xxxiv

About This Manual Notation Conventions
Notation Conventions

Hypertext Links

Blue underline is used to indicate a hypertext link within text. By clicking a passage of
text with a blue underline, you are taken to the location described. For example:

To view the related manuals, click on Related Manuals.

General Syntax Notation

This list summarizes the notation conventions for syntax presentation in this manual.

UPPERCASE LETTERS. Uppercase letters indicate keywords and reserved words; enter
these items exactly as shown. Items not enclosed in brackets are required. For
example:

MAXATTACH

lowercase italic letters. Lowercase italic letters indicate variable items that you supply.
Items not enclosed in brackets are required. For example:

file-name

[] Brackets. Brackets enclose optional syntax items. For example:

TERM [\system-name.]$terminal-name

INT[ERRUPTS]

A group of items enclosed in brackets is a list from which you can choose one item or
none. The items in the list can be arranged either vertically, with aligned brackets on
each side of the list, or horizontally, enclosed in a pair of brackets and separated by
vertical lines. For example:

LIGHTS [ON]
 [OFF]
 [SMOOTH [num]]

K [X | D] address-1

{ } Braces. A group of items enclosed in braces is a list from which you choose one item.
The items in the list can be arranged either vertically, with aligned braces on each side
of the list, or horizontally, enclosed in a pair of braces and separated by vertical lines.
For example:

LISTOPENS PROCESS { $appl-mgr-name }
 { $process-name }

ALLOWSU { ON | OFF }
HP NonStop SQL/MP Reference Manual—523352-013
xxxv

About This Manual General Syntax Notation
Required Choice {| |}. Required choice indicators enclose multiple required syntax items. A
vertically aligned group of items enclosed in required choice indicators represents a list
of selections from which you must choose one or more, in any order, but cannot repeat
a selection.

Optional Choice [| |]. Optional choice indicators enclose multiple optional syntax items. A
vertically aligned group of items enclosed in optional choice indicators represents a list
of selections from which you can choose one or more, in any order, but cannot repeat
a selection.

| Vertical Line. A vertical line separates alternatives in a horizontal list that is enclosed in
brackets or braces. For example:

INSPECT { OFF | ON | SAVEABEND }

… Ellipsis. An ellipsis immediately following a pair of brackets or braces indicates that you
can repeat the enclosed sequence of syntax items any number of times. For example:

M address-1 [, new-value]...

[-] {0|1|2|3|4|5|6|7|8|9}...

An ellipsis immediately following a single syntax item indicates that you can repeat that
syntax item any number of times. For example:

"s-char..."

Punctuation. Parentheses, commas, semicolons, and other symbols not previously
described must be entered as shown. For example:

error := NEXTFILENAME (file-name) ;

LISTOPENS SU $process-name.#su-name

Quotation marks around a symbol such as a bracket or brace indicate the symbol is a
required character that you must enter as shown. For example:

"[" repetition-constant-list "]"

Item Spacing. Spaces shown between items are required unless one of the items is a
punctuation symbol such as a parenthesis or a comma. For example:

CALL STEPMOM (process-id) ;

If there is no space between two items, spaces are not permitted. In this example, no
spaces are permitted between the period and any other items:

$process-name.#su-name

Line Spacing. If the syntax of a command is too long to fit on a single line, each
continuation line is indented three spaces and is separated from the preceding line by
HP NonStop SQL/MP Reference Manual—523352-013
xxxvi

About This Manual Change Bar Notation
a blank line. This spacing distinguishes items in a continuation line from items in a
vertical list of selections. For example:

ALTER [/ OUT file-spec /] CONTROLLER

 [, attribute-spec]...

Change Bar Notation

Change bars are used to indicate substantive differences between this manual and its
preceding version. Change bars are vertical rules placed in the right margin of changed
portions of text, figures, tables, examples, and so on. Change bars highlight new or
revised information. For example:

The message types specified in the REPORT clause are different in the COBOL85
environment and the Common Run-Time Environment (CRE).

The CRE has many new message types and some new message type codes for
old message types. In the CRE, the message type SYSTEM includes all messages
except LOGICAL-CLOSE and LOGICAL-OPEN.

HP Encourages Your Comments
HP encourages your comments concerning this document. We are committed to
providing documentation that meets your needs. Send any errors found, suggestions
for improvement, or compliments to docsfeedback@hp.com.

Include the document title, part number, and any comment, error found, or suggestion
for improvement you have concerning this document.
HP NonStop SQL/MP Reference Manual—523352-013
xxxvii

About This Manual HP Encourages Your Comments
HP NonStop SQL/MP Reference Manual—523352-013
xxxviii

A
Access Options

Access options on DDL or DML statements determine the locking or access mode that
SQL uses when executing the statements. Access options affect the consistency of the
data your application views and the degree of concurrency your program has with
other programs that use the same data.

Access Options on DML Statements

The DML statements SELECT, INSERT, UPDATE, and DELETE include access
options that control lock duration and have row-level granularity. The possible settings
for access options on DML statements are:

BROWSE access is not available on DML statements that modify the database.

STABLE access and REPEATABLE access are available on DML statements that
modify the database. STABLE access and REPEATABLE access are discussed in
detail in the coming subsections.

STABLE Access Option on DML Statements

STABLE locks all data accessed through the DML statement but releases locks on
unmodified data as soon as possible. STABLE access locks modified data in audited
tables until the end of the transaction.

In host programs that use cursors, STABLE locks an unmodified row only when the
row is in the current position and releases the lock at the next FETCH on the cursor.
CLOSE cursor releases the lock from the last FETCH.

For modified rows in audited tables, STABLE access uses exclusive locks held by the
HP NonStop Transaction Management Facility (TMF) transaction that are released
only when the entire transaction ends.

For nonaudited tables, all locks are held by the process (not the transaction) and
STABLE access releases locks when the statement finishes.

BROWSE Does not lock data. Reads locked data that might be inconsistent.
Used for browse access or when a table is locked. Minimum
consistency, maximum concurrency.

STABLE Locks all data accessed but releases locks on unmodified rows
without waiting for the end of the transaction. The default for read
operations.

REPEATABLE Locks all data accessed until the end of the transaction. Maximum
consistency, minimum concurrency. The default for update
operations.
HP NonStop SQL/MP Reference Manual—523352-013
A-1

Access Options on DDL Statements
STABLE access provides sufficient consistency for any process that does not require a
repeatable read capability.

REPEATABLE Access Option on DML Statements

The REPEATABLE access option locks all data accessed through the DML statement
and holds the locks on data in audited tables until the end of the transaction.

For audited tables, REPEATABLE access uses shared locks for unmodified rows and
exclusive locks for modified rows—but all locks are held by the TMF transaction and
not released until the transaction ends. For audited tables, REPEATABLE access
prevents other users from inserting or modifying rows in the range of rows examined
by the DML statement.

For nonaudited tables, locks are held by the executing process, not the transaction, but
ending a transaction normally releases locks on both audited and nonaudited tables.
To hold locks on nonaudited data across multiple transactions, specify the AUDITONLY
option on COMMIT WORK, ROLLBACK WORK, and FREE RESOURCES statements
within the transaction.

For nonaudited tables outside of transactions in host programs, locks acquired with
REPEATABLE access remain in effect until the program releases them with UNLOCK
TABLE or FREE RESOURCES. In programs that use cursors, a lock on a row takes
effect when the FETCH for the row executes.

For nonaudited tables, if sequential block buffering (either RSBB or VSBB) is used to
access a nonaudited table, a table lock is always acquired regardless of the access
option (stable or repeatable) or the CONTROL TABLE TABLELOCK option
specification.

Within SQLCI-defined transactions when AUTOWORK is ON without the AUDITONLY
option, REPEATABLE access locks nonaudited tables only until SQLCI commits or
rolls back the transaction. If AUTOWORK is ON with the AUDITONLY option,
REPEATABLE access locks nonaudited tables until you release them.

REPEATABLE does not provide full, repeatable read-protection for nonaudited tables
within SQLCI or a host program. REPEATABLE does not prevent other users from
inserting rows in the originally selected range of rows. Use the LOCK TABLE statement
if you need such protection.

Access Options on DDL Statements

The only access option available on DDL statements is the WITH SHARED ACCESS
option, which allows users to control whether or not concurrent DML statements can
acquire write access to the SQL objects being changed by the DDL operation. Only a
few DDL statements currently include the WITH SHARED ACCESS option.

DDL operations performed with the WITH SHARED ACCESS option allow DML
operations by other processes to acquire read and write access to objects being
changed during all but the final phase of the DDL operation. Most DDL operations
HP NonStop SQL/MP Reference Manual—523352-013
A-2

Summary: Effect of Access Options on Concurrency
performed without the WITH SHARED ACCESS option allow read-only access for
concurrent DML operations during most of the DDL operation.

For more information, see WITH SHARED ACCESS OPTION on page W-4. See the
entry for the specific DDL statement you plan to use to determine if that statement
allows the WITH SHARED ACCESS option.

Summary: Effect of Access Options on Concurrency

Concurrency is access to the same data by two or more processes at the same time.
The degree of concurrency available (that is, whether a process that requests access
to data already being accessed is given access or placed in a wait queue) depends on
the purpose of the access (to read data or to update data), on the access option, and
on whether SQL uses VSBB for the access.

For more information, see Concurrency on page C-65.

Table A-1 indicates how access options affect concurrency by listing the accesses
allowed for one transaction (B) to rows currently being accessed by another
transaction (A). All operations indicated in this table use default locking.

Table A-1. Transaction Concurrency Depending on Access Option

TRANSACTION B TRANSACTION A

(Access Request) (Data Currently Accessed)

STABLE REPEATABLE

Lock Type S E S E

BROWSE

SELECT or cursor None I I I I

STABLE OR REPEATABLE

SELECT exclusive E W W W W

SELECT share S I W I W

SELECT default 1 1 W 1 W

FETCH for update E2 I W W W

FETCH no update S2, 3 I W I W

INSERT, UPDATE, or DELETE E W W W W

E = Exclusive lock (the default for update operations)
S = Shared lock (the default for read operations)
I = Immediate access
W = Wait until the lock is released

For cursors, FETCH acquires locks on the fetched row.

1 SQL determines lock mode. SHARE mode is in effect unless the program has updated the table or view, after
which EXCLUSIVE mode is in effect.
2 Records that do not satisfy a WHERE clause are examined and not returned; these records are always locked
with a shared lock.
3 Records returned are locked EXCLUSIVE if a DELETE WHERE CURRENT statement has been issued or if
FOR EXCLUSIVE was specified.
HP NonStop SQL/MP Reference Manual—523352-013
A-3

ADD DEFINE Command
Because the previous table does not show lock duration, STABLE and REPEATABLE
access options appear similar for Transaction B. For more information on lock duration,
about modifying default locking, and about the effects of locking on concurrency, see
Locking on page L-48.

ADD DEFINE Command
ADD DEFINE is an SQLCI command that creates DEFINEs in the current SQLCI
session. (ADD DEFINE is similar to the TACL command ADD DEFINE and the OSS
command add_define.)

define

is a name for the new DEFINE; the name cannot be same as the name of an
existing DEFINE.

A DEFINE name must begin with an equal sign (=) followed by a letter and can
contain 2 to 24 characters, including alphanumeric characters, hyphens (-),
underscores (_), and circumflexes (^). Uppercase and lowercase characters are
considered equivalent in DEFINE names. Defines supplied by HP start with an
equal sign followed by an underscore character (=_).

The new DEFINE has the attributes and values of the working attribute set
modified by any attr value pairs you specify, unless you specify a LIKE clause.
(The working attribute set is a set of default attribute values used when you create
a new DEFINE and do not explicitly specify its attributes. For more information
about the working attribute set, see SET DEFINE Command on page S-32,
RESET DEFINE Command on page R-12, and SHOW DEFINE Command on
page S-48.)

LIKE other-define

specifies an existing DEFINE on which to model the new DEFINE. The new
DEFINE will be identical to the DEFINE you specify in the LIKE clause except for
specific attributes you specify with attr value pairs.

If you use the LIKE clause, you cannot specify the CLASS attribute.

attr value

specifies an attribute and its value for the new DEFINE. The attribute value pairs
are applied in the order you specify them.

If you specify the CLASS attribute, specify it first in the list of attributes. (CLASS
MAP is the default, unless the working attribute set includes a different value.)

ADD DEFINE { define }
 { (define [, define] ...) }

 [, LIKE other-define] [, attr value] ... ;
HP NonStop SQL/MP Reference Manual—523352-013
A-4

Considerations—ADD DEFINE
Setting the CLASS attribute establishes a new set of attributes for the DEFINE and
sets each attribute associated with that CLASS to its initial value. If you specify
CLASS after you specify other attributes, the values you specified for the previous
attributes are erased.

For more information about DEFINE attributes, see DEFINEs on page D-27.

Considerations—ADD DEFINE

 You cannot use ADD DEFINE unless the DEFMODE setting is ON. The OSS
command add_define automatically sets DEFMODE ON, but the TACL form of
ADD DEFINE does not. Before issuing a TACL ADD DEFINE command, set
DEFMODE ON.

 A DEFINE stays in effect until you change it, delete it, or exit the SQLCI session in
which you created it.

 Attributes you specify in an ADD DEFINE command do not become part of the
working attribute set. For information about changing the working attribute set, see
SET DEFINE Command on page S-32.

 If the value of an attribute is a Guardian name or a subvolume name, the name is
expanded immediately using the current default node, the volume, and the
subvolume.

Examples—ADD DEFINE

 This example adds a DEFINE named =PCAT and uses it as a catalog name in a
CREATE CATALOG statement:

SET DEFMODE ON;
ADD DEFINE =PCAT, CLASS CATALOG, SUBVOL $VOL2.INVENT;
CREATE TABLE ACCOUNT
 (ACCT_NO NUMERIC (9)UNSIGNED, ACCT_NAME CHAR (50))
 CATALOG =PCAT;

 This example assigns the name \SYS1.$VOL2.SALES.SALESREP to the DEFINE
named =SALES_REP_ACCOUNTS:

SET DEFMODE ON;
ADD DEFINE =SALES_REP_ACCOUNTS, CLASS MAP,
 FILE \SYS1.$VOL2.SALES.SALESREP;

 You can accomplish the same result shown in the previous example by setting the
CLASS attribute in the working attribute set and adding a DEFINE that includes the
FILE attribute. This method is especially useful when you want to create a series of
DEFINEs with the same CLASS, such as:

SET DEFINE CLASS MAP ;
ADD DEFINE =SALES_REP_ACCTS, FILE $VOL2.SALES.SALESREP ;
ADD DEFINE =CUSTOMER_TABLE, FILE $VOL1.SALES.CUSTOMER ;
ADD DEFINE =ORDERS_TABLE, FILE $VOL2.SALES.ORDERS ;
HP NonStop SQL/MP Reference Manual—523352-013
A-5

AGGREGATE Functions
ADD DEFINE =ODETAIL_TABLE, FILE $VOL3.SALES.ODETAIL ;
ADD DEFINE =PARTS_TABLE, FILE $VOL4.SALES.PARTS ;

AGGREGATE Functions
NonStop SQL/MP provides these aggregate functions:

For more information, see the entry for a specific function.

Alias
An alias is a name assigned to a column in the select list of the SELECT command
using the SQLCI report writer NAME command. You can use an alias to refer to the
column in other parts of a report definition, such as a DETAIL command.

Use aliases to define abbreviations for long column names and to assign informative
names to columns that consist of expressions.

An alias is not the same as a detail alias, which is a name assigned to a print item
using the NAME clause of the DETAIL command. You can use a detail alias in report
formatting commands such as TOTAL and SUBTOTAL but not in the DETAIL
command itself.

AVG Function Computes the average of a set of numbers.

COUNT Function Counts the number of rows that result from a query or the
number of rows that contain a distinct value in a specific
column.

MAX Function Determines a maximum value.

MIN Function Determines a minimum value.

SUM Function Computes the sum of a set of numbers.
HP NonStop SQL/MP Reference Manual—523352-013
A-6

ALLOCATE File Attribute
ALLOCATE File Attribute
ALLOCATE is a Guardian file attribute that reserves disk space for a file, or frees disk
space previously reserved for a file that does not contain data. ALLOCATE applies to
key-sequenced, relative, and entry-sequenced tables and indexes.

Allocating disk space in advance ensures that space is available when needed and
avoids processing errors caused by full or fragmented disks during normal
allocation-on-demand.

ALLOCATE num-extents

specifies the number of extents to allocate in advance. The number must be an
integer between 1 and the current value of the MAXEXTENTS file attribute.

Depending on your file configuration, you might not be able to allocate the full
number of MAXEXTENTS.

For ALTER TABLE or ALTER INDEX, ALLOCATE allocates new extents until the
total of new and existing extents equals the specified number.

DEALLOCATE

frees all unused allocated extents (that is, all allocated extents beyond the extent
that contains the end-of-file). DEALLOCATE is valid only for ALTER TABLE or
ALTER INDEX.

Considerations—ALLOCATE

 ALLOCATE and DEALLOCATE apply to all partitions of the specified file unless
you include a PARTONLY clause on the statement that specifies the file attribute.
Use the PARTONLY clause if you want to specify different numbers of extents for
different partitions:

 In a CREATE TABLE statement that defines the primary partition and four
secondary partitions, ALLOCATE 40 allocates 40 extents to each of the five
partitions.

 In an ALTER TABLE statement that specifies PARTONLY, ALLOCATE 40
allocates additional extents so that the specified partition has a total of 40
extents.

 In an ALTER TABLE statement that does not specify PARTONLY, ALLOCATE
40 allocates additional extents to each partition whose total is less than 40 to
make the number of extents equal to 40. ALLOCATE has no effect on partitions
with 40 or more extents.

{ ALLOCATE num-extents }
{ DEALLOCATE }

The default is ALLOCATE 0.
HP NonStop SQL/MP Reference Manual—523352-013
A-7

ALTER CATALOG Statement
 ALLOCATE affects the number of extents, but not the size of extents. The EXTENT
file attribute determines the extent size.

ALTER CATALOG Statement
ALTER CATALOG is a DDL statement that alters security attributes for an entire
catalog.

catalog

is the name of the catalog to alter (or an equivalent DEFINE). If HP NonStop
Storage Management Foundation (SMF) is installed on your node, catalog must
be either virtual or a direct name.

The clauses set these security-related file attributes for the catalog:

For more information, see System Catalog on page S-92 or an entry for a specific
attribute.

This statement does not affect the system catalog CATALOGS table. You must
alter that table with the ALTER TABLE statement.

Considerations—ALTER CATALOG

 To alter security attributes for a catalog, you must be a generalized owner of the
catalog.

Only one DDL statement can operate on a given SQL object (or partition of an SQL
object) at a time. An error occurs if you attempt to run an ALTER CATALOG
statement while another process is executing a DDL operation on an object in the
catalog.

The specific error depends on the DDL operation involved and the phase of the
operation during which the conflict occurs. For more information, see DDL (Data
Definition Language) Statements on page D-20.

 {| { [NO]CLEARONPURGE } |}
 {| NOPURGEUNTIL date |}
ALTER CATALOG catalog {| OWNER group,user |}
 {| SECURE "rwep" |}

CLEARONPURGE Controls disk erasure when files are dropped

NOPURGEUNTIL Sets date after which drop is allowed

OWNER Specifies owner

SECURE Sets Guardian security string
HP NonStop SQL/MP Reference Manual—523352-013
A-8

Example—ALTER CATALOG
 Security information for a catalog is stored in catalog tables and file labels for the
catalog. ALTER CATALOG changes the information in the catalog and the
associated file labels on a disk.

 Changing ownership or security for a catalog can affect users of objects described
in the catalog, so be careful when you narrow the set of users with read or write
access. If you remove a user's authority to read or write to a catalog, the user
cannot query, alter, or drop an object in the catalog (even if the user owns the
object), or recompile a program that uses an object in the catalog.

SQL-compiling a program requires the authority to write to the PROGRAMS,
USAGES, and TRANSIDS catalog tables in the catalog that contains the
description of the program and to the USAGES and TRANSIDS catalog tables in
any catalogs that contain descriptions of tables or views used by the program.
Because of this requirement, you might want to secure these catalog tables
independently from other catalog tables. You can use ALTER TABLE to set the
security for the PROGRAMS, USAGES, and TRANSIDS tables.

Creating or dropping a catalog requires the authority to write to the system
directory of catalogs in the SQL.CATALOGS table. Therefore, altering write
authority for SQL.CATALOGS can prevent users from creating new catalogs or
dropping existing catalogs. Because of this requirement, you might want to secure
SQL.CATALOGS independently from the other tables in the system catalog. You
can use ALTER TABLE to set the security for SQL.CATALOGS.

 Changing the OWNER attribute of a catalog affects the interpretation of the
SECURE file attribute, because authorization is determined at run time using the
current group and owner.

If another process is using a catalog when the owner changes, the process might
not be able to reaccess the catalog after the change.

Example—ALTER CATALOG

This example makes user 201,43 the owner of the catalog named SALES, gives read
and execute authority to all local and remote users, and gives write and purge authority
to all users in group 201:

ALTER CATALOG SALES OWNER 201,43 SECURE "NUNU";
HP NonStop SQL/MP Reference Manual—523352-013
A-9

ALTER COLLATION Statement
ALTER COLLATION Statement
ALTER COLLATION is a DDL statement that renames a collation or alters security
attributes for a collation.

collation

is the name of the collation to alter (or an equivalent DEFINE). If SMF is installed
on your node, collation must be either a virtual name or a direct name.

RENAME new-name

specifies a new Guardian name (or an equivalent DEFINE) for the object. SQL
changes all references in the catalog to the new name.

OWNER or SECURE

specifies the owner and the security for the collation. For more information, see
OWNER FILE ATTRIBUTE on page O-10, Security on page S-11, or SECURE File
Attribute on page S-11.

Considerations—ALTER COLLATION

 ALTER COLLATION requires read and write authority for the collation and the
catalog in which the collation is registered.

Only one DDL statement can operate on a given SQL object (or partition of an SQL
object) at a time. An error occurs if you attempt to run an ALTER COLLATION
statement while another process is executing a DDL operation on the same object.
The specific error depends on the DDL operation involved and the phase of the
operation at which the conflict occurs. For more information, see DDL (Data
Definition Language) Statements on page D-20.

 Restricting access to a collation effectively restricts access to objects that use the
collation. This restriction is similar to restrictions for tables and views, but because
collations are used differently from tables and views, you might want to use less
restrictive security.

This scenario illustrates the type of problem that can occur if you alter the security
for a collation to make it more restrictive:

1. User A creates a collation available to user B.

2. User B creates a table that uses the collation.

3. User A alters the security of the collation such that user B can no longer
access it.

 {| RENAME new-name |}
ALTER COLLATION collation {| OWNER group,user |}
 {| SECURE "rwep" |}
HP NonStop SQL/MP Reference Manual—523352-013
A-10

Examples—ALTER COLLATION
4. User B tries to compile SQL statements that reference user B's own table, but
the compilation fails because user B does not have authority to access the
collation.

Examples—ALTER COLLATION

 This example renames a collation:

ALTER COLLATION ORDER1 RENAME ORDERA;

 This example resecures a collation such that all users on the node can access it,
but only the generalized owner can write to or purge it:

ALTER COLLATION TRN31 SECURE "AOOO";

ALTER DEFINE Command
ALTER DEFINE is an SQLCI command that changes the attributes of DEFINEs in the
current SQLCI session. (ALTER DEFINE is similar to the TACL command ALTER
DEFINE.)

define

is the name of an existing DEFINE to alter.

** or =*

specifies all DEFINEs.

attr value

specifies an attribute and its value for the DEFINE.

If you specify the CLASS attribute, specify it first in the list of attributes. Setting the
CLASS attribute establishes a new set of attributes for the DEFINE and sets each
attribute associated with that CLASS to its initial value. If you specify CLASS after

ALTER DEFINE define-list { , attr value } ... ;
 { , RESET reset-list}

define-list is:

 { define }
 { (define [, define] ...) }
 { ** }
 { =* }

reset-list is:

 { attr }
 { (attr [, attr]...) }
HP NonStop SQL/MP Reference Manual—523352-013
A-11

Considerations—ALTER DEFINE
you specify other attributes, the values you specified for the previous attributes are
erased. For more information about DEFINE attributes, see DEFINEs on
page D-27.

RESET reset-list

restores the value of each attribute listed in reset-list to its initial value.

You cannot reset a required attribute, so you cannot use this clause with CLASS
MAP and CLASS CATALOG DEFINEs.

Considerations—ALTER DEFINE

 When you end an SQLCI session, DEFINEs that you inherited from another
process (such as TACL) and modified within SQLCI revert to the values they had
when you started SQLCI. Changes you make to inherited attributes from SQLCI
apply only within SQLCI.

 ALTER DEFINE affects only existing DEFINEs, not the working attribute set. (SET
DEFINE modifies the working attribute set.)

 Attributes are altered in the order in which they are specified.

 If the value of an attribute is a Guardian name or a subvolume name, the name is
expanded immediately using current default node, volume, and subvolume.

 You cannot alter an attribute unless it is valid for the class of the DEFINE. For
example, you cannot alter the FILE attribute if the CLASS of the DEFINE is
CATALOG.

 The DEFMODE setting does not affect your ability to alter a DEFINE.

Example—ALTER DEFINE

This example alters the FILE attribute for a set of DEFINEs:

ALTER DEFINE =CUSTOMER_TABLE, FILE
\SYS1.$TEST.SALES.CUSTOMER;
ALTER DEFINE =ORDERS_TABLE, FILE \SYS1.$TEST.SALES.ORDERS;
ALTER DEFINE =ODETAIL_TABLE, FILE \SYS1.$TEST.SALES.ODETAIL;
ALTER DEFINE =PARTS_TABLE, FILE \SYS1.$TEST.SALES.PARTS;
HP NonStop SQL/MP Reference Manual—523352-013
A-12

ALTER INDEX Statement
ALTER INDEX Statement
ALTER INDEX is a DDL statement that renames, changes security, or changes file
attributes for an entire index; drops or adds an index partition; or changes file attributes
for an index partition.

The ALTER INDEX statement also supports several types of move and split
operations, including:

 Moving an entire index partition to another disk volume

 Merging an index partition into another existing partition

 Splitting an index partition and moving a part into a newly created partition

 Moving part of an index partition into another existing partition

ALTER INDEX name

 { RENAME new-name }
 { }
 { {| security-spec |} }
 { {| attribute-spec |} }
 { }
 { DROP PARTITION part-name }
 { }
 { {[FROM KEY val [UP TO LAST KEY]] } }
 { { TO dest-part [move-spec] } }
 { { [WITH SHARED ACCESS [wsa-spec]] } }
 { { } }
 { {TO dest-part [move-spec] } }
 { { WITH SHARED ACCESS [wsa-spec] } }
 { [PARTONLY] MOVE{ } }
 { {([FROM FIRST KEY] UP TO KEY val } }
 { { TO dest-part [move-spec], } }
 { { [WITH SHARED ACCESS[wsa-spec]]) } }
 { { } }
 { {([FROM FIRST KEY] UP TO KEY val } }
 { { TO dest-part [move-spec], } }
 { { FROM KEY val [UP TO LAST KEY] } }
 { { TO dest-part [move-spec]) } }
 { }
 { {| { ALLOCATE int | DEALLOCATE } |} }
 { [PARTONLY] {| MAXEXTENTS int |} }
 { {| RESETBROKEN |} }
 { {| RECOVER INCOMPLETE SQLDDL OPERATION |} }
 { }
 { ADD PARTITION new-part add-spec }
HP NonStop SQL/MP Reference Manual—523352-013
A-13

ALTER INDEX Statement
security-spec is:

 {| { CLEARONPURGE | NO CLEARONPURGE } |}
 {| NOPURGEUNTIL date |}
 {| SECURE "rwep" |}

attribute-spec is:

 {| { ALLOCATE int | DEALLOCATE } |}
 {| { AUDITCOMPRESS | NO AUDITCOMPRESS } |}
 {| { BUFFERED | NO BUFFERED } |}
 {| LOCKLENGTH int |}
 {| MAXEXTENTS int |}
 {| RESETBROKEN |}
 {| { SERIALWRITES | NO SERIALWRITES } |}
 {| TABLECODE int |}
 {| { VERIFIEDWRITES | NO VERIFIEDWRITES } |}

move-spec is:

 {| CATALOG catalog-name |}
 {| PHYSVOL volume-name |}
 {| EXTENT { size1 | (size1 [, size2]) } |}
 {| MAXEXTENTS int |}
 {| { FORMAT 1 | FORMAT 2 } |}
 {| DSLACK percent |}
 {| ISLACK percent |}
 {| SLACK percent |}

wsa-spec is:

 {| NAME operation-name |}
 {| |}
 {| REPORT [TO collector | ON | OFF] |}
 {| |}
 {| { COMMIT [WORK] [commit-options] } |}
 {| { ROLLBACK [WORK] } |}

add-spec is:

 {| FIRST KEY { val | (val [,val] ...) } |}
 {| WITH DATA MOVEMENT |}
 {| CATALOG catalog-name |}
 {| PHYSVOL volume-name |}
 {| EXTENT { size1 | (size1 [, size2]) } |}
 {| MAXEXTENTS int] |}
 {| { FORMAT 1 | FORMAT 2 } |}
HP NonStop SQL/MP Reference Manual—523352-013
A-14

ALTER INDEX Statement
name

is the name of an index or an index partition to alter or move (or an equivalent
DEFINE). If name is a partition and you use clauses that apply to an entire index,
SQL interprets name as identifying all partitions of the index.

RENAME new-name

changes the file and subvolume portions of the name of an index (including all
partitions) to those in the Guardian name (or equivalent DEFINE) new-name,
updating all catalog references to the index to reflect the change.

name and new-name must have the same node and volume name when
expanded. If the index is managed by SMF, only the virtual name changes; the
physical name on the physical volume is preserved.

security-spec

sets these security-related file attributes for index name:

For more information, see the entry for a specific attribute.

attribute-spec

sets these file attributes for index name:

For more information, see the entry for a specific attribute.

DROP PARTITION part-name

specifies the name (or an equivalent DEFINE) of an empty partition to drop from an
index. part-name cannot be the primary partition. You cannot drop a partition that

CLEARONPURGE Controls disk erasure when index is dropped

NOPURGEUNTIL Sets date after which drop is allowed

SECURE Sets Guardian security string

ALLOCATE Controls amount of disk space allocated

AUDITCOMPRESS Controls whether unchanged columns are included in audit
records

BUFFERED Turns buffering on or off

LOCKLENGTH Sets number of leading bytes in the key to use for generic
locks. Default is 0, which specifies the entire key

MAXEXTENTS Sets maximum extents

RESETBROKEN Resets BROKEN flag

SERIALWRITES Specifies serial or parallel writes

TABLECODE Sets tablecode

VERIFIEDWRITES Controls verification of writes to disk
HP NonStop SQL/MP Reference Manual—523352-013
A-15

ALTER INDEX Statement
contains data. If you want to drop a partition that contains data, use the
PARTONLY option of the PURGEDATA command. For more information on index
issues, see PURGEDATA Command on page P-36.

 {[FROM KEY val [UP TO LAST KEY]] } }
 { TO dest-part [move-spec] } }
 { [WITH SHARED ACCESS [wsa-spec]] } }
 { } }
 {TO dest-part [move-spec] } }
 { WITH SHARED ACCESS [wsa-spec] } }
[PARTONLY] MOVE { } }
 {([FROM FIRST KEY] UP TO KEY val } }
 { TO dest-part [move-spec] , } }
 { [WITH SHARED ACCESS [wsa-spec]])} }
 { } }
 {([FROM FIRST KEY] UP TO KEY val } }
 { TO dest-part [move-spec] , } }
 { FROM KEY val [UP TO LAST KEY] } }
 { TO dest-part [move-spec]) } }

moves a specified portion of the index name to a new or existing partition,
dest-part, that has the attributes described in move-spec. You can specify
dest-part with a Guardian name, a DEFINE equivalent to a Guardian name, a
node name and a volume name, or a volume name only.

For more information about move operations, see the discussion of performing
moves under Considerations—ALTER INDEX on page A-19.

PARTONLY indicates that name is a partitioned index, one partition of which is to
be moved or split. You must include PARTONLY if name is partitioned.

val is a list of comma-separated literals (one for each column in the key) that
specifies a point to split the existing partition. Use the keyword NULL to represent
a null value in the list.

move-spec

sets the catalog name and these file attributes for the index or partition dest-
part:

CATALOG Sets the catalog name

PHYSVOL Sets a physical volume for the new partition that overrides SMF

EXTENT Sets extent sizes

MAXEXTENTS Sets maximum extents

FORMAT Sets format. Only valid on a node running version 350 or later.

DSLACK Sets percent of slack in data blocks

ISLACK Sets percent of slack in index blocks

SLACK Sets percent of slack in blocks if not specified by DSLACK or
ISLACK
HP NonStop SQL/MP Reference Manual—523352-013
A-16

ALTER INDEX Statement
The EXTENT, DSLACK, ISLACK, SLACK, and FORMAT options are not supported
for a move or a merge of a partition into an existing partition.

name specifies a valid partition of the index. NonStop SQL/MP determines the
actual source partition during an execution.

Check that the values you specify result in an index or a partition large enough to
hold data being moved from an existing index or partition. Error 45 (File is full)
occurs if the new partition does not have enough space to store the rows
transferred. The default is the value of the corresponding attribute for the index or
partition being moved or split. For more information, see the entry for a specific
attribute.

The CATALOG option in move-spec specifies a catalog on the same node as
dest-part to contain the description of the dest-part. The default is the
current default catalog. If you do not specify CATALOG for a move or a merge
operation, SQL determines the correct catalog.

If SMF is installed on your node, the PHYSVOL option directs SQL to override
SMF and place the partition on the physical volume-name. For volume-name,
specify either a physical volume or equivalent DEFINE. Do not include the node
name in your volume name.

 [NAME operation-name]
 []
WITH SHARED ACCESS [REPORT [TO collector | ON | OFF]]
 []
 [{COMMIT [WORK] [commit-options]}]
 [{ROLLBACK [WORK] }]

specifies that the partition being moved be accessible for read and write access by
DML statements throughout most of the move operation.

The optional clauses allow you to name the operation, control EMS reporting for
the operation, specify a time window for the beginning of the commit phase of the
operation (the phase in which DML and utility operations on the file are temporarily
restricted), and specify the timeout period for lock requests and the handling of
retryable errors during the commit phase of the operation.

You can use WITH SHARED ACCESS only if the partition being moved is audited
and resides (both before and after the move) on a node running version 315 or
later of NonStop SQL/MP. You cannot use WITH SHARED ACCESS within a user-
defined transaction.

For information about operations that use WITH SHARED ACCESS, see WITH
SHARED ACCESS OPTION on page W-4. For more information about optional
clauses, see NAME Option on page N-2, REPORT Option on page R-3, or
COMMIT Option on page C-52.
HP NonStop SQL/MP Reference Manual—523352-013
A-17

ALTER INDEX Statement
 {| { ALLOCATE int | DEALLOCATE } |}
[PARTONLY] {| MAXEXTENTS int |}
 {| RESETBROKEN |}
 {| RECOVER INCOMPLETE SQLDDL OPERATION |}

changes the ALLOCATE, MAXEXTENTS, RESETBROKEN attributes, or requests
a recovery operation to change the INCOMPLETE SQLDDL OPERATION flag for
the partition specified in name. The keyword PARTONLY is optional and has no
effect.

For more information about ALLOCATE, MAXEXTENTS, or RESETBROKEN, see
ALLOCATE File Attribute on page A-7, MAXEXTENTS File Attribute on page M-2,
or RESETBROKEN File Attribute on page R-20, respectively. For more information
about INCOMPLETE SQLDDL OPERATION, see the consideration on page A-24.

ADD PARTITION new-part add-spec

adds a partition named new-part to index name using the options specified in
add-spec. When specifying new-part, include the volume, subvolume, and file
name of the partition.

If SMF is installed on your node, the volume can be a virtual or a direct volume. If
you specify only a subvolume and a file name, SQL creates a new index partition
in the current default volume. If you specify a virtual volume, SQL creates a new
index partition in the virtual volume. In all other cases, SQL creates a new index
partition in the physical volume and the new partition is a direct file not managed by
SMF.

The ADD PARTITION clause is equivalent to the one-way split form of the MOVE
clause.

add-spec

specifies options for a partition added with the ADD PARTITION clause.

The FIRST KEY clause is required and specifies the primary or clustering key
value for the first key allowed in the new partition. val is a literal compatible with
the data type of the key column that specifies the key value. For clustering keys,
specify multiple vals, in order.

The WITH DATA MOVEMENT clause directs SQL to transfer appropriate rows
from name to dest-part. If you do not specify WITH DATA MOVEMENT, ADD
PARTITION creates an empty partition and returns an error if records exist within
the FIRST KEY declaration of the new partition.

add-spec also includes options that allow you to specify a catalog for the new
partition, a physical volume if SMF is installed, the partition’s format (1 or 2) and to
set the EXTENT and MAXEXTENTS file attributes for the partition. These options
are the same as options described under move-spec earlier in this entry.
HP NonStop SQL/MP Reference Manual—523352-013
A-18

Considerations—ALTER INDEX
Considerations—ALTER INDEX

 To alter an index, you must be a generalized owner of the index and the underlying
table. In addition, you must have authority to read and write to the affected
catalogs.

ALTER INDEX executes only if the specified index or partition is accessible. Unless
you are altering file attributes for a partition, all partitions of the index must be
accessible.

Only one DDL statement can operate on a given SQL object (or partition of an SQL
object) at a time. An error occurs if you attempt to run an ALTER INDEX statement
while another process is executing a DDL operation on the same object. The
specific error depends on the DDL operation involved and the phase of the
operation at which the conflict occurs. For more information, see DDL (Data
Definition Language) Statements on page D-20.

Additional authorization and access requirements that exist for some ALTER
INDEX operations are described in the coming subsections.

 You cannot use ALTER INDEX in a user-defined transaction if the index is not
audited, if the index is audited and the operation requires data movement, or if the
operation is a simple move or a two-way split.

 You cannot rename an index within a user-defined transaction.

 Altering file attributes for indexes

 To alter security attributes for an index, both the index and its underlying table
must be accessible.

You should normally avoid altering the SECURE attribute of an index
independent of the SECURE attribute for the underlying table. Restricting read
and write access to an index by users who have access to the underlying table
can cause some queries on the table (those that use the index) to fail for
security reasons while other queries on the same table by the same users
succeed. (Note that SQL automatically changes the SECURE and OWNER
attributes for an index when you change them for the underlying table, but not
the reverse.)

 Changing the SECURE attribute of an index can affect processes using the
index when the change occurs. Such processes can continue using the index
when they have it open, but might not be able to reopen the index after closing
it.

Changing the OWNER for a table automatically changes the OWNER of
indexes and protection views defined on the table.

 ALTER INDEX changes file attributes for an index by changing information in
the file label for the index and in the catalog tables of the catalog that describes
the index.
HP NonStop SQL/MP Reference Manual—523352-013
A-19

Considerations—ALTER INDEX
 MOVE can perform a simple move, a merge (into an existing partition), a one-way
or two-way split (to new partitions) or a one-way move (to an existing partition).
Note that an index or an index partition cannot be open, even for read access,
during an ALTER INDEX MOVE operation, or else the operation fails.

 A simple move moves the partition to another volume:

MOVE TO dest-part [WITH SHARED ACCESS]

name specifies the partition being moved. You can specify a simple move with
or without the WITH SHARED ACCESS option.

 A merge operation moves the partition into another existing partition, deleting
the original partition:

MOVE TO dest-part WITH SHARED ACCESS

name specifies the actual partition being moved. The WITH SHARED ACCESS
option is required.

 A one-way split moves the first or last part of a partition to a new partition,
leaving the remaining part in the existing partition:

MOVE FROM KEY val TO dest-part [WITH SHARED ACCESS]

MOVE UP TO KEY val TO dest-part WITH SHARED ACCESS

In a one-way split, name specifies a partition of the index. The partition that is
split is the one whose data range would include the key val, even if the index
partition does not actually contain a row with that key.

For a one-way split operation, the subvolume name and the simple file name
for the new partition (whether specified explicitly or by default) must be
identical to the subvolume name and the simple file name for every other
partition of the same object. ALTER INDEX uses those names if you specify
only a node name and a volume name or specify only a volume name (which
causes the node to default to the local node). The combination of node name
and volume name must be unique for each partition of the same object.

The first part can be moved only if you include the WITH SHARED ACCESS
option.

A one-way split without the WITH SHARED ACCESS option requires additional
space on the disk that contains the partition being split while the split is in
progress. The amount of additional space required can be as much as the size
(EOF) of the original partition. A one-way split also requires space within the
file itself.

If you are splitting a partition because the disk is full (error 43), it might be
permissible to use a two-way split. If you choose to perform a one-way split,
use the WITH SHARED ACCESS option. Run a DSAP report to show the
largest number of pages of free space. After you successfully perform the
one-way split operation, run FUP RELOAD to reclaim unused space in the file.
For more information on FUP RELOAD, see the File Utility Program (FUP)
HP NonStop SQL/MP Reference Manual—523352-013
A-20

Considerations—ALTER INDEX
Reference Manual. You can also run DCOM on the disk to reclaim unused
space. For more information on DCOM, see the Guardian Disk and Tape
Utilities Reference Manual.

If you are splitting a partition because the file is full (error 45), increase
MAXEXTENTS for that file, if possible. Otherwise, perform a two-way split.

If you are splitting a partition because you received SQL error -1637 (“An
unexpected error occurred while purging data from filename”), verify that the
error was received against the source partition. If the error was on the
destination partition, specify smaller extent sizes based on the largest free
segment on that disc, or obtain a DSAP report and specify another volume
based on the largest free space available on another disk.

 A two-way split moves the first part of a partition to one new partition and the
last part of a partition to another new partition, deleting the original partition:

MOVE UP TO KEY val TO dest-part
 FROM KEY val TO dest-part

In a two-way split, name specifies the partition for the operation.

Both occurrences of val must be identical, but each occurrence of
dest-part must specify a different partition. That is, the subvolume name
and simple file name for the new partition (whether specified explicitly or by
default) must be identical to the subvolume name and simple file name for
every other partition of the same object. ALTER INDEX uses those names if
you specify only a node name and a volume name or specify only a volume
name (which causes the node to default to the local node). The combination of
node name and volume name, specified as dest-part, must be unique for
each partition of the same object.

The two-way split does not support the WITH SHARED ACCESS option.

 A one-way move operation moves the first or the last part of a partition to its
logically adjacent partition, leaving the other part in the existing partition. This
operation essentially moves the boundary of the partition; for example:

MOVE UP TO KEY val TO dest-part WITH SHARED ACCESS
MOVE FROM KEY val TO dest-part WITH SHARED ACCESS

A one-way move is similar to a one-way split, but moves data to an existing
partition instead of a new partition.

In a one-way move, name specifies a valid partition of the index. NonStop
SQL/MP determines the actual source partition during execution. The WITH
SHARED ACCESS option is required.

After a successful one-way move operation, run FUP RELOAD to reclaim
unused disk space. For more information about FUP RELOAD, see the File
Utility Program (FUP) Reference Manual.

 Reconfiguring partitions of indexes
HP NonStop SQL/MP Reference Manual—523352-013
A-21

Considerations—ALTER INDEX
 All partitions of the index must be accessible when you add a new partition to
an index. ALTER INDEX returns an error if you attempt to add a partition while
another process has a partition locked or while another process is attempting
to execute a DDL operation on the same partition. For more information about
the errors returned, see DDL (Data Definition Language) Statements on
page D-20.

If you specify WITH SHARED ACCESS, SQL allows concurrent INSERT,
UPDATE, DELETE and read-only utility operations on a partition being moved
throughout most of the move operation. For more information, see WITH
SHARED ACCESS OPTION on page W-4. You can use the COMMIT option to
control when the commit phase occurs and to specify the timeout period for
lock requests and the handling of retryable errors (such as errors in lock
requests) during the commit phase of the ALTER INDEX operation.

Without WITH SHARED ACCESS, a partition being moved or split is not
accessible until the ALTER INDEX operation finishes.

If the partition is being accessed for a SELECT or read operation concurrent
with a move or a split operation, the move or the split operation cannot
complete until it can obtain an exclusive lock on all partitions. It either waits
until the partition becomes available or times out. If the move or split operation
obtains an exclusive lock then other transactions against the partition time out.

Other partitions of the table are accessible for INSERT, UPDATE, and DELETE
operations, such that processes can make read and write requests for those
partitions. For information about specifying on-demand opens, see the OPEN
ACCESSED PARTITIONS clause under CONTROL TABLE Directive on
page C-77. Without WITH SHARED ACCESS, you might want to stop activity
on a table when you intend to move or split one of the partitions of an index to
the table.

If SQL statements refer to the source partition and the partition is moved, you
might need to change your program or DEFINEs to reference the new location.

 Moving, merging, or splitting an index partition invalidates a program that uses
the index, unless the program was compiled with CHECK INOPERABLE
PLANS and the table associated with the index has the SIMILARITY CHECK
option enabled.

A simple move or a split of a partition invalidates previous TMF online dumps
of the affected partition. If you want TMF file-recovery protection, you must
make online dumps of the newly moved or split partitions. (If the operation
specifies the WITH SHARED ACCESS option, you can begin making new
online dumps without waiting for the operation to complete. For more
information, see WITH SHARED ACCESS OPTION on page W-4.)

 Merging a partition or moving all or part of a partition into another existing
partition does not change statistics. To update statistics, use the UPDATE
STATISTICS command.
HP NonStop SQL/MP Reference Manual—523352-013
A-22

Considerations—ALTER INDEX
 ALTER INDEX operations that use WITH SHARED ACCESS generally take
longer to complete than those that do not. However, because WITH SHARED
ACCESS operations allow concurrent read and write access to the source
partition, they cause far less application downtime than equivalent operations
without WITH SHARED ACCESS.

The duration of a WITH SHARED ACCESS operation increases with the
number and length of transactions on the node that contains the source
partition, particularly with the number and length of transactions that involve
the source partition and the amount of activity on the audit trail used for the
source partition.

 An operation that uses WITH SHARED ACCESS cannot complete successfully
unless the TMF audit trail generated during the operation is accessible for
reading later in the operation. If a required audit trail has been overwritten, a
WITH SHARED ACCESS operation cancels changes made to the database
and terminates.

When performed on a source object that has a valid TMF online dump, an
operation that uses WITH SHARED ACCESS generates audit information for
the target object.

Lengthy operations that use WITH SHARED ACCESS might require an
operator to mount tapes of TMF audit dumps. (Requests to mount TMF audit
dump tapes for WITH SHARED ACCESS operations are not distinguishable
from other requests to mount TMF audit dump tapes. Such requests are
generally sent to an operator's console. SQL does not return information about
such requests to the terminal or process that started the operation.)

 When a split command with the WITH SHARED ACCESS option finishes
successfully, check SQL FILEINFO for the source partition to see if the F flag is
present. For a merge operation with the WITH SHARED ACCESS option,
check the target partition; for a one-way move operation with the WITH
SHARED ACCESS option, check the source and target partitions. If the F flag
is present, the partition contains data blocks allocated to obsolete (moved)
records. Use the FUP RELOAD command to reclaim the disk space. For more
information, see the File Utility Program (FUP) Reference Manual.

If the request fails, the original index normally remains intact and accessible.
However, if ALTER INDEX fails because of a processor or system failure, a
newly added, moved, or split partition of the index might continue to exist—
along with the original index—although it is inaccessible. After the system
becomes available, use CLEANUP to drop the new partition (or ask a user with
local super ID authority to do so), and reissue the ALTER INDEX statement.
ALTER INDEX returns an error if there is a problem with the index.

When you add a partition to an index, the PARTNS catalog table and
associated IXPART01 index might become full. To correct the situation,
distribute object and partition definitions across multiple catalogs. For more
information about partition limits, see Limits on page L-6.
HP NonStop SQL/MP Reference Manual—523352-013
A-23

Considerations—ALTER INDEX
If ALTER INDEX fails during a merge or one-way move operation with the
WITH SHARED ACCESS option, use the SQL FILEINFO utility to see if the D
or F flag is present for the target partition:

 The D flag, INCOMPLETE SQLDDL OPERATION, indicates that you need
to request an ALTER INDEX name PARTONLY RECOVER INCOMPLETE
SQLDDL OPERATION, followed by a FUP RELOAD command for the
target partition.

 The F flag, UNRECLAIMED FREE SPACE, indicates that you need to
request a FUP RELOAD operation to reclaim space from the source
partition.

If the slack space in the source table is less than the value chosen for the
target table, a MOVE operation can fail with a file full error. To prevent this
error, check the actual slack amount in the source file (using FILEINFO
STATISTICS) and specify EXTENTS and MAXEXTENTS values for the
target table sufficient to hold the data.

 If any partition of an index specified in a move or split operation (even a
partition other than the one being moved or split) resides on a node running
version 1 of the SQL/MP software, error 1125 (Incompatible remote system)
occurs.

You cannot use the WITH SHARED ACCESS option with a split, merge, or
move request unless each source object and each target object resides on a
node running a version of SQL/MP software (315 or later) that supports the
specific type of split, merge, or move operation.
HP NonStop SQL/MP Reference Manual—523352-013
A-24

Considerations—ALTER INDEX
 Dropping partitions of indexes

 All partitions of an index must be accessible when you drop any partition of the
index, but partitions other than the partition being dropped can be accessed by
other processes while the ALTER INDEX executes.

 Dropping an index partition invalidates a program that uses the index, unless
the program was compiled with CHECK INOPERABLE PLANS and the table
associated with the index has the SIMILARITY CHECK option enabled.

 If ALTER INDEX fails while attempting to drop a partition, the original index
remains intact and accessible.

 ALTER INDEX cannot drop a primary partition or a partition that is not empty. If
you attempt to drop a partition that contains data, SQL returns error 1411
(Operation cannot be performed against a nonempty partition).

 Considerations: Format 2-enabled indexes

 Indexes inherit their format from the underlying table. An index can be
considered to be Format 2-enabled if the underlying table is Format 2-enabled.

 Existing partitions cannot have their formats altered.

 When you create a table with a FORMAT2ENABLED partition array, the table
will have an object version of at least version 350. Therefore, all partitions of
the table and its index partitions must be cataloged in version 350 or later
catalogs for the ALTER INDEX catalog to succeed.

 Considerations: ALTER INDEX to add partitions

 The default partition format for indexes is based on the partition array value of
the underlying table. For STANDARD and EXTENDED, the default partition
format is 1. For FORMAT2ENABLED, the default partition format is 2. For
relative and entry-sequenced tables, the partition format is always 1 because
such tables cannot have a FORMAT2ENABLED partition array.

 The format and file parameters, such as the extent size of the added index
partition, must be consistent with the index format for the ALTER INDEX
command to succeed. For example, if you explicitly specify a partition as
FORMAT 2 when the partition array is STANDARD or EXTENDED you will
receive an SQL error.

 You can use the WITH DATA MOVEMENT clause to move data from an
existing partition to the added partition. Data can thus be migrated from Format
1 to Format 2 partitions and from Format 2 to Format 1 partitions.

 Considerations: ALTER INDEX to move partitions

 The default partition format for indexes is based on the partition array value of
the underlying table. For STANDARD and EXTENDED, the default partition
format is 1. For FORMAT2ENABLED, the default partition format is 2. For
HP NonStop SQL/MP Reference Manual—523352-013
A-25

Examples—ALTER INDEX
relative and entry-sequenced tables, the partition format is always 1 because
such tables cannot have a FORMAT2ENABLED partition array.

 The format and file parameters, such as extent size of the new index partition,
must be consistent with the index format for the ALTER INDEX command to
succeed. For example, if you explicitly specify a partition as FORMAT 2 when
the partition array is STANDARD or EXTENDED you will receive an error.

 The FORMAT clause can be specified for a simple move, one-way split, or
two-way split operation.

 SQL ignores the FORMAT clause if you specify it for a merge or a one-way
move (move partition boundary) operation because these types of moves do
not create a new partition. If you specify the FORMAT clause on these types of
operations you will receive a warning and the operation continues.

Examples—ALTER INDEX

 This example changes the value of MAXEXTENTS and deallocates the disk space
for the index XORDCUS:

ALTER INDEX \SYS1.$VOL1.SALES.XORDCUS
 MAXEXTENTS 300 DEALLOCATE;

 This example changes the maximum number of extents for index XEMPNAME to
200. It also sets the SERIALWRITES attribute to specify serial mirror writes for
operations on the index:

ALTER INDEX \SYS.$VOL1.PERSNL.XEMPNAME
 MAXEXTENTS 200 SERIALWRITES;

 This example renames the index XEMP:

ALTER INDEX XEMP RENAME XEMPID;

 This example moves an index partition, specifying WITH SHARED ACCESS to
keep the partition accessible to other processes during most of the move:

ALTER INDEX $DISK1.USERS.XDATA PARTONLY MOVE TO $DISK2
 WITH SHARED ACCESS NAME MOVE2D2 COMMIT BY REQUEST;
 ...
CONTINUE MOVE2D2 ONCOMMITERROR COMMIT BY REQUEST;

The ALTER INDEX statement specifies COMMIT BY REQUEST so that the user
can control entry to the commit phase of the operation, which locks out other
processes. The CONTINUE statement starts the commit phase, directing SQL to
return control to the user if a retryable error occurs during the phase.

 This example moves the latter portion of an index partition into a new partition (a
one-way split):

ALTER INDEX =XPART_LOC PARTONLY MOVE
 FROM KEY "I00" TO =XPART_EUROPE
 EXTENT (8,8) SLACK 20;
HP NonStop SQL/MP Reference Manual—523352-013
A-26

ALTER PROGRAM Statement
 This example creates two new partitions of an index and moves data to them from
an existing partition, which it deletes (a two-way split):

ALTER INDEX $DISK1.SALES.XORDERS PARTONLY MOVE
 (FROM FIRST KEY UP TO KEY 50 TO $DISK2 CATALOG =CAT2,
 FROM KEY 50 UP TO LAST KEY TO $DISK3 CATALOG =CAT3);

 This example moves the latter portion of an index partition into a new partition (a
one-way split) in which the new partition is Format 2:

ALTER INDEX =XPART_LOC PARTONLY MOVE
 FROM KEY "I00" TO =XPART_EUROPE
 EXTENT (8,8) SLACK 20 FORMAT 2;

ALTER PROGRAM Statement
ALTER PROGRAM is a DDL statement that renames an SQL program in a Guardian
file or alters security-related file attributes for an SQL program in a Guardian file. (You
cannot use ALTER PROGRAM on an SQL program in an OSS file.)

program

is the name of a file (or an equivalent DEFINE) that contains an SQL-compiled
SQL program in a Guardian file.

security-spec

sets these security-related file attributes:

For more information, see the entry for a specific attribute.

RENAME new-name

renames the program and changes all references to the old name in the affected
catalog to the new name; new-name is a Guardian name or DEFINE. The fully

ALTER PROGRAM program { security-spec }
 { RENAME new-name }

security-spec is:

 {| [NO]CLEARONPURGE |}
 {| SECURE "rwep" |}
 {| OWNER group-num,user-num [NO PROGID] |}
 {| { PROGID | NO PROGID } |}

CLEARONPURGE Controls disk erasure when file is dropped

SECURE Sets Guardian security string

OWNER Specifies owner

PROGID Determines PAID of process from file
HP NonStop SQL/MP Reference Manual—523352-013
A-27

Considerations—ALTER PROGRAM
expanded new name must be unique among objects in the network. Both program
and new-name must have the same volume and node name.

If the program is managed by SMF, new-name must be either a virtual or direct
name. Only the virtual name changes; the physical name on the physical volume is
preserved.

Considerations—ALTER PROGRAM

 To alter security attributes for a program or rename a program, you must be a
generalized owner of the program file. You must also have authority to read and
write the program file.

To rename a program, you must also have authority to read and write to the
catalogs that describe the program and any associated objects. Renaming a
program does not affect the validity of the program.

If the program is protected by the Safeguard security subsystem, requirements
depend on the Safeguard protection settings. For example, if access is restricted to
the super ID, you must be the super ID or error 199 (Disk file is Safeguard
protected) occurs. If you are the super ID, ALTER PROGRAM executes
successfully, but the new security attributes take effect only if Safeguard protection
is removed from the program.

Only one DDL statement can operate on a given SQL object (or partition of an SQL
object) at a time. An error occurs if you attempt to execute an ALTER PROGRAM
statement while another process is executing a DDL operation on the same object.
The specific error depends on the DDL operation involved and the phase of the
operation at which the conflict occurs. For more information, see DDL (Data
Definition Language) Statements on page D-20.

 The security attribute information for an SQL program in a Guardian file is stored in
the file label and in the PROGRAMS table of the catalog when the program is
created. ALTER PROGRAM changes the information in the catalog and in the
associated file label on disk.

 These dependencies apply when you alter the program security attributes:

OWNER and
PROGID

Specifying OWNER turns off the PROGID attribute.

OWNER and
SECURE

A change in the ownership of a program affects the
interpretation of the security string. The security string is
interpreted at run time against the new owner and, if
applicable, a new group.
If another process is using a program when the owner or
security string is changed, the process might not be able
to access the program after the program stops executing.

SECURE A security string must ensure that users who have write
access also have read access.
HP NonStop SQL/MP Reference Manual—523352-013
A-28

Example—ALTER PROGRAM
Example—ALTER PROGRAM

This example statements give the program file ASERV to a new owner (12,201) and
set the PROGID file attribute. The first statement sets the owner ID, which
automatically turns off the PROGID attribute. The second statement turns on the
PROGID attribute.

ALTER PROGRAM ASERV OWNER 12,201;
ALTER PROGRAM ASERV PROGID;

ALTER TABLE Statement
ALTER TABLE is a DDL statement that:

 Renames, changes security, changes file attributes, or enables or disables
similarity checks for a table

 Adds a column to a table or changes the HEADING attribute for an existing column

 Drops, moves, splits, reuses, or adds a table partition or changes file attributes of a
table partition

The ALTER TABLE statement supports several types of move and split operations,
including:

 Moving an entire partition to another disk volume

 Merging an entire partition into another existing partition

 Splitting a partition and moving part into a newly created partition

 Moving part of a partition into another existing partition.
HP NonStop SQL/MP Reference Manual—523352-013
A-29

ALTER TABLE Statement
ALTER TABLE name

 { RENAME new-name }
 { }
 { {| security-spec |} }
 { {| attribute-spec |} }
 { }
 { SIMILARITY CHECK { ENABLE | DISABLE } }
 { }
 { ADD COLUMN col-name data-type [DEFAULT def }
 { [NOT NULL]] [HEADING string | NO HEADING] }
 { }
 { COLUMN col-name { HEADING string | NO HEADING } }
 { }
 { PARTITION ARRAY }
 { { STANDARD | EXTENDED | FORMAT2ENABLED } }
 { }
 { DROP PARTITION part-name }
 { }
 { {[FROM KEY val [UP TO LAST KEY]]} }
 { { TO dest-part [move-spec] } }
 { { [WITH SHARED ACCESS [wsa-spec]] } }
 { { } }
 { {TO dest-part [move-spec] } }
 { { WITH SHARED ACCESS [wsa-spec] } }
 { [PARTONLY] MOVE{ } }
 { {([FROM FIRST KEY] UP TO KEY val } }
 { { TO dest-part [move-spec] } }
 { { [WITH SHARED ACCESS [wsa-spec]]) } }
 { { } }
 { {([FROM FIRST KEY] UP TO KEY val } }
 { { TO dest-part [move-spec], } }
 { { FROM KEY val [UP TO LAST KEY] } }
 { { TO dest-part [move-spec]) } }
 { }
 { {| { ALLOCATE int | DEALLOCATE } |} }
 { [PARTONLY] {| MAXEXTENTS int |} }
 { {| RESETBROKEN |} }
 { {| RECOVER INCOMPLETE SQLDDL OPERATION |} }
 { }
 { ADD PARTITION }
 { new-part add-spec }
 { }
 { REUSE PARTITION reused-part reuse-spec }

security-spec is:

 {| { CLEARONPURGE | NOCLEARONPURGE } |}
 {| NOPURGEUNTIL date |}
 {| OWNER group-num,user-num |}
 {| SECURE "rwep" |}
HP NonStop SQL/MP Reference Manual—523352-013
A-30

ALTER TABLE Statement
name

is the name of the table or table partition to alter or move (or an equivalent
DEFINE). If name is a partition and you use clauses that apply to a entire table,
SQL interprets name as identifying all partitions of the table.

attribute-spec is:

 {| { ALLOCATE int | DEALLOCATE } |}
 {| { AUDIT | NO AUDIT } |}
 {| { AUDITCOMPRESS | NO AUDITCOMPRESS } |}
 {| { BUFFERED | NO BUFFERED } |}
 {| LOCKLENGTH int |}
 {| MAXEXTENTS int |}
 {| RESETBROKEN |}
 {| { SERIALWRITES | NO SERIALWRITES } |}
 {| TABLECODE int |}
 {| { VERIFIEDWRITES | NO VERIFIEDWRITES } |}

move-spec is:

 {| CATALOG catalog-name |}
 {| PHYSVOL volume-name |}
 {| EXTENT { size1 | (size1 [, size2]) } |}
 {| MAXEXTENTS int |}
 {| FORMAT 1 | FORMAT 2 |}
 {| DSLACK percent |}
 {| ISLACK percent |}
 {| SLACK percent |}

wsa-spec is:

 {| NAME operation-name |}
 {| |}
 {| REPORT [TO collector | ON | OFF] |}
 {| |}
 {| { COMMIT [WORK] [commit-options] } |}
 {| { ROLLBACK [WORK] } |}

add-spec is:

 {| FIRST KEY { val | (val [,val] ...) } |}
 {| WITH DATA MOVEMENT |}
 {| CATALOG catalog-name |}
 {| PHYSVOL volume-name |}
 {| EXTENT { size1 | (size1 [, size2]) } |}
 {| MAXEXTENTS int |}
 {| FORMAT 1 | FORMAT 2 g |}

reuse-spec is:

 { FIRST KEY { val | (val [,val] ...) } }
HP NonStop SQL/MP Reference Manual—523352-013
A-31

ALTER TABLE Statement
name cannot specify a catalog table other than CATALOGS, PROGRAMS,
TRANSIDS, or USAGES. (You can use security-spec to change security
attributes for these tables, but you cannot use any other ALTER TABLE clause with
any catalog table.)

RENAME new-name

changes the file and subvolume portions of the name of a table (including all its
partitions) to those in the Guardian name (or equivalent DEFINE) new-name,
updating all catalog references to reflect the change.

name and new-name must have the same node and volume name when
expanded.

security-spec

sets these security-related file attributes for table name:

For more information, see the entry for a specific attribute.

attribute-spec

sets these file attributes for table name:

For more information, see the entry for a specific attribute.

SIMILARITY CHECK { ENABLE | DISABLE }

authorizes or prohibits similarity checks on table name.

CLEARONPURGE Controls disk erasure when table is dropped

NOPURGEUNTIL Sets date after which drop is allowed

OWNER Specifies owner

SECURE Sets Guardian security string

ALLOCATE Controls amount of disk space allocated

AUDIT Controls TMF auditing. Default is AUDIT

AUDITCOMPRESS Controls whether unchanged columns are included in audit
records

BUFFERED Turns buffering on or off

LOCKLENGTH Sets byte count in key for generic locks

MAXEXTENTS Sets maximum extents

RESETBROKEN Resets BROKEN flag

SERIALWRITES Specifies serial or parallel writes

TABLECODE Sets tablecode

VERIFIEDWRITES Controls verification of writes to disk
HP NonStop SQL/MP Reference Manual—523352-013
A-32

ALTER TABLE Statement
Authorizing similarity checks (SIMILARITY CHECK ENABLE) on a table whose
version is older than 310 increases the version of the table (and the version of
objects that depend on the table) to 310. Such a table cannot be registered in an
older version catalog or accessed by older versions of the SQL/MP software.

Prohibiting similarity checks (SIMILARITY CHECK DISABLE) on a table that has
version 310 decreases the version of the table (and the version of objects that
depend on the table).

ADD COLUMN col-name data-type [DEFAULT def

 [NOT NULL]] [HEADING string | NO HEADING]

adds a column named col-name to table name, including all its partitions, if any.

The data-type and the DEFAULT clause specify the data type and default value
for the new column. For more information about these clauses, see Data Types on
page D-1 and DEFAULT Clause on page D-26.

NOT NULL specifies that the new column cannot contain null values. If you specify
NOT NULL, you must specify the DEFAULT clause also.

The HEADING clause specifies a heading for the new column. For more
information, see HEADING Clause on page H-1.

You cannot add a column to a table with entry-sequenced file organization.

COLUMN col-name { HEADING string | NO HEADING }

specifies a new default heading for the existing column col-name in table name.
For more information, see HEADING Clause on page H-1.

PARTITION ARRAY { STANDARD | EXTENDED | FORMAT2ENABLED}

specifies the type of partition array used for the specified table and all associated
indexes:

An extended partition array supports a larger number of table and index partitions.
It also allows more indexes to be created against the base table. A

EXTENDED specifies the extended partition array available on
versions 320 and later of NonStop SQL/MP

STANDARD specifies the type of array used by default by NonStop
SQL/MP

FORMAT2ENABLED specifies the size of the partition array, and designates
whether the table is Format 1 enabled or Format 2
enabled. STANDARD and EXTENDED designate a
Format 1-enabled table. FORMAT2ENABLED designates
a Format 2-enabled table. Only key sequenced files can
be Format 2 enabled.
HP NonStop SQL/MP Reference Manual—523352-013
A-33

ALTER TABLE Statement
Format 2-enabled partition array allows a partition to grow to one terabyte or the
size of a single disk volume, whichever is smaller.

PARTITION ARRAY applies to partitions created later for a table, even if the table
is not currently partitioned. Altering the base table causes all associated indexes to
be altered automatically to the value specified for the base table.

You can use the PARTITION ARRAY clause in SQLCI or in dynamic SQL
statements. To check its value, use the FILEINFO DETAIL command.

For more information, see Modifying the partition array on page A-47.

DROP PARTITION part-name

specifies the name of an empty partition to drop from a table. part-name cannot
be the primary partition. you cannot drop a partition that contains data. You cannot
drop a partition that contains data unless you use the PARTONLY option of
PURGEDATA. For more information on index issues, see PURGEDATA Command
on page P-36.

 {[FROM KEY val [UP TO LAST KEY]] } }
 { TO dest-part [move-spec] } }
 { [WITH SHARED ACCESS [wsa-spec]] } }
 { }
 {TO dest-part [move-spec] } }
 { WITH SHARED ACCESS [wsa-spec] } }
[PARTONLY] MOVE { } }
 {([FROM FIRST KEY] UP TO KEY val } }
 { TO dest-part [move-spec] } }
 { [WITH SHARED ACCESS [wsa-spec]])} }
 { }
 {([FROM FIRST KEY] UP TO KEY val } }
 { TO dest-part [move-spec], } }
 { FROM KEY val [UP TO LAST KEY] } }
 { TO dest-part [move-spec]) } }

moves a specified portion of the table name to a new or existing partition,
dest-part, that has the attributes described in move-spec.

You can specify dest-part with a Guardian name, a DEFINE equivalent to a
Guardian name, a node name and volume name, or a volume name only.

For more information about types of move and split operations, see the discussion
of performing moves under Considerations—ALTER INDEX on page A-19.

PARTONLY indicates that name is a partitioned table, one partition of which is to be
moved or split. You must include PARTONLY if name is partitioned.

val is a list of comma-separated literals (one for each column in the key) that
specifies a point at which to split the existing partition.
HP NonStop SQL/MP Reference Manual—523352-013
A-34

ALTER TABLE Statement
move-spec

sets the catalog name and these file attributes for the table or partition dest-
part:

The DSLACK, ISLACK, SLACK, EXTENT and FORMAT clauses are not supported
for a move or merge of a partition into an existing partition.

Make sure that the values you specify result in a table or partition large enough to
hold data being moved from an existing table or partition. Error 45 (File is full)
occurs if the new partition does not have enough space to store the rows
transferred. The default is the value of the corresponding attribute for the table or
partition being moved or split. For more information, see the entry for a specific
attribute.

The CATALOG option in move-spec specifies a catalog on the same node as
dest-part to contain the description of the dest-part. The default is the
current default catalog. If you do not specify CATALOG for a one-way move or a
merge operation, SQL determines the correct catalog.

If SMF is installed, the PHYSVOL option directs SQL to override SMF and move
the partition to the physical volume-name. For volume-name, specify either a
physical volume or equivalent DEFINE. Do not include the node name in your
volume name.

 [NAME operation-name]
 []
WITH SHARED ACCESS [REPORT [TO collector | ON | OFF]]
 []
 [{COMMIT [WORK] [commit-options]}]
 [{ROLLBACK [WORK] }]

specifies that the partition being moved be accessible for read and write access by
DML statements throughout most of the move or split operation.

CATALOG Sets the catalog name

PHYSVOL Sets a physical volume for the new partition that overrides
SMF

EXTENT Sets extent sizes

MAXEXTENTS Sets maximum extents

FORMAT 1 |
FORMAT 2

Sets partition format.

DSLACK Sets percent of slack in data blocks

ISLACK Sets percent of slack in index blocks

SLACK Sets percent of slack in blocks if not specified by DSLACK or
ISLACK
HP NonStop SQL/MP Reference Manual—523352-013
A-35

ALTER TABLE Statement
The option clauses allow you to name the operation, control EMS reporting for the
operation, specify a time window for the beginning of the commit phase of the
operation (the phase in which DML and utilities operations on the file are
temporarily restricted), and specify the timeout period for lock requests and the
handling of retryable errors during the commit phase of the operation.

You can use WITH SHARED ACCESS only if the partition being moved or split is
audited and resides (both before and after the operation) on a node running
version 315 or later of NonStop SQL/MP. You cannot use WITH SHARED
ACCESS within a user-defined transaction.

For information about operations that use WITH SHARED ACCESS, see WITH
SHARED ACCESS OPTION on page W-4. For information about the optional
clauses, see NAME Option on page N-2, REPORT Option on page R-3, or
COMMIT Option on page C-52.

 {| { ALLOCATE int | DEALLOCATE } |}
[PARTONLY] {| MAXEXTENTS int |}
 {| RESETBROKEN |}
 {| RECOVER INCOMPLETE SQLDDL OPERATION |)

changes the ALLOCATE, MAXEXTENTS, or RESETBROKEN attribute, or
requests a recovery operation to change the INCOMPLETE SQLDDL OPERATION
flag for the partition specified in name. The keyword PARTONLY is optional and
has no effect.

For more information about ALLOCATE, MAXEXTENTS, or RESETBROKEN, see
the ALLOCATE File Attribute on page A-7, MAXEXTENTS File Attribute on
page M-2, or RESETBROKEN File Attribute on page R-20 entries. For more
information about INCOMPLETE PARTITION CHANGE, see the Considerations—
ALTER TABLE on page A-37.

ADD PARTITION new-part add-spec

adds a partition named new-part to table name using the options specified in
add-spec. When specifying new-part, include the volume, subvolume, and file
name of the partition.

If SMF is installed, the volume can be a virtual or direct volume name. If you
specify only a subvolume and file name, SQL creates a new index partition in the
current default volume. If you specify a virtual volume, SQL creates a new index
partition in the virtual volume. In all other cases, SQL creates a new index partition
in the physical volume and the new partition is a direct file not managed by SMF.

You must use ADD PARTITION to add a partition to a table with relative or
entry-sequenced file organization. For tables with key-sequenced organization, you
can use the MOVE clause to add a partition; ADD PARTITION is equivalent to the
one-way split form of the MOVE clause.
HP NonStop SQL/MP Reference Manual—523352-013
A-36

Considerations—ALTER TABLE
add-spec

specifies options for a partition added with the ADD PARTITION clause.

The FIRST KEY clause specifies the primary or clustering key value for the first
key allowed in a new partition of a table with key-sequenced file organization. It is
required for key-sequenced files. val is a literal compatible with the data type of
the key column that specifies the key value. For clustering keys, specify multiple
vals, in order.

The FIRST KEY clause does not apply to tables with relative or entry-sequenced
file organization; ADD PARTITION adds an empty partition to the end of a relative
or entry-sequenced file.

The WITH DATA MOVEMENT clause directs SQL to transfer appropriate rows
from name to dest-part. If you do not specify WITH DATA MOVEMENT, ADD
PARTITION creates an empty partition and returns an error if records exist within
the FIRST KEY declaration of the new partition.

add-spec also includes options that allow you to specify a catalog for the new
partition, a physical volume if DSM/Storage Manager is installed, and to set the
EXTENT, MAXEXTENTS and FORMAT file attributes for the partition. These
options are the same as options described under move-spec earlier in this entry.

REUSE PARTITION reused-part reuse-spec

reuses a partition, specified in reused-part, using the options specified in
reuse-spec. When specifying reused-part, include the volume, subvolume,
and file name of the partition.

reuse-spec

specifies FIRST KEY for a partition reused with the ADD PARTITION clause.

The FIRST KEY clause specifies the primary or clustering key values for the first
key allowed in a reused partition of a table with key-sequenced file organization. It
is required for key-sequenced files. val is a list of comma-separated literals (one
for each column in key) that specifies the beginning key value for the partition to be
reused.

Considerations—ALTER TABLE

 To alter a table or partition, you must be a generalized owner of the table or
partition. In addition, you must have authority to read and write to the affected
catalogs. For a partitioned table, affected catalogs include all catalogs that describe
a partition of the table or that will describe a new partition of the table as a result of
the ALTER TABLE operation.

ALTER TABLE executes only if the specified table or partition is available. Unless
you are altering file attributes for a partition, all partitions of the table must be
available.
HP NonStop SQL/MP Reference Manual—523352-013
A-37

Considerations—ALTER TABLE
Only one DDL statement can operate on a given SQL object (or partition of an SQL
object) at a time. An error occurs if you attempt to execute an ALTER TABLE
statement while another process is executing a DDL operation on the same object.
The specific error depends on the DDL operation involved and the phase of the
operation at which the conflict occurs. For more information, see DDL (Data
Definition Language) Statements on page D-20.

Additional authorization and access requirements that exist for some ALTER
TABLE operations are described in the coming subsections.

 Renaming tables

 To rename a table, you must have authority to read and write to the catalogs
that describe the views, indexes, programs, and collations associated with the
table, in addition to the catalog that describes the table.

 Renaming a table does not invalidate any programs dependent on the table.
Existing OPENs of the renamed table are redirected to the new name, and the
corresponding programs continue to run until the new OPENs are required.
The non-running programs dependent on the table might experience
subsequent errors unless:

 A replacement copy of the original table name is created, or

 DEFINEs are re-directed to the renamed table. SQL re-compilation might
be necessary or advisable in some situations.

 You cannot rename a table within a user-defined transaction.

 Altering file attributes for tables

 To alter security attributes for a table, the table and any indexes and protection
views defined on the table must be accessible.

 Changing either the SECURE or OWNER attribute of a table can affect
processes using the table when the change occurs. ALTER TABLE closes the
table to make the change. Other SQL processes using the table attempt to
reopen it after the change, but the new attribute values can prevent such
processes from doing so.

 Changing the OWNER for a table automatically changes the OWNER of
indexes and protection views defined on the table.

 Changing the SECURE attribute for a table automatically changes the
SECURE attribute of indexes defined on the table. In addition, changing the
SECURE attribute for a table automatically changes the SECURE attribute of
protection views defined on the table if such a change is necessary to meet
these requirements:

 Purge authority for the protection view must include the users authorized to
purge the underlying table.
HP NonStop SQL/MP Reference Manual—523352-013
A-38

Considerations—ALTER TABLE
 The owner of a protection view must have authority to read and write to the
view and the underlying table unless the security string for the view
specifies the super ID (-) for the authority the owner lacks.

SQL issues a warning if it changes the security string of protection views
as the result of an ALTER TABLE.

 Changing the SECURE attribute read authority for a table can effectively
change the read authority for a shorthand view defined on the table, because
authority to read a shorthand view depends on the authority to read the
underlying tables. (The read option in the SECURE value for a shorthand view
has no effect.)

 Altering the AUDIT attribute of a table automatically changes the AUDIT
attribute value for dependent views and indexes to the same value. In addition,
altering the AUDIT attribute of a table automatically changes the BUFFERED
attribute for the table (but not for dependent views and indexes):

You can override the automatic change to the BUFFERED attribute by
explicitly setting BUFFERED in the ALTER TABLE.

If you change an indexed, unaudited table to an audited table, you can create
performance problems unless you also modify the BUFFERED attribute for the
indexes on the table in separate ALTER INDEX statements. The AUDIT and
BUFFERED attributes on a table and its indexes should be set to the same
value.

An ALTER TABLE that changes the AUDIT attribute to NO AUDIT cannot
execute in a user-defined TMF transaction.

 ALTER TABLE changes file attributes for a table by changing information in the
file label for the table and in the catalog tables of the catalog that describes the
table.

 Adding columns

 ALTER TABLE ADD COLUMN automatically requests an exclusive table lock
on the table. If data in the table is already locked, ALTER TABLE waits until the
request is granted or a timeout occurs.

 A new column appears as the last column of the table. In existing rows of the
table, the new column takes on its default value unless it has a date-time data
type with the default set to CURRENT or SYSTEM.

If you add a column with a date-time data type to a table that contains existing
rows and you specify DEFAULT CURRENT or DEFAULT SYSTEM, SQL uses
January 1, 1 A.D. 12:00:00.000000 as the default date and time for the existing
rows.

AUDIT Attribute BUFFERED Attribute

AUDIT BUFFERED

NO AUDIT NO BUFFERED
HP NonStop SQL/MP Reference Manual—523352-013
A-39

Considerations—ALTER TABLE
For example, an existing row receives the value 0001-01-01:12:00:00.000000
in the new column if the data type is DATETIME YEAR TO FRACTION,
receives the value 0001-01-01 in the new column if the data type is DATE,
receives the value 12:00:00 in the new column if the data type is TIME, and so
forth.

Any row added after the ADD COLUMN operation finishes that does not
contain a value for the column receives a default value based on the current
timestamp at the time the row is added.

 The sum of the lengths of all columns for a table cannot exceed the maximum
row length for the table (the block size minus the header size). For information
about additional restrictions on the number of columns allowed, see Limits on
page L-6.

 You cannot add a column to a table with relative file organization unless the
row length of the table is large enough to accommodate the added column.
You cannot add a column to a table with entry-sequenced file organization
under any circumstances.

 The new column is not actually added to a row until the row is updated. If you
select a row that does not yet have the new column, SQL returns the default
value for the column.

 MOVE can perform a simple move operation for a table of any file organization,
and can perform a one-way or two-way split (to new partitions), merge (into an
existing partition), or one-way move (to an existing partition) for a table with a
key-sequenced file organization.

 A simple move moves a partition to another volume:

MOVE TO dest-part [WITH SHARED ACCESS]

name specifies the name of the partition to be moved. You can specify a simple
move with or without the WITH SHARED ACCESS option.

 A merge operation moves the partition into another existing partition, deleting
the original partition:

MOVE TO dest-part WITH SHARED ACCESS

In a merge request, name specifies the actual partition being moved. The
WITH SHARED ACCESS option is required.

 A one-way split moves the first or last part of a partition to a new partition,
leaving the remaining part in the existing partition:

MOVE FROM KEY val TO dest-part [WITH SHARED ACCESS]
MOVE UP TO KEY val TO dest-part WITH SHARED ACCESS

In a one-way split, name specifies the table for the operation. The partition that
is split is the one whose data range includes the key val, even if the specified
partition does not actually contain a row with that key.
HP NonStop SQL/MP Reference Manual—523352-013
A-40

Considerations—ALTER TABLE
For a one-way split, the subvolume name and simple file name for the new
partition (whether specified explicitly or by default) must be identical to the
subvolume name and simple file name for every other partition of the same
object; ALTER TABLE uses those names if you specify only a node name and
volume name or specify only a volume name (which causes the node to default
to the local node). The combination of node name and volume name must be
unique for each partition of the same object.

The first part can be moved only if you include the WITH SHARED ACCESS
option.

A one-way split without the WITH SHARED ACCESS option requires additional
space on the disk that contains the partition being split while the split is in
progress. The amount of additional space required can be as much as the size
(EOF) of the original partition. A one-way split also requires space within the
file itself.

If you are splitting a partition because the disk is full (error 43), it might be
permissible to use a two-way split. If you choose to perform a one-way split,
use the WITH SHARED ACCESS option. Run a DSAP report to show the
largest number of pages of free space. After you successfully perform the
one-way split operation, run FUP RELOAD to reclaim unused space in the file.
For more information on FUP RELOAD, see the File Utility Program (FUP)
Reference Manual. You can also run DCOM on the disk to reclaim unused
space. For more information on DCOM, see the Guardian Disk and Tape
Utilities Reference Manual.

If you are splitting a partition because the file is full (error 45), increase
MAXEXTENTS for that file, if possible. Otherwise, perform a two-way split.

If you are splitting a partition because you received SQL error -1637 (“An
unexpected error occurred while purging data from filename”), verify that the
error was received against the source partition. If the error was on the
destination partition, specify smaller extent sizes based on the largest free
segment on that disc, or obtain a DSAP report and specify another volume
based on the largest free space available on another disk.

 A two-way split moves the first part of a partition to one new partition and the
last part of a partition to another new partition, deleting the original partition:

MOVE UP TO KEY val TO dest-part
 FROM KEY val TO dest-part

In a two-way split, name specifies the partition for the operation.

Both occurrences of val must be identical, but each occurrence of
dest-part must specify a different partition. That is, the combination of node
name and volume name for a new partition (whether specified explicitly as
dest-part or by default) must be unique for each partition of the same
object. The subvolume name and simple file name for a new partition (whether
specified explicitly or by default) must be identical to the subvolume name and
HP NonStop SQL/MP Reference Manual—523352-013
A-41

Considerations—ALTER TABLE
simple file name for every other partition of the same object. ALTER TABLE
uses those names if you specify only a node name and volume name or
specify only a volume name (which causes the node to default to the local
node).

The two-way split does not support the WITH SHARED ACCESS option.

 A one-way move operation moves the first or last part of a partition to its
logically adjacent (existing) partition, leaving the other part in the existing
partition:

MOVE UP TO KEY val TO dest-part WITH SHARED ACCESS
MOVE FROM KEY val TO dest-part WITH SHARED ACCESS

A one-way move is similar to a one-way split, but moves data to an existing
partition instead of a new partition.

In a one-way move, name specifies a valid partition of the table. NonStop
SQL/MP determines the actual source partition during execution.

The WITH SHARED ACCESS option is required.

After a successful one-way move operation, run FUP RELOAD to reclaim
unused disk space. For more information about FUP RELOAD, see the File
Utility Program (FUP) Reference Manual.

 All partitions of the table must be accessible when you add a new partition to a
table. ALTER TABLE returns an error if you attempt to add a partition while
another process has a partition locked or while another process is attempting
to execute a DDL operation on the same partition. For more information about
the errors returned, see DDL (Data Definition Language) Statements on
page D-20.

When you move the primary partition of a table, you must have read and write
authority for its associated catalogs, indexes, views, and programs.

If you specify WITH SHARED ACCESS, SQL allows concurrent INSERT,
UPDATE, DELETE, and read-only utility operations on a partition being moved
throughout most of the move operation. For more information, see WITH
SHARED ACCESS OPTION on page W-4. You can use the COMMIT option to
control when the commit phase occurs and to specify the time-out period for
lock requests and the handling of retryable errors (such as errors in lock
requests) during the commit phase of the ALTER TABLE operation.

Without WITH SHARED ACCESS, a partition being moved or split is not
accessible for INSERT, UPDATE, or DELETE operations until ALTER TABLE
finishes, but is available for SELECT operations during most of the DDL
operation. If the partition is being accessed for a SELECT or read operation,
the move or split operation cannot complete until it can obtain an exclusive lock
on all partitions, and so it either waits until the partition becomes available or
times out.
HP NonStop SQL/MP Reference Manual—523352-013
A-42

Considerations—ALTER TABLE
Other partitions of the table are available for INSERT, UPDATE, or DELETE
operations, so processes can make read and write requests for those
partitions. For information about specifying on-demand opens, see the OPEN
ACCESSED PARTITIONS clause and the SKIP UNAVAILABLE PARTITION
clause under CONTROL TABLE Directive on page C-77.

Without WITH SHARED ACCESS, you might want to stop activity on a table
when you intend to move or split one of the partitions to the table.

To update label information for partitions, ALTER TABLE requires exclusive
label locks on all partitions of a table during the final phase of a move or split
operation. Transaction activity on the table can cause ALTER TABLE to time
out when it attempts to acquire the locks. Alternatively, ALTER TABLE can
successfully acquire the locks while other transactions are active and cause
those transactions to time out.

If SQL statements refer to the source partition and the partition is moved with a
simple move operation, you might need to change your program or DEFINEs
to reference the new location.

 If you add, move, or split a partition to a table that has a protection view
defined on it, SQL automatically creates a corresponding partition for the
protection view on the same subvolume as the table partition and writes the
view description in the same catalog as the table partition description.

Moving, merging, or splitting a table partition invalidates a program that uses
the table or a dependent view, unless the program was compiled with CHECK
INOPERABLE PLANS and the table or view has the SIMILARITY CHECK
option enabled.

A simple move or a split of a partition invalidates previous TMF online dumps
of the affected partition. If you want TMF file recovery protection, you must
make online dumps of the newly moved or split partitions. (If the operation
specifies the WITH SHARED ACCESS option, you can begin making new
online dumps without waiting for the operation to complete. For more
information, see the WITH SHARED ACCESS OPTION on page W-4.)

 Merging a partition or moving all or part of a partition into another existing
partition does not change related items such as statistics, comments, and help
text. To update statistics, use the UPDATE STATISTICS command. Check your
comments and help text to make sure they still apply.

 The first key value of a new partition cannot duplicate the first key value of
another partition of the table.

You cannot create a partition on a nonaudited volume, even if the table that
includes the partition is a nonaudited table.

New partitions must comply with the limits on the number and size of partitions.
For more information, see Limits on page L-6.
HP NonStop SQL/MP Reference Manual—523352-013
A-43

Considerations—ALTER TABLE
You can partition tables of any file organization, but you cannot partition a
key-sequenced table that has a system-defined primary key (as opposed to a
user-defined primary key) unless it also has a clustering key.

 ALTER TABLE operations that use WITH SHARED ACCESS generally take
longer to complete than those that do not. However, because WITH SHARED
ACCESS operations allow concurrent read and write access to the source
partition, they cause far less application downtime than equivalent operations
without WITH SHARED ACCESS.

The duration of a WITH SHARED ACCESS operation increases with the
number and length of transactions on the node that contains the source
partition, particularly with the number and length of transactions that involve
the source partition and the amount of activity on the audit trail used for the
source partition.

 An operation that uses WITH SHARED ACCESS cannot complete successfully
unless the TMF audit trail generated during the operation is available for
reading later in the operation. If a required audit trail has been overwritten, a
WITH SHARED ACCESS operation cancels changes made to the database
and terminates.

When performed on a source object that has a valid TMF online dump, an
operation that uses WITH SHARED ACCESS generates audit information for
the target object.

Lengthy operations that use WITH SHARED ACCESS might require an
operator to mount tapes of TMF audit dumps. (Requests to mount TMF audit
dump tapes for WITH SHARED ACCESS operations are not distinguishable
from other requests to mount TMF audit dump tapes. Such requests are
generally sent to an operator's console. SQL does not return information about
such requests to the terminal or process that started the operation.)

 When a split operation with the WITH SHARED ACCESS option finishes
successfully, check SQL FILEINFO for the source partition to see if the F flag is
present. For a merge operation with the WITH SHARED ACCESS OPTION,
check the target partition; for a one-way move operation with the WITH
SHARED ACCESS option, check the source and target partitions. If the F flag
is present, the file contains data blocks allocated to obsolete (moved) records.
Use the FUP RELOAD command to reclaim the disk space. For more
information, see the File Utility Program (FUP) Reference Manual.

If ALTER TABLE fails, the original table normally remains intact and accessible.
However, if ALTER TABLE fails because of a processor failure or system
crash, a newly added, moved, or split partition of the table might continue to
exist—along with the original table—although it is inaccessible. After the
system becomes available, use CLEANUP to drop the new partition (or ask the
local super ID to do so), reissue the ALTER TABLE statement. ALTER TABLE
returns an error if there is a problem with the table.
HP NonStop SQL/MP Reference Manual—523352-013
A-44

Considerations—ALTER TABLE
When you add a partition to a table, the PARTNS catalog table and associated
IXPART01 index might become full. To correct the situation, distribute object
and partition definitions across multiple catalogs. For more information about
partition limits and the PARTNS table, see Limits on page L-6.

If the SLACK space in the source file is less than the value chosen for the
target file, a MOVE operation can fail with a file full error. To prevent this
situation, check the actual slack amount in the source file (using the FILEINFO
STATISTICS command) and specify EXTENTS and MAXEXTENTS values for
the target file that are sufficient to hold the data.

If ALTER TABLE fails during a merge or move operation with the WITH
SHARED ACCESS option, use the SQL FILEINFO utility to see if the D or F
flag is present for the target partition:

 The D flag, INCOMPLETE SQLDDL OPERATION, indicates that you need
to issue an ALTER TABLE name PARTONLY RECOVER INCOMPLETE
SQLDDL OPERATION request, followed by FUP RELOAD.

 The F flag, UNRECLAIMED FREE SPACE, indicates that you need to
request a FUP RELOAD operation to reclaim space on disk.

 You cannot use the WITH SHARED ACCESS option with a split, merge, or
move request unless each source object and each target object resides on a
node running a version of the SQL/MP software (315 or later) that supports the
specific type of split, merge, or move operation.

If any partition of a table specified in a move or split operation (even a partition
of the table other than the one being moved or split) resides on a node running
version 1 of the SQL/MP software, error 1125 (Incompatible remote system)
occurs.

 Considerations: Format 2-enabled tables

 The partition array can be modified between any of the partition array values.

 Modifying the partition array of a table implicitly converts all indexes on the
table to the same partition array value. There is no command to explicitly alter
the partition array of an index because an index inherits the value from the
table. Modifying a table to allow it to have a FORMAT2ENABLED partition
array results in the partition arrays of all the indexes of that table being
converted to FORMAT2ENABLED.

 A table can only be converted to a Format 1 from a Format 2 table if all
partitions of the table and all partitions of all indexes of the table are Format 1.
If you attempt to convert a Format 2 to Format 1 when any Format 2 partitions
exist you will receive an error.

 Modifying the partition array does not change the format of any of the existing
partitions. It enables new partitions to be created in formats compatible to that
partition array value.
HP NonStop SQL/MP Reference Manual—523352-013
A-45

Considerations—ALTER TABLE
 Similar to other DDL operations, all partitions of the table must be available for
the operation to complete.

 Only key-sequenced tables can be Format 2-enabled tables. If you attempt to
specify FORMAT2ENABLED for a relative or entry-sequenced table, you
receive an error.

 If you attempt to convert a Format 1-enabled table to Format 2-enabled where
the existing number of partitions is greater than that supported by Format 2,
you will receive an error. Because modifying the partition array of a table also
implicitly modifies the partition arrays of the indexes, the indexes on the table
are subject to the same limits. An error is returned if any indexes violate the
limits.

 Modifying the partition array of a table to be FORMAT2ENABLED causes the
object version of the table and all its indexes to become at least version 350.
Therefore, all partitions of the table and its indexes must be cataloged in
version 350 or later catalogs to modify the partition array to
FORMAT2ENABLED. Modifying the partition array of a table to be STANDARD
or EXTENDED causes the object version of the table to be recalculated based
upon the other features associated with the table.

 When converting a table from Format 1 enabled to Format 2 enabled, the row
length of the table or an index on the table might not fit within a Format 2 block
because the amount of overhead space for the block header is larger for
Format 2 files. The ALTER TABLE statement fails when this condition occurs.

 Considerations: ADD PARTITION to specify partition format

 The default partition format is based on the partition array value for
key-sequenced tables. For STANDARD and EXTENDED, the default partition
format is 1. For FORMAT2ENABLED, the default partition format is 2. For
relative and entry-sequenced tables, the partition format is always 1.

 The format and file parameters such as extent size of the added partition must
be consistent with the existing table for the ALTER TABLE command to
succeed. For example, if you explicitly specify the new partition as FORMAT 2
when the partition array is STANDARD or EXTENDED you will receive an
error.

 The WITH DATA MOVEMENT clause can be used to move data from an
existing partition to the added partition. Data can be migrated from Format 1 to
Format 2 partitions and from Format 2 to Format 1 partitions.

 Only key-sequenced tables can be Format 2 enabled. Relative and
entry-sequenced tables can only be Format 1 enabled. If you attempt to add a
Format 2 partition to a relative or entry-sequenced table you will receive an
error. Specifying FORMAT 1 for a relative or entry-sequenced partition is
allowed.

 The FORMAT clause is ignored if specified for a merge or one-way move
(move partition boundary) operation because these types of moves do not
HP NonStop SQL/MP Reference Manual—523352-013
A-46

Considerations—ALTER TABLE
create a new partition. If you specify the FORMAT clause on these types of
operations you will receive a warning and the operation continues.

 Dropping partitions of tables

 All partitions of a table must be accessible when you drop any partition of the
table, but partitions other than the partition being dropped can be accessed by
other processes while the ALTER TABLE executes.

Dropping a partition requires SQL to update any catalog that describes a
shorthand view in terms of the dropped partition, and to update the catalogs for
the table itself. If any such catalog is unavailable, the ALTER TABLE fails.

 Dropping a table partition invalidates a program that uses the table or that uses
a view that depends on the table, unless the program was compiled with
CHECK INOPERABLE PLANS and the table or view has the SIMILARITY
CHECK option enabled.

Invalid programs that reference the table with DEFINEs or with references to
partitions other than the dropped partition can be recompiled (automatically or
explicitly). Programs that reference the table with a physically coded name for
the dropped partition must be modified before they can be recompiled.

 If ALTER TABLE fails while attempting to drop a partition, the original table
remains intact and accessible.

 ALTER TABLE cannot drop a primary partition, a partition that is not empty, or
a partition in a table with relative or entry-sequenced file organization that is
not the last partition.

 Modifying the partition array

 Tables and indexes using extended arrays require a catalog of version 320 or
later. SQL DML and DDL statements on tables and indexes with extended
arrays can only be performed from nodes running version 320 or later.
Otherwise, SQL returns an error.

When you modify the partition array of a table, all programs that reference the
table are invalidated. Recompile the programs with NonStop SQL/MP version
320 or later.

When you alter a table from EXTENDED to STANDARD, the data structures
might not fit within the STANDARD format. When this occurs, SQL returns an
error.

 Reusing partitions

 Use REUSE PARTITION instead of dropping and adding partitions to manage
and reuse disk space. DROP/ADD can take hours to perform if the partition
being reused is from a table with many partitions.

 REUSE PARTITION purges all the records in the existing partition. It modifies
the key range of the partition in the label with a new key range to
HP NonStop SQL/MP Reference Manual—523352-013
A-47

Examples—ALTER TABLE
accommodate database growth. Because each partition must have access to
the location and key range of other partitions, REUSE PARTITON updates the
label of all the partitions with the new key range.

 After REUSE PARTITION is performed, the reused partition is empty. If an
error is encountered during REUSE, the data in the reused partition might not
be recoverable. It is recommended that you back up data before performing
REUSE PARTITION.

 During the operation of reusing a partition, the partition becomes inaccessible
for read and write by DML statements until the operation is done.

 Only a partition with key-sequenced file organization can be reused. A partition
with relative or entry-sequenced file organization cannot be specified in
REUSE.

 REUSE PARTITION can only be performed against the secondary partition of
a partitioned table. It cannot be performed on a primary partition or any
partitioned indexes.

 REUSE PARTITION cannot be executed within a user transaction. This
prevents a user from performing a rollback of the transaction during the
REUSE. Instead, it is executed within the transaction started by the catalog
manager.

 A partitioned table with or without view dependent objects can be reused. A
table on which indexes are defined cannot be reused.

 If records exist within the FIRST KEY specified, SQL returns an error. The
partition is not used and the partitions remain intact. The key ranges of each
partition cannot overlap.

Examples—ALTER TABLE

 This example alters the security and owner for a table:

ALTER TABLE \SYS1.$VOL2.PERSNL.EMPLOYEE
 SECURE "nunu" OWNER 12,101;

 This example alters the date that a table can be purged:

ALTER TABLE SALES.ORDERS NOPURGEUNTIL JAN 01 2004;

 This example turns on TMF auditing (perhaps after temporarily setting the NO
AUDIT attribute to perform a LOAD operation) for a table:

ALTER TABLE SALES.ORDERS AUDIT;

 This example adds a column to a table:

ALTER TABLE CUSTOMER ADD COLUMN LAST_ORDER_DATE
 NUMERIC(6) DEFAULT 860000 HEADING "Last Ordered";
HP NonStop SQL/MP Reference Manual—523352-013
A-48

Examples—ALTER TABLE
 This example alters the maximum number of extents for a specific partition:

ALTER TABLE \SYS2.$VOL2.INVENT.PARTLOC
 PARTONLY MAXEXTENTS 300;

 This example drops a table partition (after deleting all rows):

DELETE FROM =PARTLOC
 WHERE LOC_CODE >= "H00" AND LOC_CODE < "K00";
ALTER TABLE =PARTLOC DROP PARTITION =PART_SOUTH;

 This example moves a table partition to another disk, specifying WITH SHARED
ACCESS to keep the table available to other process during the move:

ALTER TABLE $DISK1.USERS.DATA PARTONLY MOVE TO $DISK2
 WITH SHARED ACCESS NAME MOVE2D2 COMMIT BY REQUEST;
 ...
CONTINUE MOVE2D2 ONCOMMITERROR COMMIT BY REQUEST;

The ALTER TABLE statement specifies COMMIT BY REQUEST so that the user
can control entry to the commit phase of the operation, which locks out other
processes. The CONTINUE statement starts the commit phase, directing SQL to
return control to the user if a retryable error occurs during the phase.

 This example moves the latter portion of a table partition into a new partition (a
one-way split):

ALTER TABLE =PART_LOC PARTONLY MOVE
 FROM KEY (RH00S, 0) TO =PART_EUROPE EXTENT (8,8);

 This example creates two new partitions of a table and moves data to them from
an existing partition, which it deletes (a two-way split):

ALTER TABLE $DISK1.SALES.ORDERS PARTONLY MOVE
 (FROM FIRST KEY UP TO KEY 50 TO $DISK2 CATALOG =CAT2,
 FROM KEY 50 UP TO LAST KEY TO $DISK3 CATALOG =CAT3);

 This example reuses a partition named $DISK5.SALES.ORDERS, in which the
new primary first key is 5000 after the partition is reused:

ALTER TABLE $DISK1.SALES.ORDERS REUSE PARTITION
 $DISK5.SALES.ORDERS FIRST KEY “5000”

 This example moves the latter portion of a table partition into a new partition (a
one-way split) in which the new partition is Format 2:

ALTER TABLE =PART_LOC PARTONLY MOVE
 FROM KEY (RH00S, 0) TO =PART_EUROPE EXTENT (8,8) FORMAT 2;
HP NonStop SQL/MP Reference Manual—523352-013
A-49

ALTER VIEW Statement
ALTER VIEW Statement
ALTER VIEW is a DDL statement that changes the name, owner, or security attributes
of a view, changes the heading for a column of the view, or enables or disables
similarity checks for the view.

view-name

is the name of a view to alter (or an equivalent DEFINE).

RENAME new-name

changes the file and subvolume portions of the name of a view to those in the
Guardian name (or equivalent DEFINE) new-name, updating all catalog references
to reflect the change. If SMF is installed, new-name must be either a virtual or
direct name.

The fully expanded new-name must be unique among object names in the network
and new-name must have the same volume name as view-name. If the view is
managed by SMF, only the virtual name changes; the physical name on the
physical volume is preserved.

OWNER group-num,user-num

specifies the Guardian user ID for the new owner of the view.

SECURE "rwep"

specifies the new Guardian security string for the view. For more information, see
Security on page S-11.

COLUMN col-name { HEADING string | NO HEADING }

specifies a default heading or no heading for the column col-name. For more
information, see HEADING Clause on page H-1.

Changing a column heading in a view does not change the corresponding heading
in any view previously created on that view. A view inherits headings from
underlying tables and views when you create it, but the headings exist
independently.

ALTER VIEW view-name

 { RENAME new-name }
 { }
 { {| OWNER group-num,user-num |} }
 { {| SECURE "rwep" |} }
 { }
 { COLUMN col-name { HEADING string | NO HEADING } }
 { }
 { SIMILARITY CHECK { ENABLE | DISABLE } }
HP NonStop SQL/MP Reference Manual—523352-013
A-50

Considerations—ALTER VIEW
SIMILARITY CHECK { ENABLE | DISABLE }

authorizes or prohibits similarity checks on a protection view. (You cannot specify
this clause for a shorthand view.)

Authorizing similarity checks (SIMILARITY CHECK ENABLE) on a view whose
version is older than 310 increases the version of the view (and the version of
objects that depend on the view) to 310. Such a view cannot be registered in an
older version catalog or accessed by older versions of NonStop SQL/MP.

Prohibiting similarity checks (SIMILARITY CHECK DISABLE) on a view that has
version 310 decreases the version of the view (and the version of objects that
depend on the view).

Considerations—ALTER VIEW

 To rename a view or alter security attributes for a view, you must be a generalized
owner of the view. You must also have authority to read the view.

You must have authority to read and write to the catalogs that describe the view
and any associated objects. If you rename a view, all dependent programs are
invalidated.

If a view to be renamed is a protection view, the underlying table and indexes must
be accessible and you must have read and write authority.

Only one DDL statement can operate on a given SQL object (or partition of an SQL
object) at a time. An error occurs if you attempt to execute an ALTER VIEW
statement while another process is executing a DDL operation on the same object.
The specific error depends on the DDL operation involved and the phase of the
operation at which the conflict occurs. For more information, see DDL (Data
Definition Language) Statements on page D-20.

 Changing an attribute of a view can change the version of the view (and the
version of objects that depend on the view).

 These dependencies apply when you alter view security attributes:

OWNER and
SECURE

A change in the ownership of a view affects the
interpretation of the security string. The security string is
interpreted at run time against the new owner and, if
applicable, a new group.
If another process is using a view when the owner or
security string is changed, the process might not be able
to access the view after the view is closed.

SECURE A security string must ensure that users who have write
access also have read access.
HP NonStop SQL/MP Reference Manual—523352-013
A-51

Example—ALTER VIEW
Example—ALTER VIEW

These four examples rename, resecure, change the owner of, and change a column
heading for a view,

 ALTER VIEW NAME1 RENAME NAME2;
 ALTER VIEW NAME2 SECURE "nnno";
 ALTER VIEW NAME2 OWNER 12,72;
 ALTER VIEW NAME2 COLUMN DESCR HEADING "Product/Descriptions";

APPEND Command
APPEND is an SQLCI utility that appends data from an SQL table or Guardian file
(such as a Guardian process, device, unstructured disk file, or Enscribe file) to an
entry-sequenced or key-sequenced SQL table. Neither type of SQL table can have
indexes. APPEND adds data to the end of a table or partition. Unlike SQLCI LOAD, it
does not overwrite data in the target table.

in-file

is the name (or equivalent DEFINE) of the table or file from which to append data.
in-file can be a Guardian process, device (such as a terminal or tape),
unstructured disk file, Enscribe file, or SQL table. For an SQL table and a non-SQL
object, setting the PARTONLYIN option directs SQL to load from the partition
specified as in-file.

out-file

is the name (or equivalent DEFINE) of an existing entry-sequenced or
key-sequenced SQL table to which to append data. Neither type of file can have
indexes.

recovery-file

is the name (or equivalent DEFINE) of a disk file APPEND creates to hold data for
recovery in case of interruption or failure in restoring out-file to its pre failure
state. RECOVERYFILE is a required parameter and must be the third parameter in
the command string

Caution. When appending data to an entire table, APPEND requires that you turn off auditing
for the table. Doing so invalidates TMF online dumps of the table. To ensure TMF volume
recovery protection for the table, turn AUDIT back on when the APPEND operation is
complete, and make new TMF online dumps of all table partitions.

When you use the PARTONLY option to append data to a single partition, you do not need to
turn off auditing, as the command does it for you. You still need to make an online dump of the
single partition.

APPEND in-file, out-file, RECOVERYFILE recovery-file
 [[,] [append-option]] ... ;
HP NonStop SQL/MP Reference Manual—523352-013
A-52

Considerations—APPEND
append-option

is one or more options that configure the APPEND operation. The
append-option list is identical to load-option in the LOAD command, except
you cannot APPEND data to an Enscribe file. Therefore, Enscribe-specific LOAD
options are not valid for an APPEND operation. For a full description of each
append-option, see LOAD Command on page L-18.

Considerations—APPEND

 APPEND requires authority to read in-file and write to out-file. You must
also have authority to read the catalogs in which in-file (if it is a table) and
out-file are described.

recovery-file inherits the default file creation security of the user who executes
APPEND. Because APPEND copies some data from out-file to
recovery-file, if out-file contains sensitive information and the APPEND
operation fails, the security of this information can be compromised. To protect
sensitive information during an APPEND operation, set the user's default file
creation recovery-file security appropriately. You can change default file
creation security temporarily in the TACL VOLUME command or permanently in
the TACL DEFAULT command. For information about these commands, see the
TACL Reference Manual.

 For an entry-sequenced target table, APPEND adds new data to the end of the
table. If the table is not partitioned, it is unavailable to applications during the
APPEND operation. If the table is partitioned, the partition into which the first new
row was added and all subsequent partitions are unavailable during the APPEND
operation. The whole table is unavailable for a short time at the start of APPEND,
so this is not really an online operation.

For a key-sequenced target table, the key value of every new row to add must be
logically greater than the key value of the last original row of the table. If you
append data to only one partition (APPEND PARTONLY), the key value of every
new row to add must be logically greater than the key value of the last original row
of the partition and logically less than the starting key value of the next partition. To
interleave new rows with original rows, use COPY.

If it is not partitioned, a key-sequenced target table is unavailable to applications
during the APPEND operation. If the table is partitioned and you do not specify
PARTONLY, the partition into which the first new row was added and all
subsequent partitions are unavailable. The whole table is unavailable for a short
time at the start of APPEND, so this is not really an online operation. If you do
specify PARTONLY, only the partition to which APPEND adds data is unavailable
during the APPEND operation.

To append data to several partly-full partitions of a table, execute an APPEND
PARTONLY command for each partition, giving each its own input file.
HP NonStop SQL/MP Reference Manual—523352-013
A-53

Considerations—APPEND
 A recovery file contains information needed to restore the target table to its original
state if the APPEND operation fails. Before appending any data to a table or table
partition, APPEND checks for the presence of a recovery file. If the file does not
exist or exists but contains incomplete recovery data, the APPEND command
executes normally, as described below. If the file exists and contains recovery data
or is not a recovery file, APPEND fails. In the normal case, APPEND executes:

 Creates a new recovery-file

 Gathers information about the current state of out-file

 Writes this information to recovery-file

 Appends data from in-file to out-file

 Purges recovery-file in these situations:

 The APPEND operation completes successfully

 The APPEND operation terminates with an error but APPEND successfully
restores the target table to its original state

 The APPEND operation can terminate without completing its task under two
general conditions:

 An error causes the APPEND operation to terminate gracefully.

If the APPEND operation terminates with an error, it attempts to use the
recovery information in recovery-file to restore the target table to its
original state (that is, the state the table was in before the APPEND operation
was started). If APPEND succeeds in restoring the target table to its initial
state, the APPEND operation purges recovery-file.

In this case, the APPEND operation did not successfully complete, and no
recovery-file exists. Thus, the absence of recovery-file after an
APPEND operation does not always mean that the operation was successful.
To determine if the APPEND operation succeeded, check the SQLCI listing to
see if error messages occurred.

 A processor or process failure interrupts the APPEND operation so that it
cannot terminate gracefully.

If the APPEND operation is interrupted and cannot restore the target table to
its original state, it does not purge recovery-file. In this case, the target
table or partition remains unavailable to applications until some recovery is
performed.

To recover from an interrupted APPEND operation and complete the operation,
use the APPENDRESTART command. You must specify exactly the same
parameters, including the same recovery-file, as you did in the initial
APPEND command.

To recover from an interrupted APPEND operation and simply restore the
target table to its original state, use the APPENDCANCEL command. After an
HP NonStop SQL/MP Reference Manual—523352-013
A-54

Considerations—APPEND
APPENDCANCEL operation executes, the target table contains exactly the
same data it had before the initial APPEND operation was started. (Any new
data added by the interrupted APPEND operation is removed from the target
table.)

For more information about these commands, see APPENDRESTART
Command on page A-58 and APPENDCANCEL Command on page A-56.

 If you repeat an APPEND command that terminated successfully on an entry-
sequenced table, the target table will contain duplicate data. Do not repeat an
APPEND command unless you want to create duplicate data in the target table.

 APPEND resembles COPY in that both transfer data from an existing source to an
existing target without overwriting or erasing target data.

Major differences between APPEND and COPY:

 APPEND is faster than COPY.

 APPEND cannot run within a user-defined TMF transaction. COPY can run
within a user-defined TMF transaction.

 APPEND writes only to entry-sequenced and key-sequenced SQL tables.
COPY writes to all types of SQL tables in addition to Enscribe files.

 APPEND does not write to SQL tables with indexes. COPY writes to SQL
tables with indexes and automatically updates the indexes.

 APPEND adds data only to the end of a table or partition. COPY can interleave
new rows with existing rows.

 APPEND resembles LOAD in that both transfer data from an existing source to an
existing target. Neither APPEND nor LOAD can run within a user-defined TMF
transaction, and both require that you turn off auditing when transferring data to an
entire table. Like LOAD, APPEND starts an external sort process to sort the data
unless you specify the SORTED option. All considerations listed for LOAD that do
not require an Enscribe out-file are true for APPEND.

Major differences between APPEND and LOAD:

 APPEND is typically used to add data to a file that already contains data.
LOAD is typically used to enter initial data into an empty file.

 APPEND does not erase or overwrite existing records. LOAD erases or
overwrites existing records.

 APPEND writes only to entry-sequenced and key-sequenced SQL tables.
LOAD writes to all types of SQL tables and Enscribe files.

 APPEND does not write to SQL tables with indexes. LOAD allows the target to
have indexes and re-creates indexes for SQL tables.

 APPEND runs normally and reports no errors when in-file is empty. LOAD
terminates and reports an error when the input file is empty.
HP NonStop SQL/MP Reference Manual—523352-013
A-55

APPENDCANCEL Command
 Field Conversions

For any APPEND operation, the data type of each source field must be compatible
with the data type of its corresponding target field. The details of data type
compatibility and Enscribe-to-SQL and SQL-to-Enscribe field conversions are
identical for APPEND and LOAD; see Data type compatibility and field conversions
on page L-36 for details.

APPENDCANCEL Command
APPENDCANCEL is an SQLCI utility that recovers from an interrupted APPEND
operation by restoring the target table to its original state (before the APPEND
operation began). APPENDCANCEL deletes any data appended to the target table by
the interrupted APPEND operation. You should use the APPENDCANCEL command
only after an APPEND operation is interrupted by a processor or process failure, or
other unexpected termination.

out-file

is the name (or equivalent DEFINE) of an existing entry-sequenced or
key-sequenced SQL table without indexes whose APPEND is to be canceled.
out-file must be identical to the out-file specified in the interrupted
APPEND command from which this APPENDCANCEL command is recovering.

recovery-file

is the name (or equivalent DEFINE) of a disk file APPENDCANCEL uses to restore
out-file to its original state. RECOVERYFILE is a required parameter.
recovery-file must be identical to the recovery-file specified in the
interrupted APPEND command from which this APPENDCANCEL command is
recovering.

If APPENDCANCEL is successful, then it purges the recovery-file.

PARTONLY

You must use the PARTONLY option if PARTONLY was specified in the original
APPEND command from which this APPENDCANCEL command is recovering.

APPENDCANCEL out-file, RECOVERYFILE recovery-file
 [[,] PARTONLY] ;
HP NonStop SQL/MP Reference Manual—523352-013
A-56

Considerations—APPENDCANCEL
Considerations—APPENDCANCEL

 APPENDCANCEL has the same authorization requirements as the APPEND
command. For more information about authorization requirements for
APPENDCANCEL, see APPEND Command on page A-52. APPENDCANCEL
verifies that the information in recovery-file accurately describes the target
table (or partition). Using the information in recovery-file, APPENDCANCEL
restores the target table to the state it was in before the APPEND operation began.

 APPENDCANCEL verifies that the information in recovery-file accurately
describes the target table (or partition). Using the information in recovery-file,
APPENDCANCEL restores the target table to the state it was in before the
APPEND operation began.

After the APPENDCANCEL operation finishes, the target table or partition is
accessible to applications again.

Suppose that an APPEND operation finishes appending data to the target table
and is interrupted at the end of the operation, when it is clearing the corrupt flags.
In this case, you cannot use the APPENDCANCEL command to recover from the
interrupted APPEND operation. (After the APPEND operation has begun clearing
corrupt flags, the target table cannot safely be restored to its original state.) In this
situation, the APPENDCANCEL command returns an error 9179 and has no effect;
use the APPENDRESTART command instead. For more information, see
Considerations—APPENDRESTART on page A-59.

 The APPEND operation creates a recovery file specified by recovery-file.
During normal operation, the APPEND utility purges recovery-file after it
successfully finishes adding data to the end of the target table.

However, if a processor or process failure interrupts the APPEND operation,
recovery-file is not purged and should continue to exist and be available for
APPENDCANCEL. One exception is if APPEND is interrupted at the end of the
operation as described under the previous item. Another is if the interruption
occurs early in the APPEND operation, before APPEND finishes creating
recovery-file. In that case, you cannot use APPENDCANCEL to recover from
the failure.

If APPENDCANCEL returns error 9182, indicating it cannot complete its operation
because the original APPEND did not complete the recovery-file, you should
purge the partial recovery-file. Do NOT purge a recovery-file unless an
error 9182 is generated to indicated that the recover-file was not completed by the
original APPEND.
HP NonStop SQL/MP Reference Manual—523352-013
A-57

APPENDRESTART Command
APPENDRESTART Command
APPENDRESTART is an SQLCI utility that recovers from an interrupted APPEND
operation and completes the APPEND operation. The APPENDRESTART utility
restores the target table to its original state (before the APPEND operation began).
APPENDRESTART proceeds with the APPEND operation, adding data to the end of
the target table. You should use the APPENDRESTART command only after an
APPEND operation is interrupted by a processor or process failure, or other ungraceful
termination.

in-file

is the name (or equivalent DEFINE) of the table or file from which to append data.
in-file can be a Guardian process, device (such as a terminal or tape),
unstructured disk file, Enscribe file, or SQL table. in-file must be identical to the
in-file specified in the interrupted APPEND command from which this
APPENDRESTART command is recovering. This match is checked only for disk
files or tables.

out-file

is the name (or equivalent DEFINE) of an existing entry-sequenced or key-
sequenced SQL table to which to append data. Neither type of file can have
indexes. out-file must be identical to the out-file specified in the interrupted
APPEND command from which this APPENDRESTART command is recovering.

recovery-file

is the name (or equivalent DEFINE) of a disk file APPENDRESTART uses to
restore out-file to its original state. RECOVERYFILE is a required parameter.
recovery-file must be identical to the recovery-file specified in the
interrupted APPEND command from which this APPENDRESTART command is
recovering.

If APPENDRESTART is successful, it purges recovery-file.

append-option

is one or more options that configure the APPENDRESTART operation. The
options included in append-option must be identical to those specified in the
interrupted APPEND command from which this APPENDRESTART command is
recovering. For more information about append-option, see APPEND
Command on page A-52.

APPENDRESTART in-file, out-file,
 RECOVERYFILE recovery-file
 [[,] [append-option]] ... ;
HP NonStop SQL/MP Reference Manual—523352-013
A-58

Considerations—APPENDRESTART
Considerations—APPENDRESTART

 APPENDRESTART has the same authorization requirements as the APPEND
command. For more information about authorization requirements for
APPENDRESTART, see APPEND Command on page A-52.

 APPENDRESTART verifies that the information in recovery-file accurately
describes both the source file and the target table (or partition). Using the
information in recovery-file, APPENDRESTART restores the target table to
the state it was in before the APPEND operation began. APPENDRESTART
proceeds with the original APPEND operation, appending data from the source file
to the end of the restored target table.

After the APPENDRESTART operation finishes, the target table or partition is
accessible to applications again.

The APPENDRESTART operation is likely to take as long as the original APPEND
operation, even if the interruption occurred when the APPEND operation was, for
example, halfway finished. This operation time occurs because APPENDRESTART
starts over at the beginning of the APPEND operation, adding all the data to the
target table that would have been added by APPEND.

In one case, however, APPENDRESTART is likely to execute in a very short time.
Suppose that an APPEND operation finishes writing data to the target table and is
interrupted at the end of the operation, when it is clearing corrupt flags. The
subsequent APPENDRESTART operation recognizes that all the data has been
successfully appended. In that case, APPENDRESTART does not restore the
target table to its original state. Instead, it simply finishes clearing corrupt flags and
completes the operation.

 The APPEND operation creates a recovery file specified by recovery-file.
During normal operation, the APPEND utility purges recovery-file after it
successfully finishes adding data to the end of the target table.

However, if a processor or process failure interrupts the APPEND operation,
recovery-file is not purged and should continue to exist and be available for
APPENDRESTART; the only exception is if the interruption occurs early in the
APPEND operation, before APPEND finishes creating recovery-file. In that
case, you cannot use APPENDRESTART to recover from the failure. Instead, use
the APPEND command again. APPEND accepts an existing recovery-file if it
is incomplete, and writes fresh recovery information to recovery-file.
HP NonStop SQL/MP Reference Manual—523352-013
A-59

AS Clause
AS Clause
The AS clause is an SQLCI report writer clause that specifies a display format for a
print item. You can use the AS clause in the BREAK FOOTING, BREAK TITLE,
DETAIL, PAGE FOOTING, PAGE TITLE, REPORT FOOTING, and REPORT TITLE
report writer commands.

display-descriptor

specifies a format.

scale-sign-descriptor

specifies scale for a fixed point display descriptor or controls printing of a plus sign.

decoration

specifies character strings to conditionally add to a print item.

modifier

alters the effect of descriptors.

These tables in this entry describe descriptors for character items, descriptors for
numeric items, scale-sign descriptors, decorations, and modifiers, respectively:

 Display Descriptors for Character Items on page A-61

 Display Descriptors for Numeric Items on page A-61

 Scale-Sign Descriptors on page A-62

 Modifiers on page A-62

 Decorations on page A-64

For a description of how to format dates and times in Julian timestamps, see AUDIT
File Attribute on page A-74.

 { display-descriptor }
 { }
 { "scale-sign-descriptor display-descriptor" }
 { }
 { " "[" [decoration [, decoration] ...] }
AS { [modifier [, modifier] ...] "]" }
 { display-descriptor" }
 { }
 { " "[" [decoration [, decoration] ...] }
 { [modifier [, modifier] ...] "]" }
 { (scale-sign-descriptor }
 { display-descriptor)" }
HP NonStop SQL/MP Reference Manual—523352-013
A-60

AS Clause
PIC 9 data type is numeric and should not use the A[w] descriptor. Table A-3 describes
descriptors that you can use with PIC 9.

A print position is one byte, so a double-byte character (which occupies two print
positions) requires a descriptor width of at least twice its number of characters. For
example, a double-byte column with ten characters requires an A20 display descriptor.

Table A-2. Display Descriptors for Character Items

Form and Usage Example Value Printed

A[w]

Character field, w print positions wide.
Default for w is width of item. If too small,
left justify and blank fill. If too large,
truncate.

A
A4
A3
“[LJ] A3”
“[RJ] A3”

WORD
WORD
WORD
WORD
WORD

|WORD|
|WORD|
|WOR|
|WOR|
|ORD|

Cn[.w]

Multiline character field, n print positions
wide with w print positions per line. If n is 0,
use width of item; if n is more than 255,
you must specify w.

C0.8 Customer has
a low credit
rating.
(VARCHAR
string)

|Customer|
| has a l|
|ow credi|
|t rating|
|. |

To break a value at blanks, use the F
modifier with a Cn descriptor.

“[F] C40.8” A reliable
vendor - fast
delivery

|A |
|reliable|
| vendor |
| — fast |
|delivery|

w is an unsigned integer in the range 1-255

n is an unsigned integer in the range 1-4071

| | indicates the boundaries of the output field

LJ and RJ are modifiers (covered later in this entry) that specify left and right justification

Table A-3. Display Descriptors for Numeric Items (page 1 of 2)

Form and Usage Example Value Printed

Fw.d [.m]

Fixed point field, w print positions
wide with d significant digits to the
right of the decimal and m to the left.
Right justify, blank fill, leading zeros if
needed.

F8.4
F8.4
F8.4.2
“[FL'*']F8.2”

123.4567
0.000123 -
4.56789
123.4567

|123.4567|
| 0.0001|
|-04.5679|
|**123.46|

Iw [.m]

d, w, and n are unsigned integers in the range 1-255.
| | indicates the boundaries of the output field.
HP NonStop SQL/MP Reference Manual—523352-013
A-61

AS Clause
Integer field, w print positions wide
that contains m digits. Right justify,
blank fill, leading zeros.

I8
I8.2
I8.6

100
-1
100

| 100|
| -01|
| 000100|

M

Mask string in angle brackets,
apostrophes, or quotes is template for
display. Field is same width as mask,
excluding V's. Mask does not affect
scale.

M”99/99/99”
M'Z,ZZ9.99'
M<Z,ZZZ>
M<9,999>
M<9,999>
M<$Z,ZZ9.99>
M<$Z,ZZ9V99>

112388
32.009
666
666
66666
920.00
920.00

|11/23/88|
| 32.01|
| 666|
|0,666|
|*****|
|$ 920.00|
|$ 92000|

Ordinary characters in the mask appear in the display. These characters have special meanings:

Z Selects digits. Prints a blank for each leading or trailing zero. Use with character or numeric data. Must be
uppercase Z.

9 Selects digits. Prints zero if no digit exists. Use for numeric data only.

V Aligns the decimal point of the value but does not print a decimal point. Must be uppercase V.

. Aligns the decimal point of the value and prints a decimal point (the character specified in the
DECIMAL_POINT style option) at that position.

Table A-4. Scale-Sign Descriptors

Form and Usage Example Value Printed

nP

Scale factor 10**n. n is
-128 to 127.

“2P F8.2”
“-2P F8.2”

123.00
123.00

|12300.00|
| 1.23|

S or SS (default) Omit plus
sign.

“S, F8.2”
“SS,-2P F8.2”

123.00 123.00 |123.00|
| 1.23|

SP

Print plus sign. “SP, F8.2”
“SP, F8.2”

 123.00
-123.00

|+123.00 |
|-123.00 |

| | indicates the boundaries of the output field
An S, SS, or SP scale-sign descriptor must be separated from a display descriptor by a comma.

Table A-5. Modifiers (page 1 of 2)

Form and Usage Example Value Printed

BZ

Prints a blank field if the
value is zero.

“[BZ] F8.2”
“[BZ] F8.2”

 .00
123.00

| |
|123.00|

F

Table A-3. Display Descriptors for Numeric Items (page 2 of 2)

Form and Usage Example Value Printed

d, w, and n are unsigned integers in the range 1-255.
| | indicates the boundaries of the output field.
HP NonStop SQL/MP Reference Manual—523352-013
A-62

AS Clause
Specifies whether data in
C format is split at a blank
if possible.

“[F] C24.8” Manager
is on
leave.

|Manager |
|is on |
|leave. |

FL'c'

Specifies an ASCII
character to use when
data has fewer characters
than specified by an
alphanumeric descriptor,
when leading zeros are
suppressed, or when mask
text is not printed because
adjacent digits are not
printed. The default is a
blank.

“[FL'.'] A8”
“[RJ,FL'>']A8”
“[FL'*']M<$Z,ZZ9.99”

THEN
HERE
127.39

|THEN.... |
|>>>>HERE |
|$**127.39|

OC'c'

Specifies an ASCII
character to use as the
overflow character for the
current print item. (Does
not apply to alphanumeric
descriptors.)

“[OC'+']I2”
“[OC'>']F5.2”

100
100000.0
0

|++|
|>>>>>|

LJ

Left justify in display
format width. Applies only
to A descriptors; default for
A descriptors. Note that
data with leading blanks
will not look justified.

“[LJ]A8”
“[LJ]A3”

SQL
OREGON

|SQL |
|ORE|

RJ ‘

Right justify in display
format width. Applies only
to A descriptors. Note that
data with trailing blanks
won't look justified.

“[RJ]A8”
“[RJ]A3”

SQL
OREGON

| SQL|
|GON|

SS'ss'

Changes a descriptor
symbol. First character in
pair is old symbol, second
is new. Use to change
mask descriptor symbols
(9,Z,V,.) and F descriptor
decimal point (.) symbol.

“[SS'.:']F6.2”
“[SS'.,']F8.2”
“[SS'9X'] M<XX/XX/19XX>”

12.45
12345.67
103191

|12:45|
|12345,67|
|10/31/1991|

Table A-5. Modifiers (page 2 of 2)

Form and Usage Example Value Printed
HP NonStop SQL/MP Reference Manual—523352-013
A-63

Decorations
Decorations

decoration

is condition location char-string

condition is one or more of:

Only P is allowed with character print items.

Specify multiple conditions without separators.

location

specifies where the character prints:

char-string

is a string add to the print item.

Rules for Using Decorations

 Specify decorations immediately before the descriptors they modify. Enclose the
decorations and the modified descriptors in quotation marks (“”).

 Separate multiple decorations by commas and enclose decorations and modifiers
in brackets.

 With the overflow condition (O), use only the form location An.

 The default overflow character is the current OVERFLOW_CHAR option.
Decoration OC overrides the default but does not change it.

 A print position is one byte; each double-byte character requires two print
positions.

 Without decorations, a negative value prints with a preceding minus. If you specify
a decoration that tests for a positive value, however, the preceding minus is no
longer the default for negatives; you must explicitly request the negative sign.

M Add char-string if value is negative

P Add char-string if value is positive

Z Add char-string if value is zero

O Add char-string if overflow condition occurs

An Display at print position n of the field. (The leftmost position is 1.)

F Insert string after formatting value; print string immediately to the right of a
left-justified item, immediately to the left of a right-justified item.

P Insert string before formatting value; print string immediately to the right of
a right-justified item, immediately to the left of a left-justified item.
HP NonStop SQL/MP Reference Manual—523352-013
A-64

Examples—AS
Order for Processing Decorations

SQL processes decorations from left to right:

1. Tests data to determine whether it is positive, negative, or zero.

2. If the P location is specified, adds the character string to the item value.

3. Formats according to the A, I, or F descriptor.

4. Applies decorations for alphanumeric and fixed-point descriptors.

5. Tests for overflow.

Examples—AS

 Some simple uses of the AS clause:

 This AS clause displays a dollar value, enclosing the value in angle brackets if the
value is negative:

QTYCOST AS "[MF'<',MP'>',ZPP' '] (-3P F10.2)"

Sample positive display: | 46983.00 |

Sample negative display: | <240.00>|

 These are examples of decorations for negative, positive, zero, and overflow
values:

Negative value:

Positive value:

CUSTNAME AS “[RJ] A24” Displays CUSTNAME right justified in a 24-byte
field

CUSTNAME AS A24 Displays CUSTNAME left justified in a 24-byte field

PRICE AS “-2P F6.0” Displays PRICE in a 6-byte field with a scale of
minus 2 and no digits to the right of the decimal

JOBDESC AS “[F] C18.10” Displays an 18-byte varying-length character
column as ten bytes per line, breaking lines at
blanks if possible

MAn char-string Prints at position n

MF char-string Prints immediately left of a right-justified value or
immediately right of a left-justified value

MP char-string Prints immediately right of a value

PAn char-string Prints at position n

PF char-string Prints immediately left of a value

PP char-string Prints immediately right of a value
HP NonStop SQL/MP Reference Manual—523352-013
A-65

Examples—AS
Zero value:

Overflow value:

 These are examples of edit descriptors with decorations:

ZPP specifies that if the value is zero or positive (ZP), the print location is set
immediately to the right of the value (P).

MPF specifies that if the value is negative or positive (MP), the print location is set
immediately to the left of the value (F).

ZAn char-string Prints at position n

ZF char-string Prints immediately left of a right-justified value or
immediately right of a left-justified value

ZP char-string Prints immediately right of a value

OAn char-string Prints at position n.

Format Item Value Printed Item

“[MF'<',MP'>',ZPP' '] F12.2” 1000.00 | 1,000.00 |

“[MF'<',MP'>',ZPP' '] F12.2” -1000.00 | <1,000.00>|

“[MA1'CR',MPF'$'] F12.2” 1000.00 | $1,000.00|

“[MA1'CR',MPF'$'] F12.2” -100.00 |CR $100.00|

“[MA1'CR',MPF'$'] F12.2” 0.00 | 0.00|

“[OA1'**overflow**'] F12.2” 1000000.00 |1000000.00|

“[OA1'**overflow**'] F12.2” 1000000000.00 |**overflow**|

“[ZPA2'+'] I8” -10 | 10|

“[ZPA2'+'] I8” 100 | + 100|

“[ZPA2'+'] I8” 0 | +0|
HP NonStop SQL/MP Reference Manual—523352-013
A-66

AS DATE/TIME Clause
AS DATE/TIME Clause
The AS DATE/TIME clause specifies a format for printing a date and time in the
BREAK FOOTING, BREAK TITLE, DETAIL, PAGE FOOTING, PAGE TITLE, REPORT
FOOTING, and REPORT TITLE report writer commands.

Print items printed with AS DATE/TIME must be in Julian timestamp format. To convert
dates and times in other formats to Julian timestamps, use the
COMPUTE_TIMESTAMP function.

*

specifies the default format, which is the current setting of the DATE_FORMAT
style option (for a date) and the current setting of the TIME_FORMAT style option
(for a time).

"date-string"

is a string that specifies how to format a date. It can include blanks, commas,
hyphens, periods, slashes, and these keywords:

For example, the date formats in this list cause printing of one of the corresponding
values:

 {| DATE { * } |}
 {| { "date-string" } |}
AS {| |} [IN LCT]
 {| TIME { * } |} [IN GMT]
 {| { "time-string" } |}

M[n] Specifies a month

D[n] Specifies a day

Y[n] Specifies a year

A[n] Spells out the month or day. If you specify An, only n bytes are displayed.

B[n] Suppresses leading zeros

O[n] Spells out the number of the day. If you specify On, only n bytes are
displayed.

n An integer that specifies the minimum number of bytes (1-3) or digits
(1-4) to print. The default value of n is 1.

Format Values

MA January, February, ... December

MA3 Jan, Feb, ... Dec

M2 01, 02, ... 12

M 1, 2, ... 12

MB2 1, 2, ... 12
HP NonStop SQL/MP Reference Manual—523352-013
A-67

AS DATE/TIME Clause
"time-string"

is a string that specifies the method format a time value. It can include blanks,
commas, decimal points, hyphens, periods, slashes, alphanumeric characters
embedded in the time value enclosed in apostrophes and these keywords:

For example, the time formats in these list cause printing of one of the
corresponding values:

DA Monday, Tuesday, ... Sunday

DA3 Mon, Tue, ... Sun

D2 01, 02, ... 31

DB2 1, 2, ... 31

D3 001, 002, ... 366

DB3 1, 2, ... 366

DOB2 1st, 2nd, ... 31st

DAO First, Second, ... Thirty-First

Y2 00, 01, ... 86, 87, 88, ...

YB2 0, 1, ... 86, 87, 88, ...

Y4 1900, 1901, ... 1986, 1987, 1988, ... 2000, 2001, 2002, 2003,2004, ...

H[n] Specifies an hour

M[n] Specifies a minute

S[n] Specifies a second

C[n] Specifies hundredths of a second

T[n] Specifies thousandths of a second

P[n] Expresses the hour as modulo 12 with AM or PM

B[n] Suppresses leading zeros

n An integer that specifies the minimum number of digits to print. It can be
1 or 2 for all keywords but T, and 1 through 3 for T. The default is 1.

Format Values

HB 1, 2, ... 24

HP2 01, 02, ... 12AM or PM

HPB2 1, 2, ..., 12AM or PM

M2 00, 01, ... 59

MB2 0, 1, ... 59

S2 00, 01, ... 59

SB2 0, 1, ... 59

Format Values
HP NonStop SQL/MP Reference Manual—523352-013
A-68

Examples—AS DATE/TIME
IN LCT

specifies that the value of the item in the database is encoded as local civil time.

IN GMT

specifies that the value of the item in the database is encoded as Greenwich mean
time, the default. The value formatted for display is always represented as local
civil time.

The range of timestamps for IN GMT starts at 0000/1/1:12:00:00 and ends at
9999/12/31:12:00:00. This allows for the maximum of 12 hours difference between
GMT and LCT so that the LCT value falls within 0000/1/1:00:00:00 and
9999/12/31/23:59:59.999999.

Examples—AS DATE/TIME

 This AS clause prints a date in the format March 15, 2004:

AS DATE "MA DB2, Y4"

 This clause prints a time value in the format 20:03:45:004:

AS TIME "HB2:M2:S2:C3"

 This clause specifies a date format but uses the default time format:

AS DATE "MA DB2, Y4" TIME *

C2 00, 01, ... 99

CB2 0, 1, ... 99

T3 000, 001, ... 999

TB3 0, 1, ... 999

Format Values
HP NonStop SQL/MP Reference Manual—523352-013
A-69

ASCII Character Set
ASCII Character Set
The ASCII character set is a subset of the nine single-byte ISO character sets (ISO
8859/1 through ISO 8859/9) that are used by SQL.

Table A-6 is a list of the characters in the ASCII character set along with their internal
representations and meanings.

Table A-6. ASCII Character Set (page 1 of 5)

 Octal

Char Left Right Hex Dec Meaning Ordinal

NUL 000000 000000 00 0 Null 1

SOH 000400 000001 01 1 Start of heading 2

STX 001000 000002 02 2 Start of text 3

ETX 001400 000003 03 3 End of text 4

EOT 002000 000004 04 4 End of transmission 5

ENQ 002400 000005 05 5 Enquiry 6

ACK 003000 000006 06 6 Acknowledge 7

BEL 003400 000007 07 7 Bell 8

BS 004000 000010 8 8 Backspace 9

HT 004400 000011 9 9 Horizontal tabulation 10

LF 005000 000012 A 10 Line feed 11

VT 005400 000013 B 11 Vertical tabulation 12

FF 006000 000014 C 12 Form feed 13

CR 006400 000015 D 13 Carriage return 14

SO 007000 000016 E 14 Shift out 15

SI 007400 000017 F 15 Shift in 16

DLE 010000 000020 10 16 Data link escape 17

DC1 010400 000021 11 17 Device control 1 18

DC2 011000 000022 12 18 Device control 2 19

DC3 011400 000023 13 19 Device control 3 20

DC4 012000 000024 14 20 Device control 4 21

NAK 012400 000025 15 21 Negative acknowledge 22

SYN 013000 000026 16 22 Synchronous idle 23

ETB 013400 000027 17 23 End of transmission block 24

CAN 014000 000030 18 24 Cancel 25

EM 014400 000031 19 25 End of medium 26

SUB 015000 000032 1A 26 Substitute 27
HP NonStop SQL/MP Reference Manual—523352-013
A-70

ASCII Character Set
ESC 015400 000033 1B 27 Escape 28

FS 016000 000034 1C 28 File separator 29

GS 016400 000035 1D 29 Group separator 30

RS 017000 000036 1E 30 Record separator 31

US 017400 000037 1F 31 Unit separator 32

SP 020000 000040 20 32 Space 33

! 020400 000041 21 33 Exclamation point 34

“ 021000 000042 22 34 Quotation mark 35

021400 000043 23 35 Number sign 36

$ 022000 000044 24 36 Dollar sign 37

% 022400 000045 25 37 Percent sign 38

& 023000 000046 26 38 Ampersand 39

' 023400 000047 27 39 Apostrophe 40

(024000 000050 28 40 Opening parenthesis 41

) 024400 000051 29 41 Closing parenthesis 42

* 025000 000052 2A 42 Asterisk 43

+ 025400 000053 2B 43 Plus 44

, 026000 000054 2C 44 Comma 45

- 026400 000055 2D 45 Hyphen (minus) 46

. 027000 000056 2E 46 Period (decimal point) 47

/ 027400 000057 2F 47 Right slash 48

0 030000 000060 30 48 Zero 49

1 030400 000061 31 49 One 50

2 031000 000062 32 50 Two 51

3 031400 000063 33 51 Three 52

4 032000 000064 34 52 Four 53

5 032400 000065 35 53 Five 54

6 033000 000066 36 54 Six 55

7 033400 000067 37 55 Seven 56

8 034000 000070 38 56 Eight 57

9 034400 000071 39 57 Nine 58

: 035000 000072 3A 58 Colon 59

; 035400 000073 3B 59 Semicolon 60

Table A-6. ASCII Character Set (page 2 of 5)

 Octal

Char Left Right Hex Dec Meaning Ordinal
HP NonStop SQL/MP Reference Manual—523352-013
A-71

ASCII Character Set
< 036000 000074 3C 60 Less than 61

= 036400 000075 3D 61 Equals 62

> 037000 000076 3E 62 Greater than 63

? 037400 000077 3F 63 Question mark 64

@ 040000 000100 40 64 Commercial at sign 65

A 040400 000101 41 65 Uppercase A 66

B 041000 000102 42 66 Uppercase B 67

C 041400 000103 43 67 Uppercase C 68

D 042000 000104 44 68 Uppercase D 69

E 042400 000105 45 69 Uppercase E 70

F 043000 000106 46 70 Uppercase F 71

G 043400 000107 47 71 Uppercase G 72

H 044000 000110 48 72 Uppercase H 73

I 044400 000111 49 73 Uppercase I 74

J 045000 000112 4A 74 Uppercase J 75

K 045400 000113 4B 75 Uppercase K 76

L 046000 000114 4C 76 Uppercase L 77

M 046400 000115 4D 77 Uppercase M 78

N 047000 000116 4E 78 Uppercase N 79

O 047400 000117 4F 79 Uppercase O 80

P 050000 000120 50 80 Uppercase P 81

Q 050400 000121 51 81 Uppercase Q 82

R 051000 000122 52 82 Uppercase R 83

S 051400 000123 53 83 Uppercase S 84

O 047400 000117 4F 79 Uppercase O 80

P 050000 000120 50 80 Uppercase P 81

Q 050400 000121 51 81 Uppercase Q 82

R 051000 000122 52 82 Uppercase R 83

S 051400 000123 53 83 Uppercase S 84

T 052000 000124 54 84 Uppercase T 85

U 052400 000125 55 85 Uppercase U 86

V 053000 000126 56 86 Uppercase V 87

W 053400 000127 57 87 Uppercase W 88

Table A-6. ASCII Character Set (page 3 of 5)

 Octal

Char Left Right Hex Dec Meaning Ordinal
HP NonStop SQL/MP Reference Manual—523352-013
A-72

ASCII Character Set
X 054000 000130 58 88 Uppercase X 89

Y 054400 000131 59 89 Uppercase Y 90

Z 055000 000132 5A 90 Uppercase Z 91

[055400 000133 5B 91 Opening bracket 92

\ 056000 000134 5C 92 Back slash 93

] 056400 000135 5D 93 Closing bracket 94

^ 057000 000136 5E 94 Circumflex 95

_ 057400 000137 5F 95 Underscore 96

** 060000 000140 60 96 “grave” accent 97

a 060400 000141 61 97 Lowercase a 98

b 061000 000142 62 98 Lowercase b 99

c 061400 000143 63 99 Lowercase c 100

d 062000 000144 64 100 Lowercase d 101

e 062400 000145 65 101 Lowercase e 102

f 063000 000146 66 102 Lowercase f 103

g 063400 000147 67 103 Lowercase g 104

h 064000 000150 68 104 Lowercase h 105

i 064400 000151 69 105 Lowercase i 106

j 065000 000152 6A 106 Lowercase j 107

k 065400 000153 6B 107 Lowercase k 108

l 066000 000154 6C 108 Lowercase l 109

m 066400 000155 6D 109 Lowercase m 110

n 067000 000156 6E 110 Lowercase n 111

o 067400 000157 6F 111 Lowercase o 112

p 070000 000160 70 112 Lowercase p 113

q 070400 000161 71 113 Lowercase q 114

r 071000 000162 72 114 Lowercase r 115

s 071400 000163 73 115 Lowercase s 116

t 072000 000164 74 116 Lowercase t 117

u 072400 000165 75 117 Lowercase u 118

v 073000 000166 76 118 Lowercase v 119

w 073400 000167 77 119 Lowercase w 120

x 074000 000170 78 120 Lowercase x 121

Table A-6. ASCII Character Set (page 4 of 5)

 Octal

Char Left Right Hex Dec Meaning Ordinal
HP NonStop SQL/MP Reference Manual—523352-013
A-73

AUDIT File Attribute
AUDIT File Attribute
AUDIT is a Guardian file attribute that determines whether or not a table is audited by
TMF. AUDIT applies to key-sequenced, relative, and entry-sequenced tables.

Audited tables are protected by TMF, but you must perform all input and output on an
audited table (except for queries with BROWSE access) within a TMF transaction.
Nonaudited tables can be accessed without a transaction in progress but are not
protected by TMF. If you turn off AUDIT, TMF online dumps become invalid and cannot
be used for subsequent recovery operations.

For more information, see TMF Transactions on page T-6.

Considerations—AUDIT

 An index always has the same AUDIT attribute as its underlying table. If you
change the AUDIT attribute for a table, SQL automatically changes the AUDIT
attribute for its indexes.

 A protection view has the same AUDIT value as the underlying table.

For a shorthand view, the AUDIT value is:

 AUDIT if all referenced tables and views are audited.

 NO AUDIT if all referenced tables and views are nonaudited.

 Mixed if any of the referenced views are mixed or if at least one of the
referenced tables or views is audited and at least one is nonaudited.

y 074400 000171 79 121 Lowercase y 122

z 075000 000172 7A 122 Lowercase z 123

{ 075400 000173 7B 123 Opening brace 124

| 076000 000174 7C 124 Vertical line 125

} 076400 000175 7D 125 Closing brace 126

~ 077000 000176 7E 126 Tilde 127

DEL 077400 000177 7F 127 Delete 128

** The “grave” accent character is not printable

{ AUDIT | NO AUDIT }

The table default is AUDIT.

Table A-6. ASCII Character Set (page 5 of 5)

 Octal

Char Left Right Hex Dec Meaning Ordinal
HP NonStop SQL/MP Reference Manual—523352-013
A-74

AUDITCOMPRESS File Attribute
The value stored in the VIEWS table is Y (for AUDIT), N (for NO AUDIT), or M
(for mixed).

 For a given table, all partitions are audited, or all partitions are nonaudited.

 If you alter the AUDIT file attribute for a table, SQL automatically sets the
BUFFERED file attribute for that table (but not for its dependent indexes):

 If you specify AUDIT, SQL also sets BUFFERED.

 If you specify NO AUDIT, SQL also sets NO BUFFERED.

To override the automatic setting, explicitly specify the BUFFERED file attribute
in the ALTER TABLE statement that changes the AUDIT attribute.

Altering the BUFFERED attribute does not affect the AUDIT attribute.

AUDITCOMPRESS File Attribute
AUDITCOMPRESS is a Guardian file attribute that controls the TMF audit records are
compressed. AUDITCOMPRESS applies to audited key-sequenced, relative, and
entry-sequenced tables and to indexes.

Compressed audit records omit unchanged columns from the before and after images
of updated rows. Uncompressed audit records allow you to read complete rows in the
audit trail but require more space.

Considerations—AUDITCOMPRESS

 AUDITCOMPRESS can save system resources, so you should allow tables and
indexes to default to AUDITCOMPRESS, unless you have a specific requirement
to read audit trail files with complete before and after images.

 Audit records of uncompressed files contain entire before and after images of
changed rows. Audit records of compressed files generally contain only changed
columns and columns of the primary key. Other columns are occasionally included
to improve performance, such as when a single unchanged column physically
occurs between several changed columns.

 Programs can read audit trails written with or without audit compression by using
TMF audit-reading procedures.

 If AUDITCOMPRESS is on at the start of a CREATE INDEX operation that uses
the WITH SHARED ACCESS option, NonStop SQL/MP turns AUDITCOMPRESS
off. When finished with the CREATE INDEX operation, SQL turns
AUDITCOMPRESS back on. If the CREATE INDEX operation fails, however, SQL

{ AUDITCOMPRESS | NO AUDITCOMPRESS }

The table default is AUDITCOMPRESS.
The index default is the table value at index creation.
HP NonStop SQL/MP Reference Manual—523352-013
A-75

Audited Tables
might leave the AUDITCOMPRESS attribute off. You can use the ALTER TABLE
statement to turn the attribute back on.

Audited Tables
Audited tables are tables audited by TMF. TMF monitors all transactions against
audited tables in preparation for possible transaction backout or TMF recovery
operations.

NonStop SQL/MP creates audited tables by default, but you can specify the creation of
a nonaudited table (or change an audited table to a nonaudited table) with the AUDIT
file attribute for the table.

All SQL/MP catalog tables are audited. In addition, SQL tables must reside on audited
volumes, even if the tables themselves are not audited.

For information, see TMF Transactions on page T-6.

AVG Function
AVG is a function that computes the average of a set of numbers.

The data type of the result depends on the data type of the argument. If the argument
is an exact numeric type, the result is LARGEINT. If the argument is FLOAT, REAL, or
DOUBLE PRECISION type, the result is DOUBLE PRECISION.

The scale of the result is the same as the scale of the argument. If the argument has
no scale, the result is truncated.

[ALL] expression

specifies a numeric or INTERVAL expression that indicates the set of values to
average.

The expression must include a value from each row of the result table (that is, at
least one column from the result table), and cannot include the COUNT, MAX, MIN,
or SUM functions, or another AVG function. For example,

AVG (SALARY)
AVG (PARTCOST * QTY_ORDERED)

ALL is an optional keyword that does not change the meaning of the clause.
Unless you use the DISTINCT clause, SQL uses all rows whether or not you
specify ALL.

AVG { ([ALL] expression) }
 { (DISTINCT column) }
HP NonStop SQL/MP Reference Manual—523352-013
A-76

Considerations—AVG
DISTINCT column

specifies a set of distinct column values from each row of the result table to
average. The column cannot be a column from a view that corresponds to an
expression in the view definition.

If you specify DISTINCT in more than one AVG function in the same statement, the
functions must reference the same column.

Considerations—AVG

 AVG is evaluated after eliminating all null values from the aggregate set. If the
result set is empty, AVG returns a null.

 A host variable that receives the result of AVG must have an indicator variable to
handle a possible null value. (For more information about using indicator variables,
see the SQL/MP programming manual for your host language.)

Examples—AVG

 This SELECT statement returns the average salary from the SALARY column of
the PERSNL.EMPLOYEE table:

>> SELECT AVG (SALARY) FROM PERSNL.EMPLOYEE;
(EXPR)

 48784.65
--- 1 row(s) selected.

 This SELECT statement returns the average unique salary from the SALARY
column of the PERSNL.EMPLOYEE table:

>> SELECT AVG (DISTINCT SALARY) FROM PERSNL.EMPLOYEE;
(EXPR)

 52664.21
--- 1 row(s) selected.
HP NonStop SQL/MP Reference Manual—523352-013
A-77

Examples—AVG
HP NonStop SQL/MP Reference Manual—523352-013
A-78

B
BACKUP Utility

BACKUP is a Guardian utility program, executed from TACL, that copies Guardian files
and SQL objects from disk to magnetic tape. (A complementary utility program,
RESTORE, copies Guardian files and SQL objects from the magnetic tape to the disk.)

For more information about BACKUP, see the Guardian Disk and Tape Utilities
Reference Manual.

BASETABS Table
The BASETABS table is a catalog table that describes attributes that apply to tables,
but not to views. Table B-1 describes the contents of the BASETABS table.

The BASETABS table was created in version 1, and there have been no changes in
subsequent versions.

If a table is partitioned, the BASETABS table has one entry for each partition. Guardian
names in the BASETABS table are fully qualified and use uppercase characters.

Table B-1. The BASETABS Table

Column Name Data Type Description

1 TABLENAME CHAR (34) Name of table (primary key)

2 CONSTRAINTS CHAR (1) Y if table has constraints
N if no constraints

3 ALLINDEXESHERE CHAR (1) Y if all indexes for table are described in the same
catalog
N if some indexes are described in other catalogs

4 FILENAME CHAR (34) Name of file for table

5 STATISTICSTIME LARGEINT
SIGNED

Time when statistics for table were last updated, in
GMT.

6 ROWCOUNT LARGEINT
SIGNED

Number of rows in table or partition of table
identified by TABLENAME (updated by UPDATE
STATISTICS)

7 ROWSIZE SMALLINT
UNSIGNED

Maximum byte length of a row of the table on disk
(packed record length)

8 VALIDDEF CHAR (1) Y if file has a valid definition, correct file label, and
catalog entries
N if not

9 VALIDDATA CHAR (1) Y if data in table is consistent with data in indexes
and satisfies constraints on table
N if not
HP NonStop SQL/MP Reference Manual—523352-013
B-1

BEGIN DECLARE SECTION Directive
BEGIN DECLARE SECTION Directive
BEGIN DECLARE SECTION is a host program directive that starts a host program
Declare Section for declaring host variables to use in SQL statements.

Guidelines for the use of Declare Sections vary with the host language. For more
information, see the SQL/MP programming manual for your host language.

Examples—BEGIN DECLARE SECTION

 This example shows a portion of a COBOL Working Storage Section that includes
an SQL Declare Section. Variables declared within the Working Storage Section
but outside the SQL Declare Section cannot be used in SQL statements.

WORKING-STORAGE SECTION.
EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 SUPPLIER PIC 999.
 01 ORDERS OCCURS 10 TIMES.
 05 ORDERNUM PIC 999 COMP.
 05 DT DATE.
EXEC SQL END DECLARE SECTION END-EXEC.
...

 This example shows a Declare Section that uses an INVOKE directive to declare a
table as a record description in a C, Pascal, or TAL program. (A COBOL version
would use END-EXEC. in place of each semicolon.)

EXEC SQL BEGIN DECLARE SECTION;
 EXEC SQL INVOKE SALES.PARTS;
EXEC SQL END DECLARE SECTION;

BEGIN DECLARE SECTION
HP NonStop SQL/MP Reference Manual—523352-013
B-2

BEGIN WORK Statement
BEGIN WORK Statement
BEGIN WORK is a transaction control statement that starts a user-defined TMF
transaction.

A user-defined TMF transaction groups a set of operations on audited objects and files
so that changes made by the operations can be committed (with the COMMIT WORK
statement) or rolled back (with the ROLLBACK WORK statement) as a unit. TMF
transactions do not protect nonaudited tables. For more information on TMF
transactions, see TMF Transactions on page T-6.

Example—BEGIN WORK

This example uses BEGIN WORK in SQLCI to group three separate statements that
update the database into a single TMF transaction:

>> VOLUME SALES;
>> BEGIN WORK;
>> INSERT INTO ORDERS VALUES (124, 860323, 860330, 75, 7654);
--- 1 ROW(S) INSERTED.

>> INSERT INTO ODETAIL VALUES (124, 4103, 25000, 2);
--- 1 ROW(S) INSERTED.

>> UPDATE INVENT.PARTLOC SET QTY_ON_HAND = QTY_ON_HAND -2
+> WHERE PARTNUM = 4103 AND LOC_CODE = "K43";
--- 1 ROW(S) UPDATED.
>> COMMIT WORK;

BEGIN WORK
HP NonStop SQL/MP Reference Manual—523352-013
B-3

BETWEEN Predicate
BETWEEN Predicate
BETWEEN is a predicate that determines whether a value is within a range of values.

Considerations—BETWEEN

 BETWEEN is a comparison predicate. For more information on general rules for
comparisons and specific information about comparing character data (including
character data associated with collations), numeric data, date-time data, and
interval data, see Comparison Predicate on page C-58.

 If you specify expr1 BETWEEN expr2 AND expr3, the predicate is true if this
condition is true:

expr1 >= expr2 AND expr1 <= expr3

 The three row-value-specs must contain the same number of expressions.

 The data type of the result of an expression in one row-value-spec must be
compatible with the data types of the results of the two expressions in the same
ordinal position in the others.

 If you specify NOT, the predicate is true if this condition is true:

(expr2 < expr1 OR expr1 > expr3)

Specify NOT:

expr1 NOT BETWEEN expr2 AND expr3

 For a clause that specifies a column in a key BETWEEN expr1 and expr2,
expr2 must be greater than expr1 even if the column is defined as
DESCENDING.

Examples—BETWEEN

 This example finds those items for which the total price of the units in inventory is
in the range $1,000 to $10,000:

QTY_ON_HAND * PRICE
 BETWEEN 1000.00 AND 10000.00

row-value-spec [NOT] BETWEEN row-value-spec AND
 row-value-spec

row-value-spec is:

 {expression[,expression] ... }
 { (expression[,expression] ...) }
HP NonStop SQL/MP Reference Manual—523352-013
B-4

BLOCKSIZE File Attribute
 This example finds those items for which the part cost is less than $5 or more than
$800:

PARTCOST NOT BETWEEN 5.00 AND 800.00

 This example finds those names between Jody Selby and Gene Wright. The name
Barbara Swift meets the criteria; the name Mike Wright does not.

LAST_NAME, FIRST_NAME BETWEEN
 "SELBY", "JODY" AND
 "WRIGHT", "GENE"

BLOCKSIZE File Attribute
BLOCKSIZE is a Guardian file attribute that specifies the number of bytes in a block.
BLOCKSIZE applies to key-sequenced, relative, and entry-sequenced tables, and to
indexes.

The default is BLOCKSIZE 4096.

num-bytes

is an integer that specifies the number of bytes in a block.

Block size can be 512, 1024, 2048, or 4096 bytes. If you specify a different block
size, SQL uses the next-higher block size and issues a warning. If you specify a
block size greater than 4096 for a CREATE TABLE or CREATE INDEX statement,
SQL issues an error.

Considerations—BLOCKSIZE

Recommendations for block size

For sequential processing, use the largest block size.

For key-sequenced tables, avoid small block sizes (less than 4096 bytes) if the
size of the table causes the number of index levels to increase over the number
required for 4096-byte blocks. Additional index levels can reduce online
performance.

If your application uses a table or an index to process data solely with random
access, choose one of the smaller block sizes for that table or index. Note,
however, that small block sizes require more disk space for the same number of
rows than large block sizes.

BLOCKSIZE num-bytes
HP NonStop SQL/MP Reference Manual—523352-013
B-5

BREAK FOOTING Command
BREAK FOOTING Command
BREAK FOOTING is an SQLCI report writer command that specifies the text at the
end of a group of break column values. You can use BREAK FOOTING only from the
select-in-progress prompt, not from the SQLCI prompt.

 break-column

identifies a break column (a column named in a BREAK ON command). It can be a
column name, an alias, a detail alias, or COL number (which specifies the position
of the column in the select list).

print-item

specifies the contents and format of items to print when the value in the break
column changes. print-item is the same as described under the DETAIL
command except that it cannot include the HEADING, NOHEAD, or NAME
clauses. For more information, see DETAIL Command on page D-47 or Print Item
on page P-28.

If print-item is a column identifier, the column value will be the one from the last
select row in the group.

CENTER

centers each line of the break footing between the left and right margins. If you
omit CENTER, the break footing is positioned at the left margin.

Considerations—BREAK FOOTING

 If you define break footings, you must enter a BREAK ON command that includes
the break column identifier in each BREAK FOOTING command before you list
any output.

 Only one BREAK FOOTING command is in effect for each break column. If you
enter another BREAK FOOTING command for the same break column, the most
recent command replaces the previous BREAK FOOTING command for that
column.

 The print list you specify in a BREAK FOOTING command is a logical line,
although (depending on margin settings, device widths, and use of the SKIP
clause) it might print on more than one physical line. A logical line is limited to 4072

BREAK FOOTING break-column (print-list) [CENTER];

 print-list is:

 print-item [, print-item] ...
HP NonStop SQL/MP Reference Manual—523352-013
B-6

Example—BREAK FOOTING
bytes, including the field widths of all print items and the number of spaces
between items.

Example—BREAK FOOTING

This example uses break columns to format a report. The report includes a break
footing.

>> SELECT D.DEPTNUM, DEPTNAME, EMPNUM, JOBCODE, LOCATION
+> FROM PERSNL.EMPLOYEE E, PERSNL.DEPT D
+> WHERE E.DEPTNUM = D.DEPTNUM
+> ORDER BY D.DEPTNUM;
S> BREAK ON COL 1, COL 2;
S> DETAIL D.DEPTNUM, DEPTNAME, EMPNUM, JOBCODE;
S> BREAK FOOTING D.DEPTNUM ("Location:", SPACE 3,
+> LOCATION AS A20);
S> LIST NEXT 15;
DEPTNUM DEPTNAME EMPNUM JOBCODE
------- ------------ ------ -------
 1000 FINANCE 23 100
 202 500
 208 900
 210 500
 214 500
Location: CHICAGO
 1500 PERSONNEL 209 900
 211 600
 212 600
 213 100
Location: CHICAGO
 2000 INVENTORY 32 100
 219 250
 230 200
 233 250
 321 900
Location: LOS ANGELES
HP NonStop SQL/MP Reference Manual—523352-013
B-7

BREAK ON Command
BREAK ON Command
BREAK ON is an SQLCI report writer command that groups detail lines together by the
value of a specified column. You can use BREAK ON only from the select-in-progress
prompt, not from the standard SQLCI prompt.

The default is SUPPRESS.

col

identifies a column of the select list or a named detail column, the value of which is
used to group lines. col can be a column name, an alias, a detail alias, or COL
number (which specifies the position of the column in the select list).

A break occurs when the value of col changes, even if col is not a column in the
DETAIL list. The break can cause the printing of a break title, break footing, or
subtotal.

You can specify the same column more than once in a BREAK ON command, but
report writer sets only one break on the column.

SUPPRESS

specifies printing the break column value only in the first detail line of the group
and the first detail line on a page.

NOSUPPRESS

specifies printing the break column value on each detail line.

Considerations—BREAK ON

 Only one BREAK ON command is in effect at any time. When you enter a BREAK
ON command, it replaces any existing BREAK ON command and returns you to
the beginning of the SELECT output. The new BREAK ON command should
include every break column referred to in the existing SUBTOTAL, BREAK TITLE,
and BREAK FOOTING commands.

 If you use BREAK ON to specify groups and subgroups, specify the columns in
order, from the most inclusive group to the least inclusive group.

 To sort break columns, include an ORDER BY clause in the associated SELECT
statement.

 BREAK ON col [SUPPRESS] [, col [SUPPRESS]]... ;
 [NOSUPPRESS] [[NOSUPPRESS]]
HP NonStop SQL/MP Reference Manual—523352-013
B-8

Examples—BREAK ON
Examples—BREAK ON

 This example groups detail lines by job codes within groups of departments. When
finished, enter CANCEL at the select-in progress prompt (S>):

>> SET LIST_COUNT 0;
>> SELECT LAST_NAME, FIRST_NAME, JOBCODE, DEPTNUM
+> FROM PERSNL.EMPLOYEE
+> WHERE SALARY > 20000
+> ORDER BY DEPTNUM, JOBCODE;
S> BREAK ON DEPTNUM, JOBCODE;
S> LIST NEXT 8;
LAST_NAME FIRST_NAME JOBCODE DEPTNUM
-------------------- --------------- ------- -------

HOWARD JERRY 100 1000
CLARK LARRY 500
BARTON RICHARD
KELLY JULIA
WHITE ROBERT 100 1500
SCHNEIDER JIMMY 600
MITCHELL JONATHAN
RUDLOFF THOMAS 100 2000

S> CANCEL;
>>

 This example groups detail lines by monthly salary and (within salary groups) by
job code and department number. When finished, enter CANCEL at the select-in
progress prompt (S>):

>> SET LIST_COUNT 0;
>> SELECT DEPTNUM, JOBCODE, SALARY/12
+> FROM PERSNL.EMPLOYEE
+> WHERE SALARY > 20000
+> ORDER BY 3, 2, 1;
S> BREAK ON COL 3, JOBCODE, DEPTNUM;
S> LIST NEXT 5;

DEPTNUM JOBCODE (EXPR)
------- ------- --------------------

 3200 300 1833.333333333333
 2000 200 2000.000000000000
 4000 900 2000.075000000000
 3200 900 2083.333333333333
 1000 500 2083.395833333333

S> CANCEL;
>>
HP NonStop SQL/MP Reference Manual—523352-013
B-9

BREAK TITLE Command
BREAK TITLE Command
BREAK TITLE is an SQLCI report writer command that specifies the text at the
beginning of a group of break column values. You can use BREAK TITLE only from the
select-in-progress prompt, not from the SQLCI prompt.

break-column

identifies a break column (a column named in a BREAK ON command). It can be a
column name, an alias, a detail alias, or COL number (which specifies the position
of the column in the select list).

print-item

specifies the contents and format of items to print as the break title. print-item
is the same as described under DETAIL, except that it cannot include the
HEADING, NOHEAD, or NAME clauses.

If print-item is a column identifier, the column value used is the one from the
first row in the new group.

CENTER

centers each line of the break title between the left and right margins. If you omit
CENTER, the break title is positioned at the left margin.

Considerations—BREAK TITLE

 If you define break titles, you must enter a BREAK ON command that includes the
break column identifier in each BREAK TITLE command before listing any output.

 Only one BREAK TITLE command is in effect for each break column. If you enter
another BREAK TITLE command for the same break column, the most recent
command replaces the previous BREAK TITLE command for that column.

 The print list you specify in a BREAK TITLE command is a logical line, although
(depending on margin settings, device widths, and use of the SKIP clause) it might
print on more than one physical line. A logical line is limited to 4072 bytes,
including the field widths of all print items and the number of spaces between
items.

BREAK TITLE break-column (print-list) [CENTER];

print-list is:
 print-item> [, print-item] ...
HP NonStop SQL/MP Reference Manual—523352-013
B-10

Example—BREAK TITLE
Example—BREAK TITLE

These commands select data and identify DEPTNUM as a break column:

>> SELECT D.DEPTNUM, DEPTNAME, EMPNUM, JOBCODE
+> FROM PERSNL.EMPLOYEE E, PERSNL.DEPT D
+> WHERE E.DEPTNUM = D.DEPTNUM
+> ORDER BY D.DEPTNUM;
S> DETAIL D.DEPTNUM, EMPNUM, JOBCODE;
S> BREAK ON COL 1;

Before the first detail line is printed, and each time the value of DEPTNUM
changes, the break title defined in this command appears in the report:

S> BREAK TITLE D.DEPTNUM
+> (CONCAT (DEPTNAME STRIP, " Department"));
S> LIST NEXT 8;
DEPTNUM EMPNUM JOBCODE
------- ------ -------
FINANCE Department
 1000 23 100
 202 500
 208 900
 210 500
 214 500
PERSONNEL Department
 1500 209 900
 211 600
 212 600

BUFFERED File Attribute
BUFFERED is a Guardian file attribute that specifies whether to buffer writes to a disk
file. BUFFERED applies to key-sequenced, relative, entry-sequenced tables, and to
indexes.

The default for an audited table is BUFFERED. The default for a nonaudited table is
NO BUFFERED. The index default is the table value at index creation.

Considerations—BUFFERED

 All retrieved rows are stored in cache memory temporarily. In a NO BUFFERED
file, a block that contains an updated row is written to disk immediately. In a
BUFFERED file, a block that contains an updated row is not written to disk until a
system event (such as the need for more cache memory) triggers a write
operation. An updated block can change more than once without the need for
writing each change to disk as the change occurs.

 Buffering can improve transaction times by reducing the number of writes required
and by deferring writes so that the disk process can write a string of blocks in a

{ BUFFERED | NO BUFFERED }
HP NonStop SQL/MP Reference Manual—523352-013
B-11

Considerations—BUFFERED
single I/O operation. However, buffering can cause loss of data on nonaudited files
if a failure occurs while updated rows are stored in cache memory but not yet
written to disk.

Audited files should always be buffered, because auditing itself protects against
loss of data. (Specifying NO BUFFERED for an audited file would unnecessarily
reduce performance.)

 If you alter the AUDIT file attribute for a table, SQL automatically sets the
BUFFERED file attribute for that table (but not for its dependent indexes):

 If you specify AUDIT, SQL also sets BUFFERED.

 If you specify NO AUDIT, SQL also sets NO BUFFERED.

To override the automatic setting, explicitly specify the BUFFERED file attribute in
the ALTER TABLE statement that changes the AUDIT attribute.

Altering the BUFFERED attribute does not affect the AUDIT attribute.
HP NonStop SQL/MP Reference Manual—523352-013
B-12

C
CANCEL Command

CANCEL is an SQLCI report writer command that cancels the current SELECT and
returns to the standard SQLCI prompt. Selected rows and current report formatting
commands become unavailable, except through the FC command.

Consideration—CANCEL

 CANCEL does not delete reports. You can still display or save a report after using
CANCEL:

Example—CANCEL

This example lists the first five rows of SELECT output and cancels the SELECT
statement:

>> SET LIST_COUNT 5;
>> SELECT * FROM SALES.ODETAIL;
ORDERNUM PARTNUM UNIT_PRICE QTY_ORDERED
-------- ------- --------------------- -----------
100124 4103 25000.00 2
100210 244 3500.00 2
100210 2001 1100.00 3
100210 2403 620.00 3
100210 5100 150.00 6
S> CANCEL;
>>

CANCEL ;

SHOW REPORT *; Displays a report

SAVE REPORT * TO file; Saves a report
HP NonStop SQL/MP Reference Manual—523352-013
C-1

CASE Expression
CASE Expression
The CASE expression is a conditional expression. SQL evaluates the conditions in the
CASE expression and sets the CASE expression to a value based on the condition
that is true. If none of the search conditions are true, SQL sets the CASE expression to
the value specified in the ELSE clause or, if ELSE is not specified, SQL sets the CASE
expression to NULL.

search-condition-1 through search-condition-n

specifies a condition to test for. If the condition is true, the CASE expression
returns the associated result value. If no search-condition is true, the CASE
expression returns the value of the ELSE clause, or NULL if ELSE is not specified.

result-1 through result-n

specifies the result value (or NULL) associated with a specific search condition. All
the results specified in the CASE expression should have the same or comparable
data types.

result-x

specifies the value returned if none of the search conditions are true. If the ELSE
result-x clause is not specified, the CASE expression returns NULL if none of
the search conditions are true. The data type of result-x should be the same or
comparable to those of result-1 through result-n.

CASE
 WHEN search-condition-1 THEN { result-1 | NULL }
 WHEN search-condition-2 THEN { result-2 | NULL }
 WHEN search-condition-3 THEN { result-3 | NULL }
 . . .
 WHEN search-condition-n THEN { result-n | NULL }
 [{ ELSE result-x | NULL }]
END

 or

CASE target-value
 WHEN value-1 THEN { result-1 | NULL }
 WHEN value-2 THEN { result-2 | NULL }
 WHEN value-3 THEN { result-3 | NULL }
 . . .
 WHEN value-n THEN { result-n | NULL }
 [{ ELSE result-x | NULL }]
END
HP NonStop SQL/MP Reference Manual—523352-013
C-2

Considerations—CASE Expression
target-value

if present, specifies a value or expression for which a result is returned. When you
specify target-value, you use an abbreviated form of the CASE expression,
typically used for value comparisons. The data type of each value-n in the
statement should be comparable to the data type of target-value. In addition,
the collation of each value-n should be the same or comparable to the collation
of target-value.

value-1 through value-n

specifies a value associated with result-n. If the value matches
target-value, the CASE expression returns the associated result.

Considerations—CASE Expression

 The data type of the CASE expression depends on the data type of the result
expressions. If all the results have the same data type, the CASE expression
adopts that data type. If all the results are untyped, the CASE expression has a
CHAR (256) data type. If all the results are comparable but not identical data types,
the CASE expression adopts the data type, which is superior among the results
associated with the THEN clause or the ELSE clause, if present.

 If you plan to use the value of the CASE expression in a comparison (as in a
WHERE clause), the character set and collation associated with the CASE
expression should be the same or comparable to those associated with the
comparison expression.

 If none of the search-conditions are true, the value of the CASE expression is
the result associated with the ELSE clause, if present.

 At least one specified result should have a nonnull value.

 A SELECT clause cannot appear as part of a search-condition if the CASE
expression is part of the select list in a SELECT statement. For example, this
statement is not valid:

SELECT CASE WHEN a IN (SELECT b FROM T1) THEN 1
 WHEN b IN (SELECT c FROM T1) THEN 2
 ELSE 3
 END

FROM table1;

You can, however, use the CASE expression in the WHERE clause of a SELECT
statement.

 Use of the abbreviated form of the CASE expression, CASE value..., is equivalent
to using:

CASE
 WHEN target-value = value-1 THEN result-1
 WHEN target-value = value-2 THEN result-2
HP NonStop SQL/MP Reference Manual—523352-013
C-3

Examples—CASE Expression
 WHEN target-value = value-3 THEN result-3
 ...
 WHEN target-value = value-n THEN result-n
 ELSE value-x
END

Examples—CASE Expression

 This example decodes movie_type and returns NULL if movie_type does not
match any of the listed values:

SELECT movie_name,
 CASE movie_type
 WHEN 1 THEN "Horror"
 WHEN 2 THEN "Comedy"
 WHEN 3 THEN "Drama"
 ELSE NULL
 END
FROM movies;

 This example returns last_name, first_name, and a value based on salary that
depends on the value of employee.dept_num:

SELECT last_name, first_name,
 CASE
 WHEN dept_num = 9000 THEN salary * 1.10
 WHEN dept_num = 1000 THEN salary * 1.12
 ELSE salary
 END
FROM employee;

CAST Function
The CAST expression converts data to the data type you specify.

expression

specifies the operand to convert to the data type data-type.

If the operand is an expression, data-type depends on the data type of
expression and follows the rules outlined under Valid Considerations—CAST on
page C-5.

If the value of the expression is null, the result of CAST is NULL, regardless of the
data type you specify.

data-type

specifies a data type to associate with the operand of CAST. For more information,
see Data Types on page D-1.

CAST (expression AS data-type)
HP NonStop SQL/MP Reference Manual—523352-013
C-4

Valid Considerations—CAST
When casting data to a CHAR or VARCHAR data type, the resulting data value is
left justified. Otherwise, the resulting data value is right justified. Further, when you
are casting to a CHAR or VARCHAR data type, you must specify the length of the
target value.

Valid Considerations—CAST

You can convert:

 An exact or approximate numeric value to any other numeric data type.

 An exact or approximate numeric value to any character string data type.

 An exact numeric value to either a single-field year-month or day-time interval,
such as INTERVAL '30' DAY.

 A character string to any other data type, with this restriction:

The contents of the character string to be converted must be consistent in meaning
with the data type of the result. For example, if you are converting to DATE, the
contents of the character string must be 10 characters, consisting of the year, the
hyphen, the month, another hyphen, and the day.

 A date value to a character string or to a TIMESTAMP (NonStop SQL/MP fills in
the time part with 00:00:00.00).

 A time value to a character string or to a TIMESTAMP (NonStop SQL/MP fills in the
date part with the current date).

 A timestamp value to a character string, a DATE, a TIME, or another DATETIME
with different fractional seconds precision.

 A year-month interval value to a character string, an exact numeric, or to another
year-month INTERVAL with a different start field precision.

 A day-time interval value to a character string, an exact numeric, or to another
day-time INTERVAL with a different start field precision.

You cannot perform the following conversions between the datatypes:

 NUMERIC to DATETIME, INTERVAL to DATETIME

 DATETIME to NUMERIC, DATETIME to INTERVAL

 NUMERIC to INTERVAL, INTERVAL to NUMERIC

 INTERVAL YEAR TO MONTH to INTERVAL DAY TO FRACTION

 INTERVAL DAY TO FRACTION to INTERVAL YEAR TO MONTH

 INTERVAL to FLOAT, FLOAT to INTERVAL

 INTERVAL to character (other than fixed length char)

 Character (other than fixed length char) to INTERVAL
HP NonStop SQL/MP Reference Manual—523352-013
C-5

Examples—CAST
 Multibyte datatype to any non-character datatype

 Any non-character datatype to multibyte datatype

Examples—CAST

 The PROJECT table contains a column START_DATE of data type DATE and a
column SHIP_TIMESTAMP of data type TIMESTAMP.

Use CAST to return the number of days for completion of a project:

SELECT projdesc, start_date, ship_timestamp,

 (CAST (ship_timestamp AS DATE) - start_date) DAY

FROM persnl.project;

PROJDESC START_DATE SHIP_TIMESTAMP (EXPR)

-------------- ---------- -------------------------- ------

SALT LAKE CITY 1996-04-10 1996-04-21 08:15:00.000000 11

ROSS PRODUCTS 1996-06-10 1996-07-21 08:30:00.000000 41

MONTANA TOOLS 1996-10-10 1996-12-21 09:00:00.000000 72

AHAUS TOOL 1996-08-21 1996-10-21 08:10:00.000000 61

THE WORKS 1996-09-21 1996-10-21 10:15:00.000000 30

--- 5 row(s) selected.

DATE differences can be expressed only in the number of days, the least
significant unit of measure for dates. (An interval is either year-month or day-time.)
In this example, the result is the same if you express the difference as:

CAST (ship_timestamp AS DATE) - start_date

You are not required to specify the interval qualifier.

 Suppose that your database includes a log file of user information. This example
converts the current timestamp to a character string and concatenates the result to
a character literal. Note the length must be specified.

INSERT INTO stats.logfile

(user_key, user_info)

VALUES (001, 'User JBrook, executed at ' ||

 CAST (CURRENT_TIMESTAMP AS CHAR(26)));
HP NonStop SQL/MP Reference Manual—523352-013
C-6

CATALOG Command
CATALOG Command
CATALOG is an SQLCI command that sets the default catalog in an SQLCI session.

catalog

is a catalog name (a Guardian subvolume name) with or without a node and
volume qualifier. It cannot be a DEFINE.

If you omit catalog, SQLCI resets the default to the value of the CATALOG
attribute of the =_DEFAULTS DEFINE that SQLCI inherited from the process that
started the session. If you omit the node and volume qualifier, SQLCI uses the
current defaults.

Considerations—CATALOG

 Whenever the default catalog is empty, SQL uses the default subvolume for the
default catalog.

 Unless a CONTROL QUERY BIND NAMES AT EXECUTION directive is in effect
when a PREPARE executes, a prepared statement uses the node, volume, and
catalog defaults in effect at the time of the PREPARE and is not affected by a
change in the default catalog. For more information, see CONTROL QUERY
Directive on page C-74 or Name Resolution on page N-2.

 CATALOG alters the CATALOG attribute of the =_DEFAULTS DEFINE. Changing
the CATALOG attribute with ALTER DEFINE =_DEFAULTS has exactly the same
effect as issuing a CATALOG command.

Example—CATALOG

CATALOG \SYS1.$VOL1.PERSNL;

CATALOG INVENT;

CATALOG [catalog] ;
HP NonStop SQL/MP Reference Manual—523352-013
C-7

Catalogs
Catalogs
An SQL/MP catalog is a set of tables and indexes that describe SQL objects. Tables in
the set are called catalog tables and SQL creates them—along with their indexes—
when you execute a CREATE CATALOG statement.

Each SQL/MP catalog (the set of catalog tables and their indexes) resides on its own
Guardian subvolume, and the name of that subvolume is also the name of the catalog.
The name has the same form as the subvolume portion of a Guardian file name:

[\node.][$volume.]subvol

For example, \SYS1.$VOL1.SALES might be the fully qualified name of a catalog with
the simple name SALES. If you omit \node or $volume, SQL uses the current default
node and volume to expand the catalog name. (For more information about Guardian
names, see Guardian Names on page G-7.)

Each node on which NonStop SQL/MP is used has one special catalog called the
system catalog (described under System Catalog on page S-92) and might have many
other catalogs. Each table, view, index, partition, collation, or catalog table located on a
node must be described in a catalog on the same node. Normally, an SQL program is
registered in a catalog, too (enabling SQL to locate affected programs when you
change definitions of tables, views, indexes, or collations), but you can create
unregistered programs if necessary.

A volume can have many catalogs. A subvolume can have only one catalog. Each
catalog can describe objects from any subvolume and volume on the same node.

You can create your own tables, indexes, views, and files on a subvolume that includes
an SQL catalog, but it is better to create such objects in other subvolumes, if a later
release of NonStop SQL/MP could add new tables or indexes to the catalog. (The
UPGRADE CATALOG command would be unable to upgrade your catalog if a new
catalog table had the same name as a table or file you created on the catalog
subvolume.)

Each catalog has a version and a format version associated with it. The catalog
version indicates the newest version of objects that can be registered in the catalog.
The catalog format version indicates the oldest version of the SQL/MP software that
can access the catalog. (For more information, see Versions on page V-6.)

Table C-1 briefly describes catalog tables and indexes. For more information about a
specific catalog table, see the separate entry for that table.

Table C-1. Catalog Tables and Indexes (page 1 of 2)

Table Function

BASETABS Describes the attributes of tables

CATALOGS Describes the catalogs on a node (present only in system catalogs)

COLUMNS Describes the columns of tables
HP NonStop SQL/MP Reference Manual—523352-013
C-8

Operations on Catalog Tables
Operations on Catalog Tables

You create a catalog with CREATE CATALOG. You drop a catalog (after dropping all
user-defined collations, indexes, programs, tables, and views that the catalog
describes) with DROP CATALOG.

You can alter the security of an entire catalog with ALTER CATALOG, or alter the
security of the CATALOGS, PROGRAMS, TRANSIDS, or USAGES catalog tables with
ALTER TABLE.

You can find the version of a catalog with GET VERSION and change the version with
UPGRADE CATALOG or DOWNGRADE CATALOG. (To change the version of the
system catalog, use UPGRADE SYSTEM CATALOG or DOWNGRADE SYSTEM
CATALOG.)

SQL automatically updates the contents of catalog tables for you as you execute other
statements that create, drop, or modify objects described in the catalog. (A few fields

COMMENTS Stores comments on collations, columns, constraints, indexes, tables, and
views; also stores help text for columns

CONSTRNT Describes constraints defined on tables

CPRLSRCE Stores source for collations

CPRULES Describes collations

FILES Describes attributes of files that contain tables and indexes

INDEXES Describes indexes defined on tables

IXINDE01 Unique index on INDEXNAME column of INDEXES table

IXPART01 Nonunique index on PARTITIONNAME column of PARTNS table

IXPROG01 Nonunique index on GROUPID and USERID columns of PROGRAMS table

IXTABL01 Nonunique index on GROUPID and USERID columns of TABLES table

IXUSAG01 Nonunique index on USINGOBJNAME and USINGOBJTYPE columns of
USAGES table

KEYS Describes the key columns of indexes

PARTNS Describes partitions of tables and indexes

PROGRAMS Describes SQL program files

TABLES Describes tables, views, and collations

TRANSIDS Stores TMF transaction IDs for current DDL operations on the catalog

USAGES Describes dependencies among SQL objects

VERSIONS Keeps version information about the catalog

VIEWS Describes the attributes of views

Table C-1. Catalog Tables and Indexes (page 2 of 2)

Table Function
HP NonStop SQL/MP Reference Manual—523352-013
C-9

Operations on Catalog Tables
that contain statistics are updated only when you issue an UPDATE STATISTICS
command.)

You can also use these statements with catalog tables:

You cannot use other SQL statements on catalog tables. For example, you cannot
create indexes or constraints on catalog tables or drop individual tables within the
catalog.

DML: DECLARE CURSOR

FETCH

SELECT

DCL: CONTROL EXECUTOR

CONTROL QUERY

CONTROL TABLE (has no effect)

FREE RESOURCES

LOCK TABLE (not recommended)

DDL: ALTER CATALOG (security only)

ALTER TABLE (security only for CATALOGS, PROGRAMS, TRANSIDS, or
USAGES tables)

COMMENT

CREATE CATALOG

CREATE VIEW (shorthand views only)

DROP CATALOG

UPDATE STATISTICS

Other: INVOKE

DISPLAY USE OF

VERIFY

Caution. Normally, DELETE, INSERT, and UPDATE statements do not work on catalog
tables, but a licensed SQLCI2 process (or a licensed SQL program file) can use any DML
operation on catalog tables, as described in the SQL/MP Installation and Management Guide.

Only the most extreme situations should require the use of a licensed SQLCI2 process,
because such operations can be extremely dangerous to the consistency of the database and
the data dictionary.
HP NonStop SQL/MP Reference Manual—523352-013
C-10

CATALOGS Table
CATALOGS Table
The CATALOGS table is a catalog table that describes all the catalogs on a node.
CATALOGS is part of the system catalog for the node and does not exist in
user-created catalogs.

The CATALOGS table is always located on a subvolume named SQL, even if the
system catalog is installed on a subvolume of a different name. As a result, it is
sometimes called the SQL.CATALOGS table. It is always on the same volume as the
system catalog for the node.

The columns CATALOGNAME through CATALOGCLASS (1 through 5) were created in
version 1 of NonStop SQL/MP. The sixth column, CATALOGVERSION, was added in
version 300.

If you have the required authority, you can use the CATALOGS table to obtain
information such as the names of all objects on a node that belong to a particular user.
(Retrieve the names of all catalogs from the table, search each catalog for objects
owned by the user.)

Guardian names in CATALOGS are fully qualified and use uppercase characters.

The ALTER CATALOG command does not affect the system catalog CATALOGS table.
You must alter that table with the ALTER TABLE command.

Table C-2. The SQL.CATALOGS Table

Column Name Data Type Description

1 CATALOGNAME * CHAR(25) Node, volume, and subvolume of a
catalog

2 SUBSYSTEMNAME * CHAR(30) Name of subsystem where catalog resides

 3 VERSION CHAR(4) Version of catalog in character format:
A010 = Version 1
A011 = Version 2
A3nn = Version 3nn

 4 VERSIONUPGRADETIME LARGEINT
SIGNED

Julian timestamp from last upgrade or
downgrade of catalog

 5 CATALOGCLASS CHAR(1) S if system catalog
U if user catalog

 6 CATALOGVERSION SMALLINT
UNSIGNED

Version number of catalog

* Indicates primary key
HP NonStop SQL/MP Reference Manual—523352-013
C-11

CENTER_REPORT Option
CENTER_REPORT Option
CENTER_REPORT is an option of the SQLCI report writer SET LAYOUT command
that controls whether reports are centered within the left and right margins.

Consideration—CENTER_REPORT

If you specify ON, the report writer centers the whole report as a block of text. To
compute the report width, the report writer examines lines of the report (including
titles, footings, detail lines, and so forth) and determines the leftmost and rightmost
positions containing data or text.

During these calculations, the report writer ignores lines defined with a CENTER
clause and leading and trailing TAB clauses. (In a TAB clause, the number you
specify relates to an absolute character position before the report is centered.)

The default is OFF.

Example—CENTER REPORT

This command centers all reports until you reset the CENTER_REPORT option:

>> SET LAYOUT CENTER_REPORT ON;

CENTER_REPORT { OFF }
 { ON }
HP NonStop SQL/MP Reference Manual—523352-013
C-12

Character Data Types
Character Data Types
SQL includes both fixed-length character data and varying-length character data.
Either type of character data can be associated with a character set. Any character
data type is compatible with any other character data type that is associated with the
same character set, but not with numeric, date-time, or interval data types, and not with
character data that is associated with a different character set.

The maximum length of a character column depends on whether the data type is
fixed-length or variable-length, whether the associated character set is single-byte or
double-byte, and on the file organization of the file that contains the column:

Each variable-length character data item requires two bytes of storage for length
information, in addition to the space required for the data itself. As a result, the
maximum length for a variable-length column is less than the maximum length for an
otherwise equivalent fixed-length column.

A column that allows null values requires two extra bytes.

A string literal can be as long as a character column.

Note that C string data types require an additional trailing null character. Because of
this additional null character, using C string data types disables the SQL bulk move
feature when you move contiguous data fields between the Executor Extended Data
Segment and program host variables.

Fixed-Length Types Varying-Length Types

CHAR[ACTER] CHAR[ACTER] VARYING

PIC X [DISPLAY] VARCHAR[ACTER]

NATIONAL
CHAR[ACTER]

NATIONAL CHAR[ACTER]
VARYING

NCHAR[ACTER] NCHAR[ACTER] VARYING

Data Type
Key-
Sequenced

Relative or Entry-
Sequenced

Single-byte unvarying 4061 4072

Single-byte VARYING 4059 4070

Double-byte unvarying 2030 2036

Double-byte VARYING 2029 2035
HP NonStop SQL/MP Reference Manual—523352-013
C-13

Character Expressions
Character Expressions
A character expression specifies a value and can be a simple string literal or a column
name that specifies the value of a column in a row of a table. The expression can
include string operators and function calls that return string results. All these are
character expressions:

A character expression has a CHAR or VARCHAR data type and can be upshifted.

A character expression consists of one or more operands connected by string
operators, as shown in the diagram.

string-literal

represents a series of characters and consists of that series of characters
surrounded by double or single quotation marks, optionally preceded by a clause
that specifies the character set associated with the characters. For information, see
String Literals on page S-80.

column-name

is the valid name of a column in a table, optionally qualified by a collation name.
The column name must refer to a column with a character data type.

parameter-name

is a parameter of a character data type, optionally associated with a collation.

“ABILENE” A character string

CUSTNAME The value in column CUSTNAME

SUBSTRING (“Robert” FROM 0 FOR
3)

The SUBSTRING function applied to the
string “Robert”

string-operand [[string-operator
 string-operand] ...]

string-operand is:

{ string-literal }
{ column-name }
{ parameter-name }
{ host-variable-name }
{ string-function-invocation }

string-operator is:

{ concatenation-operator }
HP NonStop SQL/MP Reference Manual—523352-013
C-14

Considerations—Character Expressions
host-variable-name

is the name of a host variable that contains a value with a character data type.

string-function-invocation

is a call to a function such as UPSHIFT, TRIM, or SUBSTRING that returns a string
as a result.

concatenation-operator

specifies this operator:

||

The concatenation operator concatenates two string operands and produces a
string as a result. If either of the character strings has a VARCHAR data type, the
result has a VARCHAR data type. If both character strings are fixed CHAR strings,
the result is a fixed CHAR. Operands should have identical character sets.

Considerations—Character Expressions

 Guidelines for using character expressions in SQL statements

Character expressions can appear at any place where a string literal, parameter,
column, or host variable can appear. This diagram lists the usage of character
expressions:

{ character-expression relat-operator character-expression}
{ }
{ character-expression [NOT] LIKE character-expression }
{ }
{ character-expression [NOT] BETWEEN }
{ character-expression AND character-expression }
{ }
{ character-expression IS [NOT] NULL }
{ }
{ character-expression [NOT] IN { subquery } }
{ { in-value-list } }
{ }
{ character-expression relat-operator [ALL] subquery }
{ [ANY] }
{ [SOME] }
{ }
{ UPSHIFT (character-expression) }

When evaluating predicates with character expressions, the rules that apply to
string literals, columns, and other forms of character expressions also apply to this
usage.
HP NonStop SQL/MP Reference Manual—523352-013
C-15

Considerations—Character Expressions
 Guidelines for using the concatenation operator

The sum of lengths of the character string operands cannot exceed the maximum
allowed length for their data type. If their length exceeds the maximum allowed for
a character data type, SQL truncates the string to the right and issues a warning.

Strings with different character sets cannot be concatenated together.

If either of the two character string operands is a null value, the result is a null
value.

If a concatenated expression is used in a comparison (as in a WHERE clause), the
collation of the resulting expression must not be undefined. If the concatenation is
not used in a comparison (as in a select list that is not ordered), it can have an
undefined collation.

 Associating collations with character data

To associate a collation with a parameter of a character data type, use the
COLLATE command:

character-item [COLLATE { collation }]
 { CHARACTER SET }

A character expression is implicitly associated with a collation if character-item
is defined with a collation. For example, if character-item is a column that was
defined with a COLLATE FRENCH clause, the collation FRENCH is implicitly
associated with the expression, although no COLLATE clause appears in the
expression.

A character expression is explicitly associated with a collation if the expression
itself includes the COLLATE clause. An explicit association with a collation
overrides an implicit association with a collation in the same expression.

COLLATE CHARACTER SET explicitly associates the binary ordering of
character-item values with the expression, overriding any implicit association
with a collation.

If a nested character expression includes more than one COLLATE clause, the
collation explicitly specified at the highest level of the expression is the collation
associated with the expression. For example, this expression is associated with the
collation SPANISH, even if B is a column associated with collation FRENCH:

MAX(B COLLATE FRENCH) COLLATE SPANISH

Collation FRENCH is used to compute the MAX value. The result has collation
SPANISH.

 Determining the collating sequence for concatenated strings

The collating sequence of a concatenated string is determined by the rules
specified for a comparison operation. For more information, see Collations on
page C-43.
HP NonStop SQL/MP Reference Manual—523352-013
C-16

Examples—Character Expressions
Examples—Character Expressions

 This example on concatenation results in “Robert Smith”:

"Robert " || "Smith"

Note blanks between names are included in the original string literals.

 This example results in “Robert John Smith”:

"Robert " || "John " || "Smith"

 This example concatenates “Robert” with a string of length 0, which results in
“Robert”:

"Robert" || ""

 This example results in “Robert SMITH”:

"Robert " || UPSHIFT ("Smith")

 This example results in “Robert Smith” with the collating sequence FRENCH:

"Robert " COLLATE FRENCH || "Smith"

 This SELECT statement returns a null value because one of the two character
string operands has a null value:

>>CREATE TABLE EMPNAME (first_name char(10),
+> last_name char(10));
>>INSERT INTO EMPNAME VALUES ("Robert ", NULL);
>>SELECT (first_name || last_name) FROM EMPNAME;

Character Sets
NonStop SQL/MP allows you to associate one of these character sets with a column, a
literal, a host variable, or a parameter:

 ISO 8859/1 through ISO 8859/9

 Kanji

 KSC5601

You can also define a collation that uses any of the nine ISO 8859 character sets and
associate the collation with a column, a literal, an host variable, or a parameter of the
same character set. (You cannot define a collation that uses the Kanji or KSC5601
characters sets. SQL always collates characters from those character sets according
to the binary value of the characters.)

For compatibility with versions of NonStop SQL/MP that do not support multiple
character sets, you can specify UNKNOWN to indicate that the character set is
unknown. SQL considers this equivalent to omitting the character set specification and
handles the data as 8-bit data.
HP NonStop SQL/MP Reference Manual—523352-013
C-17

ISO 8859 Character Sets
ISO 8859 Character Sets

The ISO 8859 character sets are a standard set of nine single-byte character sets
defined by ISO (the International Organization for Standardization) in a series called
ISO 8859. The first in the series is called ISO 8859/1, the second is ISO 8859/2, and
so on through ISO 8859/9. In NonStop SQL/MP, you use the keywords ISO88591,
ISO88592, ISO88593, and so forth to specify a character set within the ISO 8859
series.

ISO 8859 defines printing characters for each character set, and all character sets
share the same layout. Each set includes graphic characters from the ASCII character
set (a 7-bit character set defined in both ISO and ANSI standards) in code positions
%H20-%H7E and other characters in positions %HA0-%HFF, allowing 96 graphic
characters to be added to those already in ASCII. Graphic characters that appear in
multiple ISO 8859 character sets always have the same encoding.

The ranges %H00-%H1F and %H7F-%H9F are reserved for control characters, but
ISO 8859 does not make specific control character assignments.

ISO 8859/1, which is informally called Latin-1, is the most commonly used ISO 8859
character set. ISO 8859/1 contains the characters necessary for Western European
languages such as French, German, Italian, and Spanish. It is HP's current default
character set and is implemented in the most recent version of 6525A terminal, PCT,
and printers.

The other ISO 8859 character sets are used in varying degrees throughout the world.
ISO 8859/2 is used for Eastern European languages, ISO 8859/3 for Southeastern
European languages, ISO 8859/4 for Northern European languages, ISO 8859/5 for
English and Cyrillic languages, ISO 8859/6 for English and Arabic languages, ISO
8859/7 for English and Greek languages, ISO 8859/8 for English and Hebrew
languages, and ISO 8859/9 for Western European and Turkish languages.

The nine ISO 8859 character sets are not completely documented in SQL/MP
documentation. However, for information on the ASCII characters common to all nine
ISO 8859 sets, see ASCII Character Set on page A-70.

Kanji Character Set

The Kanji character set (also known as the Shift JIS character set or—in NonStop
system use—the HP Kanji character set) is a double-byte character set originally
developed for CP/M microcomputers in Japan and later adopted for use on MS-DOS
systems. The Kanji character set is in common use on a variety of Japanese
mainframes as well. In NonStop SQL/MP, you use the keyword KANJI to specify the
Kanji character set.

NonStop SQL/MP always collates Kanji characters according to their binary values.
HP NonStop SQL/MP Reference Manual—523352-013
C-18

KSC5601 Character Set
Neither byte of any Kanji character contains any binary value less than %H40, as
shown:

KSC5601 Character Set

The KSC5601 character set (also known as the Korean character set or —in NonStop
system use--the HP KSC5601 character set) is the double-byte character set that is
the Korean Industrial Standard character set and is required on systems used by
government and banking sectors within Korea. In NonStop SQL/MP, you use the
keyword KSC5601 to specify the KSC5601 character set.

NonStop SQL/MP always collates KSC5601 characters according to their binary
values.

Neither byte of any KSC5601 character contains any binary value less than %H40, as
shown:

First-byte range %H81 .. %H9F, %HE0 .. %HFC

Second-byte range %H40 .. %H7E, %H80 .. %HFC

Number of possible characters 11280

Two-byte space character %H8140

One-byte space character %H20

First-byte range %HA1 .. %HFE

Second-byte range %HA1 .. %HFE

Number of possible characters 8836

Two-byte space character %HA1A1

One-byte space character %H20
HP NonStop SQL/MP Reference Manual—523352-013
C-19

CHAR_LENGTH Function
CHAR_LENGTH Function
The CHAR_LENGTH function returns the number of characters in a string.

character-string

specifies the string for which the length is to be returned.

Considerations—CHAR_LENGTH Function

 SQL returns the result as a two-byte signed integer with a scale of zero.

 If character-string is a null value, SQL returns a length of null.

 For a column declared as a fixed CHAR, SQL returns the maximum length of that
column. For a VARCHAR column, SQL returns the actual length of the string
stored in that column.

 The OCTET_LENGTH and CHAR_LENGTH functions are similar. The
OCTET_LENGTH function returns the number of bytes in the string. The result of
both functions is the same for single-byte character data types. For a multi byte
character data type, the two functions return different results.

Examples—CHAR_LENGTH Function

 This example returns 12:

CHAR_LENGTH ("Robert" || " " || "Smith")

 This example returns zero:

CHARACTER_LENGTH ("")

 This example returns the value 3:

CHAR_LENGTH (_KANJI "abcdef")

 These two examples use a table created:

CREATE TABLE EMPLOYEE (EMPNAME CHAR(20),
 ADDRESS VARCHAR(100));
INSERT INTO EMPLOYEE VALUES ("Robert Smith",
 "19333 Vallco Parkway ");

CHAR[ACTER]_LENGTH (character-string)

where character-string is:

 { string-literal }
 { column-name }
 { param-name }
 { host-var-name }
 { UPSHIFT function }
 { character-expression }
HP NonStop SQL/MP Reference Manual—523352-013
C-20

CLEANUP Command
 This example returns 20:

CHAR_LENGTH (EMPNAME)

 This example returns 21—not 100—because it is a VARCHAR value:

CHAR_LENGTH (ADDRESS)

CLEANUP Command
CLEANUP is an SQLCI utility command that allows a user with super ID authority to
delete damaged SQL objects, SQL programs in Guardian files, and catalogs and
associated file labels and shadow labels from the local node.

qualified-fileset-list

is a qualified fileset list that specifies SQL objects to delete. (For information, see
Qualified Fileset List on page Q-1.) If SMF is installed,
qualified-fileset-list cannot specify a file on a $*.ZYS*. subvolume.

CLEANUP does not delete catalog tables and indexes included in
qualified-fileset-list unless you also specify the CATALOG[S] option.
CLEANUP does not delete Enscribe files other than SQL programs. CLEANUP
does not delete OSS files, even if they contain SQL programs.

If an object's file label no longer exists, you can use the FROM CATALOG clause
to specify the object, but you cannot use a WHERE expression. If you use both,
CLEANUP issues an error message and does not delete the object.

!

(either before or after qualified-fileset-list) directs CLEANUP to delete
all objects in the specified filesets without prompting for confirmation.

Caution. Use CLEANUP only when absolutely necessary to delete damaged objects.
CLEANUP deletes both damaged and undamaged objects in the fileset you specify. Misusing
CLEANUP can corrupt your SQL data dictionary. Never use CLEANUP as a substitute for
DROP or PURGE.

CLEANUP [!] qualified-fileset-list [!] [, option] ;

 { CATALOG[S] }
option is: { NO CATALOG[S] [, SHADOWSONLY] }
 { SHADOWSONLY [, NO CATALOG[S]] }
HP NonStop SQL/MP Reference Manual—523352-013
C-21

Considerations—CLEANUP
If you omit the exclamation point when you use CLEANUP interactively, this
prompts normally appear:

DO YOU WISH TO CLEANUP THE ENTIRE FILESET

 ... (name of fileset) ...

(Y[ES], N[ONE], S[ELECT], F[ILES])?

If you allow CLEANUP to prompt, use one of these responses:

[NO] CATALOG[S]

specifies whether to delete catalog tables and associated indexes in addition to
other objects and programs specified in qualified-fileset-list.

To purge catalog tables and indexes, you must specify CATALOG[S] and you must
use the wild-card character (*) in the qualified-fileset-list to indicate all
catalog tables and indexes in the catalog. (CLEANUP can purge only entire
catalogs, not individual catalog tables or indexes within a catalog.)

If you omit CATALOG[S] or specify NO CATALOG[S], CLEANUP deletes only
objects that are not part of a catalog.

SHADOWSONLY

directs SQL to delete shadow labels for objects in qualified-fileset-list,
but not the objects themselves. If you omit SHADOWSONLY, CLEANUP does not
purge shadow labels. (Shadow labels—temporary internal labels created when
objects are dropped from the node—are discussed in the SQL/MP Installation and
Management Guide.)

You cannot specify SHADOWSONLY and CATALOGS in the same CLEANUP
command.

Considerations—CLEANUP

 Only the local super ID can use CLEANUP. To delete damaged objects on multiple
nodes, the super ID on each node must run CLEANUP for that node.

 After deleting each object, CLEANUP displays a message indicating the object and
catalog entry that was deleted.

 You cannot use CLEANUP within a user-defined TMF transaction.

SQL automatically starts a transaction for each catalog description and file label
purged with CLEANUP, so only the deletion of the last SQL object (or partition) is
undone if CLEANUP fails before the deletion is committed.

Y[ES] Purge the whole set

N[ONE] Cancel the command

S[ELECT] Prompt object-by-object

F[ILES] List objects in fileset
HP NonStop SQL/MP Reference Manual—523352-013
C-22

Considerations—CLEANUP
Catalog description and file label purging are two different and independent
activities. CLEANUP is designed to handle these variations:

 Purging both the file label and the corresponding catalog entry, if they exist, for
the object program file

 Purging only the catalog entry for the object or program file

 Purging only the file label for the object or program file

If CLEANUP is interrupted by a break request, all changes that have
completed at the time of the break remain in effect; any change in progress is
rolled back. The messages displayed by CLEANUP before the break is
received indicate which objects have been fully deleted. In the rare case when
the break arrives immediately after a deletion and just before a message is
issued, CLEANUP actually might have deleted one additional object.

 SQL objects are described in the SQL data dictionary, which is composed of SQL
catalogs and file labels. Misuse of various system management utilities can corrupt
the data dictionary. This damage can make it impossible to access the objects,
preventing you from removing them with the customary DROP command or
PURGE utility. In such cases, you can probably eliminate the objects by using
CLEANUP.

When purging an object, CLEANUP attempts to purge the file containing the object
and the description of the object in the catalog.

For a table, index, or view specified in the fileset list, CLEANUP attempts to purge
dependent objects and to mark dependent programs as invalid. This operation is
consistent with those of the DROP and PURGE commands; however, unlike
DROP and PURGE, CLEANUP deletes each object independently of the other
objects.

For an SQL program in a Guardian file specified in the fileset list, CLEANUP
purges the program. CLEANUP cannot operate on an SQL program in an OSS file.

For partitioned objects, CLEANUP processes each partition as a separate object,
purging each one independently of the other partitions. You cannot request a
CLEANUP operation for a single partition.

CLEANUP also processes each dependent object independently. Under unusual
circumstances it is possible to still have pieces of the dependent objects, partitions,
or indexes remaining (after using CLEANUP) that refer to a deleted table.

For indexes, the CLEANUP utility does not update the object version of any
dependent object of the purged index. The recorded object versions of some
objects, therefore, might not be the same as the actual object versions.

For collations, CLEANUP does not purge a collation or its description if the
collation has dependent objects. If qualified-fileset-list includes both a
collation and all its dependent objects, SQL purges the dependent objects first, the
collation and its description. If qualified-fileset-list includes an object
HP NonStop SQL/MP Reference Manual—523352-013
C-23

CLEANUP Exception Cases
that depends on a collation but not the collation, CLEANUP purges the dependent
object and deletes the relationship to the collation.

 CLEANUP cleans up objects only on the local node. To delete all partitions of a
damaged object distributed over several nodes, you must run CLEANUP on each
of the nodes involved.

CLEANUP Exception Cases

In certain situations (described in this text) the catalog does not contain enough
information to enable CLEANUP to remove the catalog description of an SQL object. In
such cases, you can use a licensed SQLCI2 process to manually correct the catalog
and rerun CLEANUP.

If CLEANUP is unable to remove an object's file label, you can use the GOAWAY utility
to remove the file label, but you should use GOAWAY only as a last resort.

Specifically, you cannot use CLEANUP to:

 Purge a view when the entry for the view in the TABLES table cannot be accessed.

 Purge a program when the entry for the program in the PROGRAMS table cannot
be accessed.

 Purge an object that has no file label and no entry in the USAGES table.

 Purge an object when the entry for the object's catalog in the VERSIONS table
cannot be accessed.

 Purge a dependent object that you do not explicitly name in qualified-
fileset-list if USAGES table information about the object is missing or
inaccessible.

 Purge a catalog's name entry in the system catalog's CATALOGS table when the
BASETABS and COLUMNS tables for the catalog are missing.

When purging a catalog, CLEANUP does not remove the catalog's name entry
from the system catalog CATALOGS table until the catalog's BASETABS or
COLUMNS table is purged. If, however, the BASETABS and COLUMNS tables are
already missing when you request the CLEANUP operation, CLEANUP removes
the remaining portion of the catalog but does not delete the name entry in the
system catalog's CATALOG table. To reuse the purged catalog's name, you must
first remove the orphan entry from the system CATALOGS table with a licensed
SQLCI2 process.

Caution. Never use this command to purge SQL objects and catalogs:

SQLCI CLEANUP $*.*.*!, CATALOGS;

This command deletes all SQL objects and catalogs from a node, including the system catalog
and the $SYSTEM.SYSTEM.SQLCI2 program. If you want to remove NonStop SQL/MP from a
node, see the SQL/MP Installation and Management Guide for instructions.
HP NonStop SQL/MP Reference Manual—523352-013
C-24

Example—CLEANUP
 Purge a catalog's name entry in the system catalog's CATALOGS table when a file-
system error occurs during access to the system CATALOGS table. When
CLEANUP is used to purge a catalog, CLEANUP attempts to remove the name
entry for the catalog from the system CATALOGS table. Any failure in this
operation (caused by an event such as a system catalog file being flagged as
CRASHOPEN) does not affect the outcome of the current CLEANUP operation.
CLEANUP reports a warning to the user if the catalog's name entry cannot be
removed because of a file-system error. In this case, you must use a licensed
SQLCI2 process to remove the catalog name entry from the system CATALOGS
table.

 Purge the catalog information and the file label of any protection view whose
underlying table or table partition is missing or inconsistent.

Normally, a protection view is purged when the underlying table is removed by
CLEANUP; however, misuse of the GOAWAY utility on a base table or another
software problem could cause an orphan protection view. In this situation, if the
entire catalog is not being removed, you must use a licensed SQLCI2 process to
remove the catalog description associated with the protection view and use
GOAWAY to remove the file label of the view.

 Purge a dependent partitioned protection view when the catalog tables describing
the view are missing. This situation occurs when a table with a protection view is
partitioned across multiple catalogs, and one of the catalogs in which a secondary
partition is registered is missing when CLEANUP is requested to purge the
partitioned table. In this case, CLEANUP cannot determine the dependents of the
table partition whose catalog is missing because the USAGES table is absent; this
situation can cause an orphaned protection view. To remove the orphaned
protection view, you must use the GOAWAY utility.

 Purge catalog entries for SQL objects or determine dependent objects when the
VERSIONS table is missing or corrupted. The catalog tables themselves, however,
can still be purged in this case.

 Purge catalog information, in certain unusual circumstances, for a partition of a
partitioned index when the file label of the partition is missing. CLEANUP, however,
successfully removes the file labels and catalog descriptions of all other partitions
of the index.

Example—CLEANUP

Suppose that the subvolume $VOL1.PERSNL contains three tables: DEPT, JOB, and
EMPLOYEE. The tables are described in the catalog $VOL2.CAT. If $VOL2 is
removed, the tables cannot be deleted using DROP or PURGE because the catalog in
which they are described is not accessible. You can, however, remove the tables by
entering:

>> CLEANUP ($VOL1.PERSNL.DEPT, $VOL1.PERSNL.JOB,

 $VOL1.PERSNL.EMPLOYEE);
HP NonStop SQL/MP Reference Manual—523352-013
C-25

CLEARONPURGE File Attribute
If $VOL1 is removed (instead of $VOL2, as in the previous example), the catalog
descriptions cannot be removed using DROP or PURGE because the tables are
not accessible. You can delete the catalog descriptions by entering:

>> CLEANUP ($VOL1.PERSNL.DEPT, $VOL1.PERSNL.JOB,

 $VOL1.PERSNL.EMPLOYEE) FROM CATALOG $VOL2.CAT;

If the DEPT, JOB, and EMPLOYEE tables are the only SQL objects on $VOL1, you
can accomplish the same operation:

>> CLEANUP $VOL1.PERSNL.* FROM CATALOG $VOL2.CAT;

CLEARONPURGE File Attribute
CLEARONPURGE is a Guardian file attribute that controls erasure of data from the
disk when a table, index, catalog, or program is purged or dropped. CLEARONPURGE
applies to key-sequenced, relative, and entry-sequenced tables and to indexes.

NO CLEARONPURGE is the default for tables, for catalogs, and for programs that are
explicitly SQL-compiled and stored in Guardian files.

The index default is the table value at index creation.

Considerations—CLEARONPURGE

 When you drop or purge an object with NO CLEARONPURGE, the system
deallocates disk space but does not physically destroy the data in that disk space.
This implementation improves performance by reducing writes to the disk, but
when the disk space is allocated to a new file, other users might be able to read
data left by the object that used the space previously.

CLEARONPURGE increases security for sensitive data or programs by causing
the system to overwrite deallocated disk space.

 If you drop or purge a file with the CLEARONPURGE attribute from within a TMF
transaction, the data is not physically erased from the disk until after the
transaction commits.

CLOSE Statement
CLOSE is a DML and a dynamic SQL statement that closes a cursor in a host
program. After the CLOSE executes, the result table for the cursor (the output that
results from the execution of the SELECT for the cursor) no longer exists.

{ CLEARONPURGE | NO CLEARONPURGE }

CLOSE { cursor }
 { :cursor-variable }
HP NonStop SQL/MP Reference Manual—523352-013
C-26

Considerations—CLOSE
cursor

is the name of an open cursor to close.

:cursor-variable

is a host variable of type CHAR or VARCHAR that stores the name of an open
cursor to close.

Considerations—CLOSE

 There are no authorization requirements for closing a cursor.

 Closing a cursor defined with REPEATABLE access does not affect locks. Locks
on audited tables are released when the TMF transaction finishes or aborts; locks
on nonaudited tables must be released with UNLOCK TABLE.

Closing a cursor defined with STABLE access for an audited table releases the row
lock acquired on the last FETCH only for a row that was not updated or deleted
using the cursor; locks on rows that were updated or deleted are not released until
the TMF transaction ends.

Closing a cursor defined with STABLE access for a nonaudited table releases the
row lock acquired on the last FETCH.

 COMMIT WORK automatically closes cursors that reference audited tables. You
can use CLOSE only on a cursor for an audited table using STABLE or
REPEATABLE access within the same TMF transaction as the last FETCH on the
cursor. (If no FETCH statements execute after the cursor is opened, you can use
CLOSE on the cursor in any transaction or outside of a transaction.)

 If your program is a server and the TMF transaction was started in a requester, the
program must close cursors to release space used by the cursors and to free locks
before returning control to the requester.

 You can use the FREE RESOURCES statement instead of the CLOSE statement
to close all open cursors. After the cursor is closed, you must reopen the cursor
before referring to it in any statement.

Example—CLOSE

This program fragment declares and opens a cursor, uses FETCH to retrieve data,
closes the cursor:

EXEC SQL DECLARE CURSOR1 CURSOR FOR
 SELECT COL1, COL2, COL3 FROM =PARTS
 WHERE COL1 >= :HOSTVAR1 ORDER BY COL1 BROWSE ACCESS;
EXEC SQL OPEN CURSOR1;
EXEC SQL FETCH CURSOR1 INTO :HOSTVAR1, :HOSTVAR2, :HOSTVAR3;
EXEC SQL CLOSE CURSOR1;
HP NonStop SQL/MP Reference Manual—523352-013
C-27

Clustering Keys
Clustering Keys
A clustering key is the user-defined portion of a primary key that is determined partly
by the user and partly by the system. Values for a clustering key do not need to be
unique, as required for user-defined primary keys. Only key-sequenced tables can
have clustering keys.

To define a clustering key, specify one or more columns in the CLUSTERING KEY
clause of the CREATE TABLE statement. SQL adds a column named SYSKEY (data
type LARGEINT SIGNED and ASCENDING sort order) as the first column of the table
and uses a primary key that consists of the clustering key you specified concatenated
with the SYSKEY. (SYSKEY is the first column of the table but the last column in the
primary key.)

When you add a row to the table, the file system automatically generates a unique
8-byte number as a value for the SYSKEY column, enabling SQL to uniquely identify
the row. You cannot specify the value for the SYSKEY column; it is always supplied by
the file system.

The primary key for a table with a clustering key is the column or columns in the
user-defined clustering key followed by the system-defined SYSKEY column. With
SYSKEY added to the clustering key, the primary key has a unique value for each row.
Because the SYSKEY value cannot be specified by an application, do not use a
clustering key if you need a unique key that can be supplied by your application.

Like other columns in a primary key, columns in a clustering key cannot be updated
and cannot contain null values. The combined length of the columns in a clustering
key, not including the 8-byte SYSKEY column, cannot exceed 247 bytes.

The catalog description of a table with a clustering key reflects the presence of the
8-byte SYSKEY column, but SQL does not display SYSKEY as part of the table unless
a query explicitly selects the SYSKEY column. In a table that includes a SYSKEY
column, for example, this SELECT statement does not display SYSKEY:

SELECT * FROM table-name

In a view definition, however, the same SELECT includes SYSKEY in the view
columns unless you are using a protection view. For more information, see Protection
View on page P-32.

Example—CLUSTERING KEYS

This statement declares a table with a clustering key:

CREATE TABLE CK (SYS_ID SMALLINT, CPU SMALLINT, PIN SMALLINT,
 PROG_NAME VARCHAR(34)) CLUSTERING KEY (SYS_ID, CPU, PIN);
HP NonStop SQL/MP Reference Manual—523352-013
C-28

COLLATE Clause
COLLATE Clause
The COLLATE clause associates an existing collation with a character expression, with
a column of a character data type that is being added to a table, or with an index that is
being created.

For information about using the COLLATE clause on a character expression, see
Character Expressions on page C-14.

For information about using the COLLATE clause with a data type specification for a
CREATE TABLE or ALTER TABLE statement, see Data Types on page D-1.

For information about using the COLLATE clause to associate a collation with an
index, see CREATE INDEX Statement on page C-142.

For general information about collations, see Collation Definitions on page C-30.

For information about creating collations, see CREATE COLLATION Statement on
page C-137 and Collation Definitions on page C-30.
HP NonStop SQL/MP Reference Manual—523352-013
C-29

Collation Definitions
Collation Definitions
A collation definition is a description of a collating sequence that can be written in an
EDIT file and processed by the CREATE COLLATION statement to create an SQL
collation.

The simplest possible collation definition consists of an LC_COLLATE section that
includes an ordered list of elements in the collation.

More complex collation definitions can also include comments, redefine the comment
and escape characters, define multicharacter collation elements in the LC_COLLATE
section, define character classes and upshifting rules in the LC_CTYPE section, and
specify a character set for the collation in the LC_TDMCODESET section.

The language in which you express a collation definition is based on the POSIX/XPG4
standard, so you can take a localedef source file from an X/Open Locale Registry and
create an SQL/MP collation definition with only minimal modifications. The language
follows completely different syntactic and semantic rules from SQL statements or
SQLCI commands. One major difference is that case is significant in keywords within
collation definitions.

The remainder of this entry describes the collation definition language, beginning with
rules for comment and escape characters, followed by rules for each of the three major
sections within a collation description (the LC_COLLATE section, the LC_CTYPE
section, and the LC_TDMCODESET section), and ending with examples and special
considerations.

Remember that keywords shown in uppercase must be entered in uppercase, and
keywords shown in lowercase must be entered in lowercase. Also note that angle
brackets appear in several parts of the collation definition language as an element of
the language itself to represent variable items you must supply, as they are commonly
used elsewhere in this documentation.

Comment and Escape Characters in Collation Definitions

The default comment character is the number sign (#).

The default escape character is the backslash (\).

Use the comment character to include comments in a collation definition. All characters
between the comment character and the end of a physical line are handled as a
comment, including the escape character.

You use the escape character to continue a clause over more than one physical line. If
you specify the escape character as the last character in a physical line, this line is
handled as a continuation of the line that ended with the escape character. You also
use the escape character to indicate the beginning of an octal, decimal, or
hexadecimal code that represents a character within the collation, as explained under
The LC_COLLATE Section of a Collation Definition on page C-32.
HP NonStop SQL/MP Reference Manual—523352-013
C-30

Comment and Escape Characters in Collation
Definitions
To change the comment character or escape character, specify a new character in
angle brackets in a comment_char or escape_char clause at the beginning of the
collation definition. For example, this statement changes the comment character to $
and the escape character to @:

comment_char <$>

escape_char <@>

The comment_char and escape_char clauses can appear in any order, but each
clause, if used, must appear before the main sections of the collation definition. Each
can appear only once in the entire collation definition and must be on its own physical
line.

You cannot specify the backslash (\) or the escape character as the comment
character. You cannot specify the number sign (#) or the comment character as the
escape character.

The escape character, the comment character, and these punctuation characters have
special meanings in the collation definition language:

To specify one of these characters as a character in a collation (rather than as a
syntactic element in the collation definition language), precede the character with the
escape character.

If you redefine the comment or escape character as one of the punctuation characters
just listed, an error occurs if you later use portions of the collation definition language
that include these characters as syntactic elements. As a result, you should normally
select characters other than those listed as the comment character or escape
character.

, Comma

; Semi-colon

" Quotation mark

. Period

(Left parenthesis

) Right parenthesis

< Left angle bracket

> Right angle bracket
HP NonStop SQL/MP Reference Manual—523352-013
C-31

The LC_COLLATE Section of a Collation Definition
The LC_COLLATE Section of a Collation Definition

The LC_COLLATE section defines multicharacter elements of the collation and
specifies the order of character and multicharacter elements within the collation. The
LC_COLLATE section is the only required section in a collation definition.

The LC_COLLATE section can appear only once in a collation definition. Each of the
six types of lines that make up the section must begin on a new physical line. Most
types of lines can appear only once in the section. If a specific type of line can appear
more than once, that is noted in its description.

LC_COLLATE

starts the LC_COLLATE section.

collating-element <new-element> from "char char"

defines a new multicharacter element for the collation. The angle brackets are a
required part of the syntax for new-element, but not for the remaining portion of
the clause. For example, either of these clauses defines a new collating element
<CH> from the combination of the characters C and H:

collating-element <CH> from "CH"

collating-element <CH> from "\d67\d72"

The first char in the pair cannot be the space character. In addition, if the first
char in the pair is in octal, hexadecimal, or decimal format and the second char
represents a digit in the corresponding base (octal, hexadecimal, or decimal), you
cannot use simple format for the second char. (For information of each format,
see the description of char on page C-33.)

You can specify multiple collating-element clauses (subject to the general limits
described under Considerations sub-section on page C-38), but each one must
appear on a separate line and all such clauses must precede the order_start
clause.

LC_COLLATE

[collating-element <new-element> from "char char"]

order_start [forward]

element [weight]

order_end

END LC_COLLATE
HP NonStop SQL/MP Reference Manual—523352-013
C-32

The LC_COLLATE Section of a Collation Definition
<new-element>

is a stream of 2 to 30 characters, enclosed in a set of angle brackets, that
represents the new element.

char

is a symbol for a character, from one of the single-byte character sets supported by
NonStop SQL/MP, in one of these forms:

You can use any form shown to define a collation element to NonStop SQL/MP, but
the bracketed form is more portable because it does not depend on a specific
character set, as do the octal, hexadecimal, and decimal forms.

order_start [forward]

starts the ordered list of elements in the collation. The ordered list defines the
elements of the collating sequence in ascending order.

“forward” is an optional keyword that specifies that comparison operations for the
weight level proceed from the start to the end of the string, which is always true for
SQL/MP collations. (SQL/MP collation definitions allow you to include the “forward”
option for compatibility with the POSIX/XPG4 standard.)

element [weight]

specifies an element in the collating sequence and, optionally, a relative position in
the collating sequence to use as a weight for the element.

You can specify multiple element [weight] clauses, subject only to the limits
defined in the Considerations sub-section of this entry.

element

is a char, a previously defined new-element, an ellipsis (...), or the keyword
UNDEFINED.

If element is an ellipsis, it specifies the ordered series of characters in the
character set between the preceding element specified in the collation definition

Form Example*

Simple (any single printable character) A

Bracketed (a single character in angle brackets) <A>

Octal (an escape character followed by two or more octal digits) \101

Hexadecimal (an escape character followed by “x” and two or more
hexadecimal digits)

\x41

Decimal (an escape character followed by “d” and two or more decimal
digits)

\d65

* Each example specifies uppercase A from the ASCII character set (a subset of the nine character sets
ISO88591 through ISO88599).
HP NonStop SQL/MP Reference Manual—523352-013
C-33

The LC_COLLATE Section of a Collation Definition
and this element in the collation definition. Neither the preceding element nor
this element can be an ellipsis.

If element is UNDEFINED, it specifies all characters in the character set not
previously included in the ordered list (either directly or with an ellipsis). You can
use UNDEFINED only as the last element before order_end. The only weight
allowed with UNDEFINED is IGNORE.

weight

is a char or element that appears earlier in the ordered list and that specifies a
relative position in the collating sequence as a weight for the corresponding
element. weight can also be an ellipsis (...) or the keyword IGNORE.

If you omit weight for a collation element, that element represents itself in the
collation sequence.

If weight is an ellipsis, element must also be an ellipsis and each character
specified by the ellipsis in the element column has the unique weight for that
character.

If weight is IGNORE, SQL handles the corresponding element as if it does not
exist during a comparison between two strings. For example, specifying this three
element [weight] pairs:

<a>
 IGNORE
<c>

causes SQL to handle the strings “aacba” and “aaca” as equal in a comparison
that uses the collation.

Note that each character in a given character set (ISO88591, for example), has a
unique value as a physical weight. The values of the physical and logical weights
of a character might differ when a user specifies a weight in a collating sequence.

order_end

ends the ordered list of elements in the collation.

END LC_COLLATE

ends the LC_COLLATE section.
HP NonStop SQL/MP Reference Manual—523352-013
C-34

The LC_CTYPE Section of a Collation Definition
The LC_CTYPE Section of a Collation Definition

The LC_CTYPE section defines character classes and case conversion rules.

The LC_CTYPE section can appear only once in a collation definition. Except for the
line that begins with class-name, each of the five types of lines shown in the syntax
diagram can appear only once in the section. Each type of line must begin on a new
physical line.

LC_CTYPE

starts an LC_CTYPE section.

charclass class-name [; class-name] ...

specifies names for up to 100 user-defined character classes.

NonStop SQL/MP does not use character classes in any way, but does scan the
character class clause for correctness.

Each class-name can contain up to 30 letters or digits, but the first character
must be a letter. class-name must be unique within the collation definition and
cannot be any of these words:

class-name [class-element [; class-element] ...]]

specifies the set of characters from the character set to include in the class
class-name. class-element is normally a char, as defined in the discussion
of the LC_COLLATE section.

LC_CTYPE

[charclass class-name [; class-name] ...

 class-name [class-element[; class-element] ...]]

[toupper (lower,upper) [; (lower,upper)] ...]

END LC_CTYPE

charclass ISO88591 ISO88596 LC_CTYPE

forward ISO88592 ISO88597 LC_TDMCODESET

END ISO88593 ISO88599 toupper

from ISO88594 ISO88599 UNDEFINED

IGNORE ISO88595 LC_COLLATE UNKNOWN
HP NonStop SQL/MP Reference Manual—523352-013
C-35

The LC_CTYPE Section of a Collation Definition
A class-element between two char symbols in the list can also be an ellipsis,
signifying the series of characters between the characters represented by the
char symbols within the character set.

Specify a class-name clause for each class-name you list on the charclass
clause.

toupper (lower, upper) [; (lower, upper)] ...

specifies a set of char pairs that defines the relationship between lowercase and
uppercase characters.

char is defined in the discussion of the LC_COLLATE section. lower specifies a
lowercase char; upper specifies an uppercase char.

If neither char in a pair has appeared previously in the toupper clause, the first
character in the pair is handled as a lowercase character in the collation, and the
second character in the pair is handled as the corresponding uppercase character.

If you omit the toupper clause, SQL associates lowercase characters “a” to “z” with
uppercase characters “A” to “Z”.

You can define a character as the uppercase version of more than one lowercase
letter, or as the lowercase version of more than one uppercase letter. This is
useful, for example, if you define a collation for the French language, in which
accented lowercase letters often lose their accents if upshifted.

If the upper character in a pair appeared in a previous toupper pair, the latter pair
defines an upshift only. For example, in this toupper clause (which defines case
shifting for the French e-grave character):

 toupper (e, E);\
 (\d232, E;)\
 (\d232, \d200) # 232 is e-grave; 200 is E-grave

the toupper pair (\d232, E) specifies that e-grave upshifts to E but does not specify
how to downshift E; the toupper pair (\d232,\d200) specifies that E-grave
downshifts to e-grave, but does not specify how to upshift e-grave.

Similarly, if the lower character in a toupper pair appears in a previous pair, the
latter pair defines a downshift only.

At least one of the characters in each toupper pair must not have appeared in an
earlier pair.

END LC_CTYPE

ends an LC_CTYPE section.
HP NonStop SQL/MP Reference Manual—523352-013
C-36

The LC_TDMCODESET Section of a Collation
Definition
The LC_TDMCODESET Section of a Collation Definition

The LC_TDMCODESET section specifies the character set for the collation. If you do
not specify the LC_TDMCODESET clause, SQL uses the ISO88591 character set for
the collation.

The LC_TDMCODESET section can appear only once in a collation definition. Each of
the three types of lines shown in the syntax diagram can appear only once in the
section. Each type of line must begin on a new physical line.

LC_TDMCODESET

starts an LC_TDMCODESET section.

ISO88591 ... ISO88599

specifies a single-byte character set supported by NonStop SQL/MP.

UNKNOWN

specifies that the character set is unknown.

END LC_TDMCODESET

ends an LC_TDMCODESET section.

LC_TDMCODESET

{ ISO88591 }
{ ISO88592 }
{ ISO88593 }
{ ISO88594 }
{ ISO88595 }
{ ISO88596 }
{ ISO88597 }
{ ISO88598 }
{ ISO88599 }
{ UNKNOWN }

END LC_TDMCODESET
HP NonStop SQL/MP Reference Manual—523352-013
C-37

Considerations—Collation Definitions
Considerations—Collation Definitions

 Collation limits

A collation can have up to:

 500 strings

 100 character classes

 8192 tokens (keywords, identifiers, punctuation elements, integers, and
strings)

 Collations for Pathmaker applications

Collations for Pathmaker-SQL applications must specify the hexadecimal character
ff as the last entry in the collation list.

This requirement exists because Pathmaker generates SQL queries in this format:

SELECT x FROM t WHERE col1 >= :h1

 AND col1 <= :h2

where: h1 is a value entered from a screen, and :h2 is the same value padded with
binary 1s.

Such a query depends on binary 1 having the maximum character value (that is,
having the integer value 255 and being positioned last in the order list). An SQL
collation supports this usage only if hexadecimal ff is the final character in the order
list.

Examples—Collation Definitions

 This example shows an order list from an LC_COLLATE section that includes a
German a-umlaut and preserves the relative positions of <a> and <e> in the order
of the character collation sequence:

LC_COLLATE
order_start forward
 <a>

 <e>

 <z>
 \d196 "<a><e>"
order_end
END LC_COLLATE

 This example demonstrates the use of ellipsis and the effect of specifying weight
for elements in the order list of an LC_COLLATE section.

The ellipsis in the column on the left specifies all the characters between the letters
B and Z (that is, C through Y). The ellipsis in the column on the right specifies that
all the characters between the letters B and Z collate according to their relative
HP NonStop SQL/MP Reference Manual—523352-013
C-38

Examples—Collation Definitions
positions in the collating sequence. The letter b collates the same as itself,
although the weight symbol is omitted.

LC_COLLATE
order_start forward
 A A
 B B

 Z Z
 a A
 b
order_end
END LC_COLLATE

 This example also demonstrates the use of ellipsis and weight in an order list of
an LC_COLLATE section, but uses them differently than the previous example.

The first ellipsis specifies that all the characters between the letters a and z have
unique weights equal to the relative order of the characters. The second ellipsis
specifies that all the characters between the letters A and E have the same weight
as the letter a. The third ellipsis specifies that all the characters between the letters
E and N have unique weights equal to the relative order of the characters.

LC_COLLATE
order_start forward
 <a>
 ...
 <z>
 <A>
 ... <a>
 <E> <e>

 <N> <n>
order_end
END LC_COLLATE

 This sample collation definition includes an LC_COLLATE clause, an LC_CTYPE
clause, and an LC_TDMCODESET clause:
HP NonStop SQL/MP Reference Manual—523352-013
C-39

Examples—Collation Definitions
LC_COLLATE
This case insensitive collating sequence sorts most
of
the accented forms of a, e, i, o, and u equal to the
unaccented form.

Upshift for a, e, i, o, u -grave -acute -circumflex
is A, E, I, O, U. Upshift for e-umlaut is E. Upshift
for i-umlaut is I, and upshift for y-acute is Y.

The actual collating sequence starts here:
order_start forward
 \d032 \d032 # 32 is the space character
 \d160 \d032 # NBSP (non breaking space)
 <0> <0>

 <9> <9>
 <A> <A>

 <Z> <Z>
 <a> <A>

 <z> <Z>
 \d192 <A> # 192 - 195 and 224 - 227
 ... <A> # are forms of "A" and "a"
 \d195 <A>
 \d224 <A>
 ... <A>
 \d227 <A>
 \d199 <C> # 199 = C-cedilla
 \d231 <C> # 231 = c-cedilla
 \d208 <D> # 208 = Eth
 \d240 <D> # 240 = eth
 \d200 <E> # 200 - 203 and 232 - 235
 ... <E> # are forms of "E" and "e"
 \d203 <E>
 \d232 <E>
 ... <E>
 \d235 <E>
 \d204 <I> # 204 - 207 and 236 - 239
 ... <I> # are forms of "I" and "i"
 \d207 <I>
 \d236 <I>
 ... <I>
 \d239 <I>
 \d209 <N> # 209 = N-tilde
 \d241 <N> # 241 = n-tilde
HP NonStop SQL/MP Reference Manual—523352-013
C-40

Examples—Collation Definitions
 \d210 <O> # 210 - 213 and 242 - 245
 ... <O> # are forms of "O" and "o"
 \d213 <O>
 \d242 <O>
 ... <O>
 \d245 <O>
 \d217 <U> # 217 - 219 and 249 - 251
 ... <U> # are forms of "U" and "u"
 \d219 <U>
 \d249 <U>
 ... <U>
 \d251 <U>
 \d221 <Y> # 221 = Y-acute
 \d253 <Y> # 253 = y-acute
 \d255 <Y> # 255 = y-acute
 \d198 \d198 # 198 = AE
 \d230 \d230 # 230 = ae
 \d216 \d216 # 216 = O-slash
 \d248 \d248 # 248 = o-slash
 \d197 \d197 # 197 = A-ring
 \d229 \d197 # 229 - a-ring
 \d222 \d222 # 222 = Thorn
 \d254 \d222 # 254 = thorn
 \d033 <!> # 33 - 47 are symbols
 # encoded in sequences

 \d047 </>
 \d173 <-> # 173 = SHY
 \d058 <:> # 58 - 63 are symbols
 # encoded in sequences
 \d063 <?>
 \d064 <@>
 \d091 <[> # 91 - 96 are symbols
 # encoded in sequences
 \d096 <•>
 \d123 <{> # 123 - 126 are symbols
 # encoded in sequences
 \d126 <~>
 \d127 IGNORE

 \d196 "<a><e>" # A-umlaut sorts as string of a
and e
 \d228 "<a><e>" # a-umlaut sorts as string of a
and e
 \d214 "<o><e>" # O-umlaut sorts as string of o
and e
 \d246 "<o><e>" # o-umlaut sorts as string of o
and e
 \d220v "<u><e>" # U-umlaut sorts as string of u
and e
 \d252 "<u><e>" # u-umlaut sorts as string of u
and e
HP NonStop SQL/MP Reference Manual—523352-013
C-41

Examples—Collation Definitions
 \d223 "<s><s>" # sharp-s sorts as string of s
and s
 \d163 \d163 # upper-half specials and
controls
 \d215 \d215 # multiply sign
 \d159 \d159
 \d170 \d170
 \d186 \d186
 UNDEFINED IGNORE
order_end
END LC_COLLATE

LC_CTYPE
charclass alphas; numerics; hexdigits; specials
alphas <A>;...;<Z>;\
 <a>;...;<z>;\

\d192;...;\d214;\d216;...;\d246;\d248;...;\d255
numerics <0>;<1>;\d050;\x33;\
 <4>;...;<9>
hexdigits <0>;...;<9>;\
 <a>;...;<f>;\
 <A>;...;<F>;
specials
toupper
(<a>,<A>);(,);(<c>,<C>);(<d>,<D>);(<e>,<E>);\

(<f>,<F>);(<g>,<G>);(<h>,<H>);(<i>,<I>);(<j>,<J>);\

(<k>,<K>);(<l>,<L>);(<m>,<M>);(<n>,<N>);(<o>,<O>);\

(<p>,<P>);(<q>,<Q>);(<r>,<R>);(<s>,<S>);(<t>,<T>);\

(<u>,<U>);(<v>,<V>);(<w>,<W>);(<x>,<X>);(<y>,<Y>);\

(<z>,<Z>);(\d224,\d065);(\d225,\d065);(\d226,\d065);\
 (\d227,\d195);(\d231,\d199);(\d236,\d073);\
 (\d237,\d073);(\d238,\d073);(\d239,\d073);\
 (\d241,\d209);(\d242,\d079);(\d243,\d079);\
 (\d244,\d079);(\d245,\d213);(\d249,\d085);\
 (\d250,\d085);(\d251,\d085);(\d255,\d089);\
 (\d229,\d197);(\d248,\d216);(\d230,\d198);\
 (\d254,\d222);(\d228,\d196);(\d246,\d214);\
 (\d252,\d220)
END LC_CTYPE
LC_TDMCODESET
ISO88591
END LC_TDMCODESET
HP NonStop SQL/MP Reference Manual—523352-013
C-42

Collations
Collations

A collation is an SQL object that contains rules for collating sequence (the sequence in
which characters are ordered for sorting), case (whether characters are uppercase or
lowercase), and character class and character string equivalence (whether character
variants should be handled as equivalents or whether character variants should be
handled as one letter).

NonStop SQL/MP supports collations for single-byte character sets, but not for double-
byte character sets. (Double-byte character values always collate in binary order and
cannot be upshifted.)

When you create or index a column that has a character data type and a single-byte
character set, you can specify the name of a collation to associate with the column.
The collation defines the default sort order for values in the column within the table or
index. When you create a column that is part of the primary key for the table and
associate a collation with that column, the collation also affects the storage order for
rows in the table.

You can also specify a collation as part of a character expression that uses single-byte
character strings (for example, an expression that compares two character strings from
the ISO88591 character set), modifying the ordering and equivalence relationships that
determine the result of the expression. (For more information, see Character
Expressions on page C-14.)

A collation name must be a Guardian name.

You create a collation with the CREATE COLLATION statement.

You associate an existing collation with a column or index when you specify the data
type for the column or index at the time you create it with the CREATE TABLE, ALTER
TABLE, or CREATE INDEX statement. For information on the clause that specifies the
data type on these statements, see Data Types on page D-1.

NonStop SQL/MP includes a set of Guardian procedures that you can invoke from host
language programs to compare collations or return information about a collation. For
more information about these procedures, see the SQL/MP Programming Manual for
COBOL or the SQL/MP Programming Manual for C.
HP NonStop SQL/MP Reference Manual—523352-013
C-43

Column Identifier
Column Identifier
A column identifier is used in some SQLCI report writer statements to specify a column
in the result of a SELECT command or a named column in the detail list.

column-name

is the name of a column specified in the select list. You must qualify an unqualified
name if it is the same as any other unqualified name in the select list. For example,
if the select list includes EMPLOYEE.DEPTNUM and DEPT.DEPTNUM, you must
qualify these names when specifying a column identifier. If only
EMPLOYEE.DEPTNUM is in the select list, you can omit the qualifier.

COL number

specifies the column in position number of the select list. The first item in the
select list is COL 1. You can use this form to refer to literals and expressions.

alias

is defined in a NAME command. You can use this form to refer to a name you
assign to a literal or expression. For more information, see Alias on page A-6.

detail-alias

is a detail alias name defined in the NAME clause of a DETAIL command. You can
use a detail alias name as a column identifier in any command except DETAIL. For
more information, see Detail Alias on page D-46.

Example—Column Identifiers

These are different ways to designate the same column:

SELECT DEPTNUM FROM $SQL.PERSNL.EMPLOYEE;

SELECT EMPLOYEE.DEPTNUM FROM $SQL.PERSNL.EMPLOYEE;

SELECT DNUM FROM $SQL.PERSNL.EMPLOYEE;

{ column-name }
{ COL number }
{ alias }
{ detail-alias }
HP NonStop SQL/MP Reference Manual—523352-013
C-44

Columns
Columns
A column is a vertical component of a table, the relational representation of a field in a
record. A column contains one data value for each row of the table.

Each SQL column has a name that is an SQL identifier that is unique within the table
or view that contains the column.

A qualified column name is a column name qualified by the name of the table or view
to which the column belongs, or by a correlation name. If a query refers to columns
that have the same name but belong to different tables or views, you must use a
qualified column name to refer to the columns within the query. The syntax of a
qualified column name is:

If you define a correlation name for a column in the FROM clause of a statement, you
must use that correlation name (called the “explicit correlation name”) if you need to
qualify the column name within the statement.

If you do not define an explicit correlation name in the FROM clause, you can qualify
the column name with the name of the table or view that contains the column (called
the “implicit correlation name”). You can also use the name of a DEFINE that contains
the name of the table or view that contains the column as a qualifier, but you must omit
the equals sign (=) that normally precedes the DEFINE name.

You must also refer to a column by a qualified column name if you join a table with
itself within a query to compare one row of the table with other rows in the same table.

{ table-name }
{ view-name }.column-name
{ correlation-name }
HP NonStop SQL/MP Reference Manual—523352-013
C-45

COLUMNS Table
COLUMNS Table
The COLUMNS table is a catalog table that describes the columns of the tables in the
TABLES catalog table. Table C-3 describes the contents of the COLUMNS table.

Table C-3. The COLUMNS Table (page 1 of 2)

Column Name Data Type Description

1 TABLENAME * CHAR(34) Name of table that contains the column

2 COLNUMBER * SMALLINT
UNSIGNED

Position of column in row (first column is
0)

 3 COLNAME CHAR(30) Column name

 4 COLCLASS CHAR(1) S if SYSKEY
U if user-defined column

 5 DATATYPE CHAR(18) Data type of column
DATETIME for all date-time types
FLOAT for all real types

 6 FSDATATYPE SMALLINT
SIGNED

File system data type of column (system
use only)

 7 COLSIZE SMALLINT
SIGNED

Byte length of data in column

 8 SCALE SMALLINT
SIGNED

Scale factor if column is numeric;
fractional seconds precision if column is
date-time or INTERVAL

 9 PRECISION SMALLINT
SIGNED

Number of digits if column is numeric;
number of digits of binary precision if
column is FLOAT; leading field precision
if column is INTERVAL

10 OFFSET SMALLINT
SIGNED

Reserved for internal use by HP

11 UNIQUEENTRYCOUNT LARGEINT
SIGNED

Number of unique entries in column for
table; set by UPDATE STATISTICS

12 SECONDHIGHVALUE VARCHAR(20) First 20 bytes of second-highest value in
column (ignoring nulls); stores numerics
in ASCII with an appropriate scale (for
example, stores –50,000 as
–50 scale 3); date-time items use local
civil time; set by UPDATE STATISTICS

13 SECONDLOWVALUE VARCHAR(20) First 20 bytes of second-lowest value in
column (ignoring nulls); stored as for
SECONDHIGHVALUE; set by UPDATE
STATISTICS

14 NULLALLOWED CHAR(1) Y if null values allowed
N if not
HP NonStop SQL/MP Reference Manual—523352-013
C-46

COLUMNS Table
The columns TABLENAME through PICTURETEXT (1 through 17) were created in
version 1. The columns DATETIMESTARTFIELD through HEADINGTEXT (18 through

15 DEFAULTCLASS CHAR(1) S if column has system-defined default
U if user-defined default
N if no default
D if null default

16 DEFAULTVALUE VARCHAR(36) Default for column; stored in ASCII if
numeric; blank if system-defined primary
key; NULL if null; CURRENT DATETIME
if date-time type and default SYSTEM

17 PICTURETEXT VARCHAR(64) Corresponding picture of column if
COBOL used to define column; blank for
date-time or real types

18 DATETIMESTARTFIELD SMALLINT
SIGNED

Starting field of date-time or INTERVAL
data type:
1 if year
2 if month
3 if day
4 if hour
5 if minute
6 if second
7 if fraction
0 for other types

19 DATETIMEENDFIELD SMALLINT
SIGNED

Ending field of date-time or INTERVAL
type; same as DATETIMESTARTFIELD

20 DATETIMEQUALIFIER VARCHAR(28) Textual representation of
DATETIMESTARTFIELD and
DATETIMEENDFIELD; blank for other
types

21 UPSHIFT CHAR(1) Y if UPSHIFT specified
N if not

22 HEADING CHAR(1) Y if heading specified
N if not

23 HEADINGTEXT VARCHAR
(132)

Heading string if heading specified;
" " if not

24 CPRULESNAME CHAR(34) Name of collation associated with
column; "" if none

25 CPARRAYENTRY SMALLINT
SIGNED

Reserved for internal use by HP

26 CHARACTERSET CHAR(30) Name of the character set associated
with column

* Indicates primary key

Table C-3. The COLUMNS Table (page 2 of 2)

Column Name Data Type Description
HP NonStop SQL/MP Reference Manual—523352-013
C-47

COMMENT Statement
23) were added in version 2, and the columns CPRULESNAME through
CHARACTERSET (24 through 26) were added in version 300.

The COLUMNS table has a set of column entries for each partition of a partitioned
table.

All CHAR and VARCHAR fields in the COLUMNS table except for HEADING and
HEADINGTEXT use uppercase characters. Guardian names in the table are fully
qualified.

COMMENT Statement
COMMENT is a DDL statement that writes a comment about a collation, column,
constraint, index, table, or view to the catalog. For partitioned objects, COMMENT
adds the comment for each partition. COMMENT can add a new comment or delete,
replace, or add to existing comments.

comment

is the comment, expressed as a string of single-byte or double-byte characters
enclosed in single or double quotation marks. It can be 0 to 132 bytes long.

CLEAR

purges existing comments before adding the new comment.

The other clauses identify the object to which the comment applies.

Considerations—COMMENT

 To use COMMENT on a collation, column, table, or view you must be a
generalized owner of the table or view. To use COMMENT on an index, you must
be a generalized owner of the underlying table. COMMENT also requires authority
to write to the affected catalogs.

Only one DDL statement can operate on a given SQL object (or partition of an SQL
object) at a time. An error occurs if you attempt to execute a COMMENT statement
while another process is executing a DDL operation on the same object. The
specific error depends on the DDL operation involved and the phase of the
operation at which the conflict occurs. (For more information, see DDL (Data
Definition Language) Statements on page D-20.)

 { COLLATION collation }
 { COLUMN column ON { table | view } }
COMMENT ON { CONSTRAINT constraint ON table }
 { INDEX index }
 { TABLE table }
 { VIEW view }

 IS comment [CLEAR]
HP NonStop SQL/MP Reference Manual—523352-013
C-48

Examples—COMMENT
 To delete a comment, replace all existing comments with a comment that consists
of an empty string. For example:

COMMENT ON VIEW PERSNL.MGRLIST IS "" CLEAR;

 SQL stores comments as rows in the COMMENTS catalog table. You access them
by querying the table. Each new comment for an object is stored as a row with a
sequence number one greater than the highest existing sequence number for a
comment on that object.

An object can have 10,000 comments.

Examples—COMMENT

 This statement adds a comment about a constraint:

COMMENT ON CONSTRAINT DATE_ASSRTN ON SALES.ORDERS

 IS "Dates are stored as yymmdd.";

 This statement replaces all comments on a table with a new comment:

COMMENT ON TABLE INVENT.PARTLOC

 IS "This table is partitioned LOC_CODE."

 CLEAR;

 This statement displays comments and help text for a table:

SELECT * FROM SALES.COMMENTS

 WHERE OBJNAME = "\SYS1.$VOL1.SALES.PARTS";
HP NonStop SQL/MP Reference Manual—523352-013
C-49

Comments
Comments
You can include comments in SQL catalogs, in SQLCI input lines, or in embedded SQL
lines.

To add or delete comments about an SQL object from an SQL catalog, use the
COMMENT statement, which is described in a separate entry.

To indicate that an SQLCI line or an embedded SQL line is a comment, precede the
comment with two hyphens (--):

-- comment

SQL considers all text between two hyphens and the end of the physical line to be a
comment. You can include a comment within a statement or command (but not within a
literal) if you use more than one physical line to enter the statement or command.

Example—Comments

Comments are useful in SQLCI input lines if you use command files that contain
SQLCI input. This example shows SQLCI output that echoes comments included in a
command file executed with the OBEY command:

>>OBEY TEST5;
>>-- This command file runs test number 5.
>> VOLUME TESTDB; -- Move to subvolume with test programs.
>>-- Set up DEFINEs for test
>> SET DEFMODE ON;
>> DELETE=*; -- Delete all current DEFINEs.
>> ADD DEFINE =A, FILE $V10.TEST5.FILEA;
>> ADD DEFINE =B, FILE $V10.TEST5.FILEB;
 ...
HP NonStop SQL/MP Reference Manual—523352-013
C-50

COMMENTS Table
COMMENTS Table
The COMMENTS table is a catalog table that stores comments and help text for
objects defined in the catalog. Each comment or help text line is a row of the table.
Table C-4 describes the contents of the COMMENTS table.

COMMENTS was created in version 1 and no new columns have been added in
subsequent versions. HC was added to the list of values for column OBJTYPE in
version 2; CP was added in version 300.

Guardian names in the COMMENTS table are fully qualified and use uppercase
characters. Names in the OBJSUBNAME column also use uppercase characters.

Table C-4. The COMMENTS Table

Column Name Data Type Description

1 OBJNAME * CHAR(34) Name of object commented on; for a constraint,
name of table with constraint

2 OBJSUBNAME * CHAR(30) Name of column if object type is CL or HC;
name of constraint if object type is CN;
otherwise ""

3 OBJTYPE * CHAR(2) CL if column
CN if constraint
CP if collation
HC if help text for column
IN if index
TA if table
VI if view

4 SEQNUMBER * SMALLINT
UNSIGNED

Line number of portion of this comment

 5 COMMENTTEXT VARCHAR(132) Line of comment text

* Indicates primary key
HP NonStop SQL/MP Reference Manual—523352-013
C-51

COMMIT Option
COMMIT Option
COMMIT is an option available on some potentially long-running DDL statements that
specifies the start time, the timeout period for lock requests, and the handling of
retryable errors for the final phase of the operation.

COMMIT also includes a ROLLBACK option that directs SQL to cancel changes to the
database and terminate the operation instead of proceeding with the final phase.

COMMIT is also an option on the CONTINUE statement. CONTINUE continues a DDL
operation that specifies COMMIT BY REQUEST and that is ready to enter its final
phase.

The final phase of a DDL operation (called the commit phase) always requires
exclusive locks on the objects involved. Using the COMMIT option to control the start
time, timeout period, and error handling for the final phase can minimize the
unavailability of applications that use the objects.

COMMIT [WORK]

directs SQL to begin the commit phase as specified by the other options. If you do
not specify other options, SQL uses:

 COMMIT WORK WHEN READY

 TIMEOUT DEFAULT

 ONCOMMITERROR ROLLBACK WORK

{ [WHEN READY] }
{ [] }
{ COMMIT [WORK] [[BY] REQUEST] [on-error] }
{ [] }
{ [{| AFTER time |}] }
{ [{| BEFORE time |}] }
{ }
{ ROLLBACK [WORK] }

time is:

 { mmmbddbyyyy [, hh:nn] }
 { ddbmmmbyyyy [, hh:nn] }
 { hh:nn }

on-error is:

 [{ value [SECOND[S]] }]
 [TIMEOUT { DEFAULT [SECOND[S]] }]
 [{ NEVER }]

 [ONCOMMITERROR commit-option]
HP NonStop SQL/MP Reference Manual—523352-013
C-52

COMMIT Option
WHEN READY

directs SQL to begin the commit phase as soon as the operation is ready to do so.

[BY] REQUEST

directs SQL to return warning 1619 when the operation is ready to commit and
then maintain its ready-to-commit state by performing audit fix-up work as needed
until the user responds with a CONTINUE statement that specifies a new COMMIT
option.

Unless you specified the COMMIT BY REQUEST in effect in an
ONCOMMITERROR option, SQL returns warning 1618 just before warning 1619. If
you specified the COMMIT BY REQUEST in effect in an ONCOMMITERROR
option, SQL returns the error that activated the ONCOMMITTERROR option just
before warning 1619.

See the examples that follow for the text of the warnings.

For more information about user responses, see CONTINUE Statement on
page C-70.

{| AFTER time |}

{| BEFORE time |}

specifies that the operation start the commit phase only during the specified time
period in local civil time.

If the operation is ready to commit before AFTER time, the operation remains
ready to commit until AFTER time, performing audit fix-up work as needed to
remain ready to commit. If the operation becomes ready to commit after BEFORE
time, an error occurs and the operation performs the action specified in the
ONCOMMITERROR option.

AFTER time can be a time in the past but cannot be more than ten days in the
future.

BEFORE time must be a time in the future. If you specify both BEFORE time
and AFTER time, BEFORE time must be greater than AFTER time.

Specify time by using these values as indicated in the syntax diagram:

b is a required space.

mmm is a 3-character month value (JAN, FEB, MAR, APR, MAY, JUN, JUL,
AUG, SEP, OCT, NOV, or DEC).

dd is a 2-digit day value (01, 02, ... , 31).
HP NonStop SQL/MP Reference Manual—523352-013
C-53

COMMIT Option
If you specify a date but omit time, the time 00:00 is used.

If you specify a time with no date, the current date is used.

The default for AFTER time is the current date and time.

The default for BEFORE time is 00:00:2100.

 { value [SECOND[S]] }
TIMEOUT { DEFAULT [SECOND[S]] }
 { NEVER }

sets the time allowed for lock requests to complete during the commit phase:

The default is TIMEOUT DEFAULT.

If the file system cannot grant a lock request from the operation within the specified
time, an error occurs and the operation performs the action specified in the
ONCOMMITERROR option.

ONCOMMITERROR commit-option

specifies a COMMIT option to take effect if a retryable error occurs during the
commit phase.

Retryable errors include file in use, lock request timeouts, resource unavailability,
and BEFORE/AFTER time window misses (error numbers 12, 40, 73, 1057, 1615,
1616, 1617, 1618, 1621, 1622, and 3001 to 3999).

A nonretryable error always causes SQL to cancel changes to the database and
terminate the operation, regardless what you specify in the ONCOMMITERROR
option.

ONCOMMITERROR is recursive because it appears within a COMMIT option and
specifies another COMMIT option. You can specify up to three COMMIT options on
a single statement; specifying four or more causes an error.

The default is ONCOMMITERROR ROLLBACK WORK.

yyyy is a 4-digit year value.

hh is a 2-digit hour value (00, 01, ... , 23).

nn is a 2-digit minute value (00, 01, ... , 59).

value Wait the specified number of seconds (a number in the range
0.01 to 21474836.47); wait indefinitely if value is -1.

DEFAULT Wait 60 seconds.

NEVER Wait indefinitely. Your operation acquires the lock after all
concurrent locking transactions complete.
HP NonStop SQL/MP Reference Manual—523352-013
C-54

Considerations—COMMIT Option
ROLLBACK [WORK]

cancels changes made to the database during the operation and terminates the
operation.

Considerations—COMMIT Option

 Each COMMIT option completely replaces the previous one in effect for the
operation. For example, if you execute a DDL statement that includes these
options:

... WITH SHARED ACCESS NAME OP1

 COMMIT BY REQUEST ONCOMMITERROR COMMIT BY REQUEST;

and later continue the operation with this statement:

CONTINUE OP1 COMMIT;

the ONCOMMITERROR option for the final phase of the operation is the default,
ONCOMMITERROR ROLLBACK WORK.

 For information on the phases of an operation that use the COMMIT options, see
WITH SHARED ACCESS OPTION on page W-4.

Example—COMMIT Option

This example shows an ALTER TABLE operation begun from SQLCI with a COMMIT
BY REQUEST option. When the operation is ready to begin its final phase (possibly
long after the user enters the initial ALTER TABLE statement), the user issues a
CONTINUE statement that includes different COMMIT options.

COMMIT AFTER 02:00 specifies a start time of 2:00 am, when there is unlikely to be
significant activity on the objects involved. TIMEOUT NEVER directs the operation to
wait indefinitely for its lock requests to complete.

The CONTINUE statement also specifies ONCOMMITERROR COMMIT BY
REQUEST so that SQL does not automatically roll back the operation if a retryable
error occurs during the final phase. This specification gives the user an opportunity to
fix problems that cause the error and continue the operation without restarting from the
beginning. (The output in the example indicates that the operation terminates without
error.)

>>ALTER TABLE $HR.PERSONEL.EMP MOVE TO $HDQ.PERSONEL.EMP
+> WITH SHARED ACCESS COMMIT BY REQUEST;

Note. You should normally specify ONCOMMITERROR COMMIT BY REQUEST on the
last commit option you specify for an operation, because that protects the operation from
automatically being rolled back if a retryable error occurs.
HP NonStop SQL/MP Reference Manual—523352-013
C-55

COMMIT WORK Statement
*** WARNING from SQL [1618]: The ALTER_TABLE statement
 is ready to commit.

*** WARNING from SQL [1619]: To continue processing, please
 enter a commit or rollback with a CONTINUE command.
D>

 . The user can respond immediately or enter
 . other commands first. (See
 . CONTINUE Statement on page C-70
 . for restrictions on other commands.)

D>CONTINUE ALTER_TABLE COMMIT AFTER 02:00
+> TIMEOUT NEVER

+> ONCOMMITERROR COMMIT BY REQUEST;
 .
 . Time passes until after 2:00 am,
 . when SQL confirms the operation.

--- SQL operation complete.
>>

Notice that SQLCI prompts with “D>” (the dedicated-operation-in-progress prompt),
rather than the usual “>>”, while the ALTER TABLE operation executes in the
background, resumes the normal prompt after the operation finishes.

COMMIT WORK Statement
COMMIT WORK is a transaction control statement that ends a TMF transaction and
commits any changes to audited objects made during the transaction. COMMIT WORK
releases locks on audited and (unless you specify the AUDITONLY option) nonaudited
objects.

AUDITONLY

directs SQL to retain existing locks on nonaudited objects.

If your program holds locks on nonaudited objects and specifies AUDITONLY, the
program must explicitly use CLOSE, UNLOCK TABLE, or FREE RESOURCES to
close cursors and release locks.

In case of audited tables, COMMIT WORK AUDITONLY does not release locks on
these audited tables if any of the following conditions is true:

 The plan is SERIAL and it does not have a SORT operation but had access
type set to BROWSE ACCESS.

 The plan is SERIAL and it has a SORT operation (irrespective of the access
type).

 The plan is PARALLEL (irrespective of the sort and access type).

COMMIT WORK [AUDITONLY]
HP NonStop SQL/MP Reference Manual—523352-013
C-56

Considerations—COMMIT WORK
To unlock all audited tables in any condition, ADD a DEFINE named
=_SQL_AUDITONLY_CLOSE_CR and run the COMMIT WORK AUDITONLY
command again.

Considerations—COMMIT WORK

 BEGIN WORK starts a transaction. COMMIT WORK or ROLLBACK WORK ends a
transaction. For more information, see TMF Transactions on page T-6.

 COMMIT WORK does not cause a write to disk.

 Within a host program, using COMMIT WORK is equivalent to using these
sequence of statements:

FREE RESOURCES (an SQL statement)

ENDTRANSACTION procedure call

COMMIT WORK returns status information to the SQLCA so you can use
WHENEVER to check for error conditions.

Example—COMMIT WORK

Suppose that your application adds information to the inventory. You have just received
24 terminals from a new supplier and want to add the supplier and update the quantity
on hand. The part number for the terminals is 6402, and the supplier is assigned
supplier number 17. The cost of each terminal is $800.

The transaction must add the supplier to the SUPPLIER table, add the order for
terminals to PARTSUPP, and update QTY_ON_HAND in PARTLOC. After the
INSERT and UPDATE statements execute successfully, you commit the
transaction.

>> VOLUME INVENT;
>> BEGIN WORK;
>> INSERT INTO PARTSUPP VALUES (6402, 17, 800.00, 24);
--- 1 row(s) inserted.
>> INSERT INTO SUPPLIER VALUES (17, "Super Peripherals",
+> "4751 Sanborn Way", "Santa Rosa", "California", "95405");
--- 1 row(s) inserted.
>> UPDATE PARTLOC SET QTY_ON_HAND = QTY_ON_HAND + 24
+> WHERE PARTNUM = 6402 AND LOC_CODE = "G48";
--- 1 row(s) updated.
>> COMMIT WORK;
HP NonStop SQL/MP Reference Manual—523352-013
C-57

Comparison Predicate
Comparison Predicate
The comparison predicate compares the values of two expressions, the values of two
sets of expressions, or the value of an expression and a single value that is the result
of a subquery.

Considerations—Comparison Predicate

 The two row-value-specs must contain the same number of expressions.

Two row-value-specs are equal if all values at the same ordinal position are
equal. Their relation is determined by comparing the values in the first ordinal
position. If these values are equal, the values in the next ordinal position are
compared, and so forth, until the exact relation is determined.

The data type of the first expression must be compatible with the data type of the
second expression. The data type of an expression in the first row-value-spec
must be compatible with the data type of the corresponding expression in the
second row-value-spec.

The subquery result must be a single value. If the subquery evaluates to more than
one row, the comparison results in an error. If no rows satisfy the search condition
of the subquery, the predicate evaluates to null.

You cannot use a comparison predicate in a WHERE, ON, or HAVING clause to
retrieve all rows where expression is null; use the IS NULL predicate instead.

 You can compare two character strings only if both strings are associated with the
same character set.

For comparisons between character strings of different lengths, the shorter string is
padded on the right with spaces (HEX 20) until it is the length of the longer string.

{ expression comparison-op { expression } }
{ { subquery } }
{ }
{ row-value-spec comparison-op row-value-spec }

comparison-op is:

 = Equal
 <> Not equal
 < Less than
 > Greater than
 <= Less than or equal to
 >= Greater than or equal to

row-value-spec is:

 { expression [, expression] ... }
 { (expression [, expression] ...) }
HP NonStop SQL/MP Reference Manual—523352-013
C-58

Considerations—Comparison Predicate
A HEX 20 is always used for padding, regardless of whether a single-byte or
double-byte character set is associated with the expression.

Both fixed-length and variable-length strings are padded in this way. For example,
SQL considers the string “JOE” equal to a value JOE stored in a column of data
type CHAR or VARCHAR of width three or more. Similarly, SQL considers a value
JOE stored in any column of the CHAR data type equal to the value JOE stored in
any column of the VARCHAR data type.

Two strings are equal if all characters in the same ordinal position are equal.
Lowercase and uppercase letters are not considered equivalent unless used with a
collation that equivalences them.

SQL determines collations for character comparisons:

 If neither value is associated with a collation, use binary comparison.

 If only one value is associated with a collation or if both values are associated
with the same collation, use that collation.

 If each value is associated with a different collation but one collation is
specified implicitly and one collation is specified explicitly, use the collation that
is specified explicitly.

You cannot compare character values that are implicitly associated with
different collations unless you explicitly specify a collation for the comparison.

You cannot compare character values that are explicitly associated with
different collations. SQL returns an error if you attempt to do so.

 For comparisons between numbers, decimal-type numbers are converted to binary.
Any exact numeric data type is compatible with all other exact numeric data types.
Floating-point data types are sometimes compatible with exact numeric data types.
Before evaluation, all values in an expression are first converted to the maximum
precision needed anywhere in the expression.

 You can compare only those date-time values with the same range of datetime
fields. To compare two date-time values with a different range of fields, use the
EXTEND function to expand the values.

For example, to compare a DATETIME DAY TO MINUTE column with a
DATETIME YEAR TO HOUR column, expand both values to the range DATETIME
YEAR TO MINUTE for the comparison:

EXTEND (DATE1, YEAR TO DAY) > EXTEND (DATE2, YEAR TO DAY)

For information about the expansion, see EXTEND Function on page E-28.

 For comparisons of INTERVAL values, SQL first converts the intervals to a
common base unit. If no common unit exists, SQL reports an error.

 If a search condition contains a predicate of the form
HP NonStop SQL/MP Reference Manual—523352-013
C-59

Examples—Comparison Predicate
expression comparison-operator subquery

and the subquery returns no values, the predicate evaluates to null.

For example, this predicate evaluates to null because the subquery returns no
value (there is no part number with more than 1500 units in stock):

PARTNUM = (SELECT PARTNUM
 FROM ODETAIL
 WHERE QTY_ORDERED > 1500)

Examples—Comparison Predicate

 These are some simple comparison predicates:

 This comparison predicate evaluates to null for any rows in either CUSTOMER or
ORDERS that contain a null value in the CUSTNUM column:

CUSTOMER.CUSTNUM > ORDERS.CUSTNUM

 This example uses a multivalue comparison predicate to compare multiple values.
Use multivalue predicates whenever possible; they are generally more efficient
than equivalent search conditions without multivalue predicates.

In this example, the multivalue predicate returns information about anyone whose
name follows MOSS, DUNCAN in a list arranged alphabetically by last name and,
for the same last name, alphabetically by first name. REEVES, ANNE meets this
criteria, but MOSS, ANNE does not.

LAST_NAME, FIRST_NAME >= "MOSS" , "DUNCAN"

The multivalue predicate is equivalent to this search condition relating three
comparison predicates:

(LAST_NAME > "MOSS") OR
(LAST_NAME = "MOSS" AND FIRST_NAME >= "DUNCAN")

For guidelines about using multivalued predicates, see the SQL/MP Query Guide.

 This comparison predicate compares two DATETIME values:

EXTEND (TIME1, DAY TO SECOND)
 > EXTEND (TIME2, DAY TO SECOND)

TIME1, defined as DATETIME HOUR TO SECOND, is 09:06:24.

TIME2, defined as DATETIME DAY TO MINUTE, is 15:09:21.

CUSTNUM = 3210 The customer number is equal to
3210.

SALARY > (SELECT AVG (SALARY)
FROM PERSNL.EMPLOYEE)

The salary is greater than the average
salary of all employees.

CUSTNAME = "BACIGALUPI" The customer name is BACIGALUPI.
HP NonStop SQL/MP Reference Manual—523352-013
C-60

Examples—Comparison Predicate
To evaluate TIME1 > TIME2, the range of DATETIME fields for each value is
extended to a range that includes all the fields from both values.

If the predicate is evaluated on June 16, the EXTEND functions return these
values, and the comparison predicate returns TRUE:

16:09:06:24 > 15:09:21:00

If the predicate is evaluated on August 15, the EXTEND functions return these
values, and the comparison predicate returns FALSE:

15:09:06:24 > 15:09:21:00

 This predicate compares two INTERVAL values:

JOB1_TIME < JOB2_TIME

JOB1_TIME, defined as INTERVAL DAY TO MINUTE, is 2 days 3 hours.

JOB2_TIME, defined as INTERVAL DAY TO HOUR, is 3 days.

To evaluate the predicate, the SQL converts the two INTERVAL values to MINUTE
and finds the comparison predicate to be true.

 These examples contain a subquery in a comparison predicate. Each subquery
operates on a separate logical copy of the EMPLOYEE table. The processing
sequence is outer to inner. A row selected by an outer query allows an inner query
to be evaluated and a single value is returned. The next outer query is evaluated
when it receives a value from the inner query.

This query finds all employees whose salary is greater than the maximum salary of
department 1500:

SELECT FIRST_NAME, LAST_NAME
 FROM PERSNL.EMPLOYEE
 WHERE SALARY > (SELECT MAX (SALARY)
 FROM PERSNL.EMPLOYEE
 WHERE DEPTNUM = 1500)

In this query, the innermost subquery determines the average salary of employees
in department 1500. Suppose that the default subvolume is PERSNL.

The first outer query of this subquery determines the minimum salary of employees
from other departments whose salary is greater than the average salary for
department 1500. The main query then finds the names of employees who are not
in department 1500 and whose salary is less than the minimum salary determined
by the first outer subquery.

SELECT FIRST_NAME, LAST_NAME
 FROM PERSNL.EMPLOYEE
 WHERE DEPTNUM <> 1500 AND
 SALARY < (SELECT MIN (SALARY) FROM PERSNL.EMPLOYEE
 WHERE DEPTNUM <> 1500 AND
 SALARY > (SELECT AVG (SALARY) FROM
 PERSNL.EMPLOYEE
 WHERE DEPTNUM = 1500))
HP NonStop SQL/MP Reference Manual—523352-013
C-61

COMPUTE_TIMESTAMP Function
COMPUTE_TIMESTAMP Function
COMPUTE_TIMESTAMP is an SQLCI function that returns a Julian timestamp in
Greenwich mean time for a specified date and time. The data type of the returned
value is NUMERIC(18) or LARGEINT.

COMPUTE_TIMESTAMP works in the report writer commands BREAK FOOTING,
BREAK TITLE, DETAIL, PAGE FOOTING, PAGE TITLE, REPORT FOOTING, and
REPORT TITLE. It also works in the SQLCI commands EXECUTE and SET PARAM.
COMPUTE_TIMESTAMP does not work in DML statements or other SQL statements.

Considerations—COMPUTE_TIMESTAMP

 COMPUTE_TIMESTAMP converts the timestamp from local civil time to
Greenwich mean time.

 If you use one of the first two forms of the argument, the argument must appear on
a single input line.

For the third form, any of the arguments can be either a numeric literal or a column
identifier (but not a numeric expression).

The range of valid dates is from 01/02/0001 00:00:00:000:000 through 12/31/9999
00:00:00:000:000.

 COMPUTE_TIMESTAMP is not compatible with date-time data types. It returns a
value of data type NUMERIC(18) or LARGEINT, not data type TIMESTAMP or
DATETIME YEAR TO FRACTION.

 {mm/dd/yyyy }
 { }
COMPUTE_TIMESTAMP ({mm/dd/yyyy hh:nn:ss:mss:uss})
 { }
 {yyyy, mm, dd }
 { [,hh,nn,ss,mss,uss] }

yyyy Year (1 through 9999, 1-4 digits)
mm Month (1 through 12, 1-2 digits)
dd Day (1 through 31, 1-2 digits)
hh Hour (0 through 23, 1-2 digits)
nn Minute (0 through 59, 1-2 digits)
ss Second (0 through 59, 1-2 digits)
mss Millisecond (0 through 999, 1-3 digits)
uss Microsecond (0 through 999, 1-3 digits)
HP NonStop SQL/MP Reference Manual—523352-013
C-62

Example—COMPUTE_TIMESTAMP
Example—COMPUTE_TIMESTAMP

This SQLCI command sets the parameter ?D to the Julian timestamp for the date and
time in parentheses:

SET PARAM ?D COMPUTE_TIMESTAMP (2/8/93 13:25:00:00:00);

CONCAT Clause
CONCAT is an SQLCI report writer clause that specifies print items to display without
intervening or trailing spaces.

CONCAT works in the BREAK FOOTING, BREAK TITLE, DETAIL, PAGE FOOTING,
PAGE TITLE, REPORT FOOTING, and REPORT TITLE report writer commands.

print-item

is an item to concatenate and, optionally, a set of instructions for formatting the
item.

Except for the AS, STRIP, and SPACE clauses, which are described in this entry,
the descriptions of elements of print-item shown in the syntax box are the
same as the descriptions for elements of print-item in the DETAIL command.
For more information, see DETAIL Command on page D-47.

AS format

is an Aw or a Cn display descriptor that specifies the width of the result of the
concatenated print list.

CONCAT (print-list) [AS format]

print-list is:

 print-item [, print-item]

print-item is:

 { { { column-id } [AS format] } [STRIP] }
 { { { literal } } }
 { { { arith-expr } } }
 { { } }
 { { CONCAT (print-list) [AS format] } }
 { { } }
 { { IF cond-expr THEN (print-list) } }
 { { [ELSE (print-list)] } }
 { }
 { SPACE [number] }
HP NonStop SQL/MP Reference Manual—523352-013
C-63

Considerations—CONCAT
For more information about these descriptors, see Display Descriptors for
Character Items on page A-61. Note that the Cn.[w] format described under AS is
not allowed in the CONCAT clause.

STRIP

directs the report writer to strip trailing blanks from the values in the list before
concatenating them.

SPACE number

specifies the number of spaces between the items in the list. Each space occupies
one single-byte print position, regardless of the character set used.

If you omit this clause, the default is 0. (Note that this default is different from the
default for the SPACE clause on other statements.) If you specify SPACE but omit
number, the default is 1.

Considerations—CONCAT

 Items specified in a CONCAT clause have no default heading. You must specify a
heading if you want one.

 The default format for a item built from concatenated items is An, in which n is the
sum of the widths of the concatenated items.

The width of an item from a table is the width specified in the catalog definition for
the column that contains the item. The width of a string literal is the number of
characters in the string. The report writer estimates and sets a maximum width for
the result of an expression.

 You can concatenate single and double-byte characters, but you should avoid
concatentations that cause double-byte characters to begin or end in the middle of
a word. SQL does not prevent this, but the characters in such strings will be
scrambled if you attempt to print them using SQLCI.

Example—CONCAT

This clause concatenates the CITY and STATE values and restricts the formatted
result to 25 single-byte characters:

CONCAT (CITY STRIP, ", ", STATE) AS A25

Suppose that a column of the report contains these. Note that the entry for North
Carolina is truncated to 25 single-byte characters.

AJO, ARIZONA
NEEDLES, CALIFORNIA
WHEAT RIDGE, COLORADO
SECAUCUS, NEW JERSEY
SWEET HOME, OREGON
WINSTON-SALEM, NORTH CARO
HP NonStop SQL/MP Reference Manual—523352-013
C-64

Concurrency
Concurrency
Concurrency is access to the same data by two or more processes at the same time.
The degree of concurrency available (that is, whether a process that requests access
to data that is already being accessed is given access or placed in a wait queue)
depends on the purpose of the access (read or update), on the access mode, and on
whether virtual sequential block buffering (VSBB) is used for the access.

NonStop SQL/MP provides concurrent database access for most operations,
controlling access through the locking mechanism and the mechanism for opening and
closing tables. For DML operations and for some DDL operations, the access options
and locking options you select affect the degree of concurrency. For more information
about these options, see Access Options on page A-1, Locking on page L-48, and
WITH SHARED ACCESS OPTION on page W-4.

Concurrent access is not possible for all DDL and utility operations, especially those
that change timestamps of SQL objects. To maximize concurrency for operations that
would not otherwise allow it, NonStop SQL/MP performs certain DDL operations in
phases:

 ALTER INDEX, ALTER TABLE, and CREATE INDEX operations that use WITH
SHARED ACCESS allow concurrent access by DML statements throughout all but
a relatively brief commit phase at the end of the operation.

 ALTER TABLE, ALTER INDEX, CREATE CONSTRAINT, UPDATE STATISTICS,
and CREATE INDEX operations without WITH SHARED ACCESS allow
concurrent access by DML statements that use SELECT with BROWSE or
SHARED access during an initial scan phase, but lock out DML accesses during a
later update phase.

These three tables shows the limits on concurrency that are imposed by DDL and
utility operations:

 Table C-5 on page C-65 shows DDL operations that limit (or are limited by) DML
operations. For DDL operations that occur in two phases, the table shows both
scan and update (change timestamp) phases.

 Table C-6 on page C-67 shows the forms of the ALTER statement that change the
timestamp of an object. The concurrency of an ALTER operation depends on
whether ALTER changes a timestamp.

 Table C-7 on page C-68 shows utility operations that limit concurrency.

Table C-5. Summary of Concurrent DDL and DML Operations (page 1 of 3)

DML Operations in Progress

DDL Operations You
Can Start

SELECT
BROWSE

SELECT
SHARED

SELECT
EXCLUSIVE

DELETE/INSERT
UPDATE

ALTER
HP NonStop SQL/MP Reference Manual—523352-013
C-65

Concurrency
WITH SHARED
ACCESS

A A Wait Wait

Timestamp change A1 Wait Wait Wait

No timestamp change A A A Wait

CREATE
CONSTRAINT

A1 Wait Wait Wait

DEFERRED A1 Wait Wait Wait

CREATE INDEX A1 A Wait Wait

WITH SHARED
ACCESS

A A Wait Wait

UPDATE
STATISTICS

A1 Wait Wait Wait

UPDATE
STATISTICS

Scan phase A A Wait Wait

Change timestamp A1 Wait Wait Wait

DML Operations You Can Start

DDL Operations
in Progress

SELECT
BROWSE

SELECT
SHARED

SELECT
EXCLUSIVE

DELETE/INSERT
UPDATE

ALTER

WITH SHARED
ACCESS

A2 A2 A2 A2

Timestamp change A1 Wait Wait Wait

No timestamp chg A A A A

CREATE
CONSTRAINT

Scan phase A A Wait Wait

Change timestamp A1 Wait Wait Wait

DEFERRED

Change timestamp A1 Wait Wait Wait

Scan phase A A A A

CREATE INDEX

WITH SHARED
ACCESS

A2 A2 A2 A2

DML Operations You Can Start

DDL Operations
in Progress

SELECT
BROWSE

SELECT
SHARED

SELECT
EXCLUSIVE

DELETE/INSERT
UPDATE

Table C-5. Summary of Concurrent DDL and DML Operations (page 2 of 3)
HP NonStop SQL/MP Reference Manual—523352-013
C-66

Concurrency
Scan phase A A Wait Wait

Change timestamp A1 Wait Wait Wait

A Allowed

Wait Started operation waits for the operation in progress to complete. The waiting operation might also
time out.

1 DDL operation aborts the DML operation

2 Allowed except during commit phase

Table C-6. ALTER Operation Effects on Timestamps

ALTER Operation
Timestamp
Updated

Timestamp
Unaffected

ALTER INDEX

ADD/DROP PARTITION X

RENAME X

File attributes X

ALTER TABLE

ADD COLUMN X

ADD/DROP PARTITION X

COLUMN HEADING X

File attributes X

RENAME X

Security attributes X

ALTER VIEW

COLUMN HEADING X

RENAME X

Security attributes X

File attributes and whether you can alter them for tables (T) or indexes (I) are:

ALLOCATE T, I

AUDIT T

AUDITCOMPRESS T, I

BUFFERED T, I

LOCKLENGTH T, I

MAXEXTENTS T, I

RESETBROKEN T, I

SERIALWRITES T, I

TABLECODE T, I

VERIFIEDWRITES T, I

Table C-5. Summary of Concurrent DDL and DML Operations (page 3 of 3)
HP NonStop SQL/MP Reference Manual—523352-013
C-67

Effect of VSBB on Concurrency
Effect of VSBB on Concurrency

NonStop SQL/MP provides virtual sequential block buffering (VSBB) for read, update,
and insert operations. Although often more efficient than operations that do not use
VSBB, VSBB can cause increased lock waits and timeouts. In general, if you are
experiencing concurrency problems, use CONTROL TABLE to disable VSBB. You can
use EXPLAIN to determine if SQL is choosing VSBB for your application.

 Sequential read operations

For sequential read operations that use VSBB, the disk process locks all rows
within the block (rather than a row at a time). Consequently, SQL operations that
use VSBB, even with STABLE access, can acquire locks that remain in place
longer than operations that do not use VSBB.

If you are experiencing concurrency problems during read operations, disable
VSBB by specifying this directive:

CONTROL TABLE * SEQUENTIAL READ OFF

 Sequential update operations

For sequential update operations, SQL performs a sequential read before
performing the update. Consequently, the same problem occurs as for sequential
read operations. If you are experiencing concurrency problems during update
operations, disable VSBB by specifying this directive:

CONTROL TABLE * SEQUENTIAL UPDATE OFF

 Sequential insert operations

Table C-7. Limits on Concurrent Utility and DML Operations

DML Operations

Utility Operations
SELECT
BROWSE

SELECT
SHARED

SELECT
EXCLUSIVE

DELETE/INSERT
UPDATE

COPY from a table

Without SHARE option A A A1 N

With SHARE option A A A A

DUP a table A N N N

LOAD from a table

Without SHARE option A A A1 N

With SHARE option A A A A

A Allowed
N Not allowed
1 Intermittent conflict can occur. If a SELECT locks a row for five minutes, the utility access to the row can time
out and abort the utility. Also, a SELECT attempting to access a row can abort if a utility locks the row for longer
than the SELECT time out.
HP NonStop SQL/MP Reference Manual—523352-013
C-68

Constraints
For sequential insert operations, the disk process acquires a range protector lock
on the row that follows the last row inserted. If the last row inserted is at the end of
the file, the range protector lock is placed at the end of the file; consequently, other
servers cannot insert rows at the end of the table or view.

For inserts into a key-sequenced table that uses a SYSKEY column or a timestamp
as the primary key, VSBB is the usual method for insert operations. If concurrent
servers are inserting records into the table, a high percentage of lock waits and
timeouts might occur.

If you are experiencing concurrency problems during insert operations, you should
disable VSBB by specifying this directive:

CONTROL TABLE * SEQUENTIAL INSERT OFF

An application designed for NonStop SQL/MP version 1 might experience
concurrency problems under version 2 or later because NonStop SQL/MP
extended VSBB to update and insert operations in version 2. If a change in
concurrency occurs when you move an application from version 1, check VSBB
usage.

Constraints
Constraints are SQL objects that help to protect the integrity of data in a table by
specifying a condition or conditions that all the values in a particular column of the
table must satisfy.

Adding a constraint allows you to determine whether values exist that violate the
constraint because SQL rejects the constraint if such values exist. Adding the
constraint also keeps such values from being added to the table because SQL rejects
any such values after the constraint is in place.

A constraint name is an SQL identifier.

For more information, see CREATE CONSTRAINT Statement on page C-139.
HP NonStop SQL/MP Reference Manual—523352-013
C-69

CONSTRNT Table
CONSTRNT Table
The CONSTRNT table is a catalog table that describes the constraints placed on
tables. Table C-8 describes the contents of the CONSTRNT table.

The CONSTRNT table was created in version 1 and has not been modified in
subsequent versions.

Guardian names in the CONSTRNT table are fully qualified. All CHAR and VARCHAR
columns in the table use uppercase characters except for lowercase literals specified
as part of search conditions stored in the CONSTRAINTTEXT column. Search
conditions that include literals that specify the system default multibyte character set
are stored as if you specified the actual character set. (For example, if the system
default multibyte character set is Kanji, the literal N”" is stored as _KANJI”....”.)

CONTINUE Statement
CONTINUE is a DDL statement that specifies a COMMIT option for a DDL operation
ready to enter its final phase.

You can execute CONTINUE only after SQL returns warning 1619 (“To continue
processing, please enter a commit or rollback with a CONTINUE statement.”) to
indicate that a DDL operation is ready to enter its final phase. This warning occurs only
if the DDL statement that started the operation specified COMMIT BY REQUEST.

operation-name

is the name of the operation to continue, as specified by the NAME option in the
DDL statement that started the operation.

If you did not specify the NAME option, operation_name is based on the type of
statement that started the operation (ALTER_TABLE, CREATE_INDEX, and so
forth).

Table C-8. The CONSTRNT Table

Column Name Data Type Description

1 TABLENAME* CHAR(34) Name of table that constraint protects

2 CONSTRAINTNAME* CHAR(30) Name of constraint

 3 SEQNUMBER SMALLINT
UNSIGNED

Sequence number of constraint on table (for
system use only)

 4 CONSTRAINTTEXT VARCHAR
(3000)

Text of search condition defining constraint

* Indicates primary key

 { COMMIT [WORK] options }
CONTINUE operation-name { ROLLBACK [WORK] }
HP NonStop SQL/MP Reference Manual—523352-013
C-70

Considerations—CONTINUE
{ COMMIT [WORK] options }
{ ROLLBACK [WORK] }

is a commit option that controls the start time for the final phase of the operation
and specifies the timeout period for lock requests and the handling of retryable
errors during the commit phase of the operation. The commit option can also direct
SQL to cancel changes made by the operation and terminate the operation.

For more information, see COMMIT Option on page C-52.

Considerations—CONTINUE

 You cannot execute the CONTINUE statement within a user-defined transaction. If
you attempt to do so, SQL terminates the operation in effect and rolls back the
transaction, canceling all changes made to the database by either the operation or
the transaction.

 A host language or SQLCI process that receives warning 1619 must respond with
a CONTINUE statement before terminating or taking any action that directly or
indirectly modifies a DEFINE. However, the process can execute other SQL
statements or SQLCI commands before executing a CONTINUE statement, except
for DDL statements or write-access utility operations on source or target objects of
the operation in progress.

If the process terminates or modifies a DEFINE before executing a CONTINUE
statement, the DDL operation in progress stops without being either committed or
canceled. The changes are not made (as they would be if the operation was
committed), and new SQL objects created by the operation are not removed (as
they would be if the operation was canceled).

If this scenario occurs, you must use CLEANUP to remove the new SQL objects
(or ask another user with access to the super ID to do so). If the operation was a
CREATE INDEX operation on a table with the AUDITCOMPRESS file attribute, you
might need to use ALTER TABLE to reset AUDITCOMPRESS.

An SQLCI process that uses a terminal as an IN file protects you from this situation
by not allowing any of these commands (which terminate the SQLCI process or
directly or indirectly modify DEFINEs) between error 1619 and a CONTINUE
statement:

The SQLCI process also behaves as if you specified SET BREAK_KEY OFF,
returning control to the previous Break key owner (usually TACL) if you press the
Break key. (This strategy allows you to return to TACL to execute other commands
before continuing the DDL operation, and then type PAUSE to return to SQLCI and
execute a CONTINUE statement.) In addition, SQLCI prompts with a
dedicated-operation-in-progress prompt (D>) instead of the normal SQLCI prompt
to remind you that an operation in progress is waiting for a CONTINUE statement.

ADD DEFINE ALTER DEFINE CATALOG DELETE DEFINE

EXIT SET DEFMODE SYSTEM VOLUME
HP NonStop SQL/MP Reference Manual—523352-013
C-71

Examples—CONTINUE
An SQLCI process that does not use a terminal as an IN file (for example, one
which reads SQLCI commands from a disk file) also protects you from modifying
DEFINEs but does not protect you from terminating the SQLCI process.
Terminating the SQLCI process while an operation in progress is waiting for a
CONTINUE statement (either by reaching the end of the IN file or by executing an
EXIT command) leaves SQL objects in the inconsistent state described earlier in
this consideration.

A host language process does not protect you against either modifying DEFINEs
or terminating the process unless you explicitly code such protection into the
program. Make sure that a host language process that receives warning 1619
responds with a CONTINUE statement before terminating or taking any action that
modifies a DEFINE.

Examples—CONTINUE

 This SQLCI example cancels a DDL operation about to begin its final phase:

>> ALTER TABLE $D1.MDB.EMP PARTONLY MOVE $D2.MDB.EMP
 WITH SHARED ACCESS NAME MOVE_EMP_TABLE
 COMMIT BY REQUEST;
*** WARNING from SQL [1618]: The MOVE_EMP_TABLE
 statement is ready to commit.
*** WARNING from SQL [1619]: To continue processing, please
 enter a commit or rollback with a CONTINUE statement.
D>CONTINUE MOVE_EMP_TABLE ROLLBACK WORK;
*** ERROR from SQL [-1620]: The ROLLBACK was requested
 as part of the commit criteria. The command has
 been aborted.
>>

 This SQLCI example commits a DDL operation about to begin its final phase. The
example uses a FUP LISTOPENS command to verify that there is no activity on
the partition being moved before issuing a CONTINUE statement.

>> ALTER TABLE $D1.MDB.PART1 PARTONLY MOVE $D2.MDB.PART1
 WITH SHARED ACCESS NAME PART1_MOVE
 COMMIT BY REQUEST;
*** WARNING from SQL [1618]: The PART1_MOVE statement is
 ready to commit.
*** WARNING from SQL [1619]: To continue processing, please
 enter a commit or rollback with a CONTINUE statement.
D>FUP LISTOPENS $D1.MDB.PART1;
D>CONTINUE PART1_MOVE COMMIT WHEN READY
 ONCOMMITERROR COMMIT BY REQUEST;
--- SQL operation complete.
>>

Note. SQL does not prohibit you from executing a transaction between receiving warning
1619 and executing a CONTINUE statement, but you must complete the transaction
before executing the CONTINUE statement. Attempting to execute a CONTINUE
statement within a transaction causes SQL to roll back both the operation you attempted to
CONTINUE and any other operations included in the transaction.
HP NonStop SQL/MP Reference Manual—523352-013
C-72

CONTROL EXECUTOR Directive
CONTROL EXECUTOR Directive
CONTROL EXECUTOR is a DCL directive that allows or prohibits parallel execution of
queries. Parallel execution can decrease the elapsed time for processing a query.

ON

executes queries in parallel using multiple SQL executors if parallel execution is
possible and efficient.

OFF

executes queries using one SQL executor.

OFF is the default.

Considerations—CONTROL EXECUTOR

 CONTROL EXECUTOR affects the way SQL executes DML statements. It does
not affect other types of statements.

In SQLCI, CONTROL EXECUTOR remains in effect until you enter another
CONTROL EXECUTOR directive or end the SQLCI session.

In a host language program, other scoping rules might also apply to CONTROL
EXECUTOR. For more information, see the SQL/MP programming manual for your
host language.

 Specifying ON does not force parallel execution to occur. The optimizer still
analyzes the query to determine whether a parallel plan has a lower cost than a
serial plan. In addition, under certain conditions parallel execution is inappropriate
or not currently supported. These conditions include:

 The query uses a cursor update. Cursor updates are not supported in parallel
because row currency cannot be maintained in a parallel plan.

 The DML statement includes a UNION operation.

 None of the tables in the query are partitioned.

To find out if parallel execution is chosen in a particular case, use EXPLAIN.

Example—CONTROL EXECUTOR

This example shows an equijoin operation:

CONTROL EXECUTOR PARALLEL EXECUTION ON;
SELECT CUSTOMER.CUSTNUM, CUSTOMER.CUSTNAME
 FROM =CUSTOMER, =ORDERS

CONTROL EXECUTOR PARALLEL EXECUTION { ON | OFF }
HP NonStop SQL/MP Reference Manual—523352-013
C-73

CONTROL QUERY Directive
 WHERE CUSTOMER.CUSTNUM = ORDERS.CUSTNUM
 STABLE ACCESS;

CONTROL QUERY Directive
CONTROL QUERY is an SQL compiler directive that controls plans for queries.
Options specify whether to resolve names at execution time or at SQL startup time,
whether to include hash join algorithms among algorithms considered for executing
queries, and whether to optimize query response time for returning a few rows or all
rows.

BIND NAMES { AT EXECUTION | AT STARTUP }

specifies when to resolve names of SQL objects and catalogs in DDL, DML, and
DSL (GET) statements and in DCL statements other than CONTROL TABLE:

The default is BIND NAMES AT STARTUP.

For a cursor, the execution time for the OPEN statement is considered the
execution time for the SELECT statement within the DECLARE CURSOR
statement. (Neither DECLARE CURSOR, FETCH, nor CLOSE causes name
resolution.)

BIND NAMES AT EXECUTION can lead to unnecessary automatic recompilations
unless you specify the CHECK INOPERABLE PLANS option when you explicitly
compile the program. For more information about name resolution and its
relationship to compilation options, see the SQL/MP programming manual for your
host language.

Note that BIND NAMES does not affect the host compiler directive INVOKE or the
DCL statement CONTROL TABLE.

 {| BIND NAMES {AT EXECUTION} | AT STARTUP |}
CONTROL QUERY {| HASH JOIN { OFF | ENABLE | SYSTEM } |}
 {| INTERACTIVE ACCESS { ON | OFF } |}
 {| MDAM { ON | OFF } |}

AT EXECUTION Resolves names just before each statement executes

AT STARTUP Resolves names just before the first SQL statement of the
program executes (static SQL) or when the PREPARE or
EXECUTE IMMEDIATE executes (SQLCI and dynamic SQL)
HP NonStop SQL/MP Reference Manual—523352-013
C-74

CONTROL QUERY Directive
HASH JOIN { OFF | ENABLE | SYSTEM }

specifies whether to allow SQL to use hash joins (joining algorithms based around
hash tables built largely in memory) when the optimizer expects such joins to
improve query performance.

The default for a program or SQLCI session is HASH JOIN SYSTEM. Specify
HASH JOIN ENABLE instead if you want to guarantee that the optimizer always
considers hash joins for your queries, even if HP changes the meaning of the
SYSTEM option.

You should normally leave HASH JOIN set to SYSTEM or ENABLE, because the
optimizer is designed to select a hash join only if the resulting plan improves the
performance of a query; prohibiting hash joins can degrade performance. You
might want to use HASH JOIN OFF when you know that contention for memory is
unusually severe in the processor or processors in which your queries will run.

The CONTROL TABLE directive includes a JOIN METHOD HASH option you can
use to force the optimizer to select a hash join in specific situations. In such cases,
a hash join forced by the CONTROL TABLE directive overrides any CONTROL
QUERY HASH JOIN OFF in effect at the same time.

INTERACTIVE ACCESS { ON | OFF }

specifies whether to optimize response time for returning only the first few rows
found (ON), or for returning all the rows found (OFF).

The default for a program or an SQLCI session is INTERACTIVE ACCESS OFF.

INTERACTIVE ACCESS ON is typically used when you want only the first few
rows in a result and you know an index is available on a column. It directs the
optimizer to use the index.

INTERACTIVE ACCESS ON might not change the optimal plan if a sort is
unavoidable. SQL might perform a sort if a query contains a UNION operator,
DISTINCT clause, aggregate function, ORDER BY clause, or GROUP BY clause.
(To avoid a sort, you can create an index on the appropriate columns, such as the
columns specified in the ORDER BY clause.)

MDAM { ON | OFF }

specifies whether or not to consider the Multidimensional Access Method (MDAM)
for the query.

MDAM ON is the default; it directs SQL to consider using MDAM for the query.
MDAM OFF turns MDAM off for all tables in the query plan.

OFF Prohibits the use of hash joins

ENABLE Allows the optimizer to use hash joins

SYSTEM Currently allows the optimizer to use hash joins (the same as
ENABLE) but is subject to change in future releases
HP NonStop SQL/MP Reference Manual—523352-013
C-75

Considerations—CONTROL QUERY
If you define a table with a clustering key and use a protection view, you will not be
able to use MDAM. For more information, see Protection View on page P-32.

Considerations—CONTROL QUERY

Static control statements affect only those SQL statements that follow them and are
located within the same scope. For example, in the global area or a specific procedure.

Dynamic control statements have temporal scoping. For example, they apply to all
dynamic SQL statements that are prepared by any procedure in the entire program
after the dynamic control statement is executed. The only exception to this rule is a
dynamic CONTROL TABLE TIMEOUT statement that effects on all static statements in
the program, and on all dynamic control statements that are prepared before and after
the execution of the dynamic CONTROL TABLE TIMEOUT statement.

Examples—CONTROL QUERY

 This directive tells SQL to bind names in subsequent statements at execution time
and prohibits the use of hash joins for subsequent queries:

CONTROL QUERY BIND NAMES AT EXECUTION HASH JOIN OFF;

 This directive ensures that SQL considers hash joins for subsequent queries even
if HP changes the default behavior regarding the use of hash joins:

CONTROL QUERY HASH JOIN ENABLE;

 This directive tells SQL to optimize subsequent queries for returning the first rows
in the result:

CONTROL QUERY INTERACTIVE ACCESS ON;

 This directive tells SQL to enable MDAM for the query:

CONTROL QUERY MDAM ON;

 This directive resets all CONTROL QUERY options to the default state:

CONTROL QUERY HASH JOIN SYSTEM INTERACTIVE ACCESS OFF

 BIND NAMES AT STARTUP;
HP NonStop SQL/MP Reference Manual—523352-013
C-76

CONTROL TABLE Directive
CONTROL TABLE Directive
CONTROL TABLE is a DCL directive that specifies performance-related options for
DML accesses to a table or view. CONTROL TABLE affects decisions the SQL
compiler makes about how to execute DML statements.

CONTROL TABLE affects the selection of access paths, join methods, join sequences,
lock types, and block buffering and block splitting algorithms. CONTROL TABLE also
specifies whether to open indexes and partitions at the initial access to a table,
whether to checkpoint unaudited writes, and what to do when encountering locked data
or unavailable partitions.

table

is the name of the table to which the control options apply (or an equivalent
DEFINE), exactly as the table name (or DEFINE name) appears in subsequent
references that are to be affected by the control options.

For example, if table is a fully qualified Guardian name, the control options apply
to subsequent references that use the same fully qualified Guardian name. The

 { table [AS cor] }
CONTROL TABLE { view [AS cor] [BASETABLE btcor] }
 { * }

 [| ACCESS PATH { SYSTEM | PRIMARY | INDEX index } |]
 [| [MDAM ON [USE {value|DEFAULT} [KEY] COLUMN[S]] |]
 [| [ACCESS { SPARSE | DENSE | SYSTEM}]] |]
 [| |]
 [| JOIN METHOD { NESTED | [KEY SEQUENCED] MERGE | |]
 [| HASH | SYSTEM } |]
 [| |]
 [| JOIN SEQUENCE { SYSTEM | sequence-number } |]
 [| |]
 [| MDAM { OFF | ENABLE } |]
 [| |]
 [| OPEN { ALL | ACCESSED } [PARTITIONS] |]
 [| |]
 [| { RETURN | WAIT } IF LOCKED |]
 [| |]
 [| SEQUENTIAL [INSERT|READ|UPDATE] {ON|OFF|ENABLE} |]
 [| |]
 [| SEQUENTIAL BLOCKSPLIT [FOR INSERT] {ON|ENABLE} |]
 [| |]
 [| { SKIP | STOP AT } UNAVAILABLE PARTITION |]
 [| |]
 [| SYNCDEPTH { 0 | 1 } |]
 [| |]
 [| TABLELOCK { OFF | ON | ENABLE } |]
 [| |]
 [| TIMEOUT { value | DEFAULT } [SECOND[S]] |]
HP NonStop SQL/MP Reference Manual—523352-013
C-77

CONTROL TABLE Directive
control options do not apply to references that use only the table name (even if the
name expands to the same fully qualified name) nor to references that use a
DEFINE name (even if the table associated with the DEFINE is the same table).

Similarly, if table is a DEFINE name, the control options apply to subsequent
references that use the same DEFINE name. The control options do not apply to
references that specify a table name, even if the DEFINE value is the table name.

AS cor

specifies that the control options apply only to instances of the table or view with
the correlation name cor. The correlation name can be either implicit or explicit.

view

is the name of a view to which the control options apply (or an equivalent DEFINE),
exactly as the view name (or DEFINE name) appears in subsequent references
that are to be affected by the control options.

For example, if view is a fully qualified Guardian name, the control options apply
to subsequent references that use the same fully qualified Guardian name. The
control options do not apply to references that use only the view name (even if the
name expands to the same fully qualified name) nor to references that use a
DEFINE name (even if the view associated with the DEFINE is the same view).

Similarly, if view is a DEFINE name, the control options apply to subsequent
references that use the same DEFINE name. The control options do not apply to
references that specify a view name, even if the DEFINE value is the view name.

To apply a CONTROL TABLE statement to one or more tables within a view, you
must use either an explicit or implicit correlation name for the table. SQL returns a
syntax error if you specify any other type of name.

BASETABLE btcor

specifies that the control options for view apply only to the table or tables inside
the view that have the correlation name btcor. The correlation name can be either
implicit or explicit.

*

specifies that the control options apply to all tables referenced in the host language
program or SQLCI session. (For specific rules about the scope of the CONTROL
TABLE directive in a host program, see the SQL/MP programming manual for the
host language used in the program.)
HP NonStop SQL/MP Reference Manual—523352-013
C-78

CONTROL TABLE Directive
ACCESS PATH { SYSTEM | PRIMARY | INDEX index }

 [MDAM ON [USE {value|DEFAULT} [KEY] COLUMN[S]]

 [ACCESS { SPARED | DENSE| SYSTEM}]]

controls the access path for a DELETE, SELECT, or UPDATE, or for the SELECT
portion of an INSERT-SELECT.

The default is ACCESS PATH SYSTEM.

To specify different access paths for different occurrences of the same table within
a single query, use correlation names to distinguish occurrences of the table and
use the AS cor clause in CONTROL TABLE directives that specify access paths.

If you specify the INDEX option and index does not exist, SQL issues an error (for
SQLCI or dynamic SQL) or warning (for static SQL) when it compiles the
CONTROL TABLE statement. If index exists, but is not an index for the specified
table, SQL issues an error message later when it compiles a DML statement that
references the table.

The MDAM ON option directs SQL to use MDAM for the specified table and access
path. When you specify MDAM ON, you must specify the PRIMARY or INDEX
index option; MDAM ON is not supported for ACCESS PATH SYSTEM. You must
specify MDAM ON for a specific table; you cannot use this option with CONTROL
TABLE *.

You can specify one or both of these optional clauses with MDAM ON:

SYSTEM directs SQL to choose the access path

PRIMARY specifies the primary access path for the table

INDEX specifies index as the access path

USE communicates to SQL how many columns of the key should be used by
MDAM.

value specifies the number of columns to be used by MDAM.
value must be an integer than zero. If value exceeds the
actual number of key columns defined for the index, SQL
chooses the maximum number of key columns that can be
used by MDAM.
To direct SQL to use the first three columns of an index,
specify this:
USE 3 KEY COLUMNS
The word KEY can be included for clarity, but has no effect.

DEFAULT directs SQL to determine the number of key columns to be
used for MDAM. You can use DEFAULT to reset a previously-
specified USE value.

ACCESS specifies whether a dense or sparse algorithm (or system-determined
algorithm) should be used when accessing columns with MDAM, as
follows:
HP NonStop SQL/MP Reference Manual—523352-013
C-79

CONTROL TABLE Directive
If you specify both USE and ACCESS, the USE option must precede the ACCESS
option. Otherwise, SQL returns an error. If you specify MDAM ON along with
CONTROL QUERY MDAM OFF, SQL returns an error.

When you specify the ACCESS PATH...MDAM ON option, SQL resets any
unspecified options to their default values. If, for example, you change the value of
the USE option and want to preserve a previous ACCESS setting, include the
appropriate ACCESS clause in your new CONTROL TABLE statement.

If you define a table with a clustering key and use a protection view, you will not be
able to use MDAM. For more information, see Protection View on page P-32.

JOIN METHOD { NESTED | [KEY SEQUENCED] MERGE | HASH | SYSTEM }

specifies whether to use the nested, sort merge, key-sequenced merge, or hash
join method when the specified table is the inner table of a join operation. (For
descriptions of these join methods, see the SQL/MP Query Guide.)

JOIN METHOD SYSTEM is the default. SYSTEM directs SQL to select an
appropriate join method for each join of the table or tables specified in the
CONTROL TABLE directive.

If a CONTROL QUERY HASH JOIN OFF directive is in effect, JOIN METHOD
SYSTEM never selects a hash join. If you explicitly request JOIN METHOD HASH,
however, that CONTROL TABLE directive overrides the CONTROL QUERY
directive for the specified table.

SQL cannot perform a hash join on a column or index that has an associated
collation. If you specify JOIN METHOD HASH in such a case, SQL returns
error -6021.

The KEY SEQUENCED MERGE option applies only to candidates for a key-
sequenced merge join operation. If the current composite table and the inner table

USE communicates to SQL how many columns of the key should be used by
MDAM.

DENSE specifies an adaptive dense algorithm for all columns unless
SQL determines that a dense algorithm is not appropriate, as
with character or float data types. DENSE is the preferred
algorithm when column values are generally sequential. SQL
increments each value to obtain the next value.

SPARSE specifies a sparse algorithm. This is the preferred algorithm
when column values are not sequential (such as 25, 135, and
500). SQL uses positioning to obtain the next value of the
column.

SYSTEM specifies that SQL determines the type of algorithm for each
column. You can use SYSTEM to reset a previously specified
ACCESS option.

 For more information about access algorithms, see the SQL/MP Query
Guide.
HP NonStop SQL/MP Reference Manual—523352-013
C-80

CONTROL TABLE Directive
are not in the same order (such as in a repartitioning parallel plan), SQL returns an
error and does not choose the key-sequenced merge join method.

Because JOIN METHOD applies only to the inner table of a join operation, it is
ignored for a table that has a join sequence of 1. JOIN METHOD is normally used
only with the JOIN SEQUENCE option.

JOIN SEQUENCE { SYSTEM | sequence-number }

specifies the sequence in which SQL processes the table for the join.

JOIN SEQUENCE SYSTEM is the default; it directs SQL to determine the
sequence.

sequence-number is an integer that specifies the join sequence for the table
within a SELECT. For example, if you specify sequence-number as 3 for a table,
that table is third in the join sequence for a SELECT.

You do not need to specify sequence-number for each table in a SELECT; SQL
determines the join sequence for tables you do not mention in CONTROL TABLE
directives. For example, if you specify sequence-number as 3 for a table, but
have no CONTROL TABLE directives in effect for other tables, SQL determines the
tables that are first and second in the join order, in addition to those that are fourth,
fifth, and so forth.

sequence-number must be greater than zero and no greater than the number of
tables (or tables with different correlation names) participating in the SELECT. Two
tables (or two occurrences of the same table) cannot have the same join sequence
in a SELECT.

MDAM { OFF | ENABLE }

specifies whether to enable MDAM or turn it off.

You cannot specify MDAM OFF or MDAM ENABLE with the
CONTROL TABLE * command. The MDAM option must be associated with a
specific table.

When you specify MDAM OFF or MDAM ENABLE, SQL sets the ACCESS PATH
MDAM options to their default values, USE DEFAULT KEY COLUMNS and
ACCESS SYSTEM.

If you define a table with a clustering key and use a protection view, you will not be
able to use MDAM. For more information, see Protection View on page P-32.

OFF turns MDAM off for the specified table

ENABLE enables the use of MDAM for the specified table. This is the
default; ENABLE has an effect only if you previously specified
MDAM OFF or ACCESS PATH...MDAM ON for the table.
HP NonStop SQL/MP Reference Manual—523352-013
C-81

CONTROL TABLE Directive
OPEN { ALL | ACCESSED } [PARTITIONS]

specifies whether to defer opening indexes and remaining partitions in a table until
access to the objects is required:

The default is OPEN ACCESSED.

{ RETURN | WAIT } IF LOCKED

specifies action if you attempt to access data with STABLE or REPEATABLE
access and the data is locked by another user. (This option does not apply to
catalog tables.)

The default is WAIT IF LOCKED.

If you specify RETURN IF LOCKED, make sure the TIMEOUT option is large
enough to permit a lock request to be passed to the disk process.

You might want to use RETURN IF LOCKED for converted Enscribe applications
that used alternate locking mode. The operations are similar.

SEQUENTIAL [INSERT | READ | UPDATE] { ON | OFF | ENABLE }

specifies whether the file system should buffer INSERT, READ, or UPDATE
operations. Buffering reduces the number of messages between the file system
and disk process by a factor equal to the blocking factor.

For audited tables, the default is ENABLE. For nonaudited tables, the default is
OFF for INSERT and UPDATE; the default is ENABLE for READ.

Use OFF if operations will not be sequential or if a small but common subset of
rows will be accessed concurrently by more than one process. Use ENABLE if you
are unsure whether operations will be sequential or random.

Under certain conditions, SQL might determine whether or not to buffer operations
regardless of the option you specify. For more information about this and other
aspects of buffering, see the comments on buffered operations under
Considerations—CONTROL TABLE on page C-85.

ALL opens all indexes and partitions the first time any partition is
accessed

ACCESSED opens indexes and partitions only as needed (called “on-demand
opens”)

RETURN returns file-system error 73 (SQL error -8300) to SQLCI or
(through SQLCODE) the host language program.

WAIT waits for data as specified by the TIMEOUT option.

ON buffer operations when possible

OFF do not buffer operations

ENABLE let SQL decide when to buffer
HP NonStop SQL/MP Reference Manual—523352-013
C-82

CONTROL TABLE Directive
SEQUENTIAL BLOCKSPLIT [FOR INSERT] { ON | ENABLE }

specifies the method of splitting blocks when an INSERT requires a block split:

The default is SEQUENTIAL BLOCKSPLIT ENABLE.

The SEQUENTIAL BLOCKSPLIT option is similar to the SETMODE 91,3 option
available for Enscribe files, except that it applies only to tables and views, not to
indexes.

{ SKIP | STOP AT } UNAVAILABLE PARTITION

controls whether SQL continues to process a query when a partition required by
the access plan of the query is unavailable.

This option applies to both partitioned tables and partitioned indexes, but affects
only the main query in a SELECT statement without an INTO clause. (SQL always
stops processing and returns an error when a required partition is unavailable for a
subquery, a SELECT statement in the search condition of an UPDATE or DELETE
statement, a SELECT with an INTO clause, or any other DML or DDL statement.)

The default is STOP AT UNAVAILABLE PARTITION.

Any of these conditions make a partition unavailable:

 The volume is not available (error 66)

 The file is bad (error 59)

 No more opens are permitted on the volume (error 61)

 A path or network error occurs (errors 200-255)

ON splits blocks as if inserts are sequential

ENABLE selects the block split algorithm depending on whether sequential
inserts are detected

Note. Using SEQUENTIAL BLOCKSPLIT ON when inserts are not actually sequential and
in increasing order by primary key (or when intervening records exists in blocks where
inserts occur) can waste substantial disk space.

Use SEQUENTIAL BLOCKSPLIT ENABLE unless you are extremely knowledgeable
about the way block splits are handled and absolutely certain that your table will receive a
series of sequential inserts that the disk process can not recognize as sequential. (For a
discussion of such a case, see information about specifying the sequential blocksplit
algorithm on page C-87.)

SKIP If a required partition is unavailable, issue warning 8239 (Partition
was skipped), open the next partition, and return the next row that
satisfies the search conditions of the query.

STOP AT If a required partition is unavailable, return an error and stop
processing the query.
HP NonStop SQL/MP Reference Manual—523352-013
C-83

CONTROL TABLE Directive
For an example, see information about local autonomy under Considerations—
CONTROL TABLE on page C-85.

SYNCDEPTH { 0 | 1 }

controls the method of writing to the disk process for nonaudited tables and views:

The default SYNCDEPTH for a table or protection view is 1.

(For audited tables, or views with audited underlying tables, SYNCDEPTH is
always 1; directives to change it are ignored.)

TABLELOCK { OFF | ON | ENABLE }

specifies whether to use table locks for subsequently compiled DML statements
that access the table or view:

ENABLE SQL decides whether to use table locks.

TABLELOCK ENABLE is the default.

If you want to increase access performance and are not concerned with
concurrency, use TABLELOCK ON.

If TABLELOCK OFF is in effect and SQLCI or a host language program attempts to
acquire more row locks than allowed, the file system issues error 35 (Lock limit has
been reached).

Note that for nonaudited tables, locking protocol enforced by DP2 is not available.
Therefore, if sequential block buffering (either RSBB or VSBB) is used to access a
nonaudited table, SQL always acquires a table lock, regardless of the setting of the
TABLELOCK option and access option.

TIMEOUT { value | DEFAULT } [SECOND[S]]

specifies the number of seconds allowed to complete file-system requests in DML
operations.

0 prevents the disk process from sending checkpoint messages. Might
slightly improve performance but makes modifications less reliable
because an error during an update that modifies several rows halts
processing of the statement.

1 enables retry of a message to the disk process, if necessary. Each time
data is written to a disk process, the primary disk process sends a
checkpoint message to the backup disk process with a description of the
operation. This is the preferred option for nonaudited tables, although it
is not as safe as auditing.

OFF never use table locks

ON always use table locks
HP NonStop SQL/MP Reference Manual—523352-013
C-84

Considerations—CONTROL TABLE
If the time elapses before the file system can grant a request to lock data, the
statement fails and SQL returns file-system error 40 (Operation timed out) or error
73 (File/Record locked). (This option does not apply to catalog tables.)

If users often encounter timeouts, increase the time. A low timeout value can cause
the application to function well under light load conditions but not under heavy
loads.

Avoid timeouts below 0.25 second because the reliability of the timeout mechanism
decreases as n.nn approaches 0.01.

Considerations—CONTROL TABLE

 During an SQLCI session, CONTROL TABLE affects access to tables and views
from subsequent statements. A particular CONTROL TABLE option remains in
effect until you enter another CONTROL TABLE statement that changes it.

There are several ways to reference a table or view in a CONTROL TABLE
directive: a fully qualified Guardian name, an unqualified Guardian name, a
DEFINE, or a correlation name. The name you use to refer to a table or view in
CONTROL TABLE must exactly match the name you use in the subsequent DML
statement. For example, a CONTROL TABLE directive for Table T has no effect on
a SELECT statement from View V, even when View V is a view that references
Table T. Similarly, $V.SV.TableT is not equivalent to Table T even when Table T
expands to $V.SV.TableT.

A CONTROL TABLE directive that includes at least one option, and that makes a
reference to a specific table or view with an AS or BASETABLE clause, typically
does not affect the values of options set previously with a more general reference
to that table or view. It also does not affect the values of options set with different
specific references to that table or view.

For example, these three directives can coexist if entered in the order shown:

CONTROL TABLE A ACCESS PATH INDEX INDEX1;
CONTROL TABLE A AS B ACCESS PATH INDEX INDEX2;
CONTROL TABLE A AS C ACCESS PATH INDEX INDEX3;

Accesses to table A from references that use correlation names B or C use
INDEX2 or INDEX3, respectively, but other accesses to table A use INDEX1.

The order of the directives shown is significant because a CONTROL TABLE
directive with at least one option that makes a general reference to a table or view
overrides more specific directives that were entered previously. For example, this
sequence of directives causes all accesses to table A to use INDEX1 (even those
from references that use correlation names B or C), because the general reference

value waits the specified number of seconds (a number in the range
0.01 to 21474836.47) or wait indefinitely (if value is -1)

DEFAULT waits 60 seconds
HP NonStop SQL/MP Reference Manual—523352-013
C-85

Considerations—CONTROL TABLE
to table A in the final directive overrides the specific references in the preceding
directives:

CONTROL TABLE A AS B ACCESS PATH INDEX INDEX2;
CONTROL TABLE A AS C ACCESS PATH INDEX INDEX3;
CONTROL TABLE A ACCESS PATH INDEX INDEX1;

In a host language program, specific scoping rules might apply to the use of the
CONTROL TABLE statement. For more information, see the SQL/MP
programming manual for your host language.

 If you specify the CONTROL TABLE directive without options, all previously
specified options for the table or view referenced exactly as specified in the
directive revert to their default values.

In this case, a general reference to a single table does not affect more specific
references to that table:

 Normally, you should allow SQL to determine access paths, join methods, and join
sequences. SQL does this automatically (basing its choices on stored statistics,
assumptions about data distribution, and availability of access paths) unless you
use the ACCESS PATH, JOIN METHOD, or JOIN SEQUENCE options in the
CONTROL TABLE directive.

Use these options only in specific situations in which you know that SQL's current
algorithm does not produce optimal results.

Make sure you are familiar with details of query operations as described in the
SQL/MP Query Guide, and be sure to restore default values for these options
immediately afterwards. For example:

CONTROL TABLE * ACCESS PATH SYSTEM;
CONTROL TABLE * JOIN METHOD SYSTEM JOIN SEQUENCE SYSTEM;

Also, be aware of these special considerations:

 If you specify an access path, a query does not run unless that access path is
available. To allow for alternate paths, code your application to check for errors
and specify an alternate path if the normally-preferred path is not available.
(SQL automatically considers alternate access paths if you do not specify an
access path.)

 Certain errors in the specification of ACCESS PATH, JOIN METHOD, or JOIN
SEQUENCE cannot be detected and reported until an affected DML query is
compiled. For example, if you erroneously specify a JOIN SEQUENCE greater
than the number of tables in the next SELECT that includes the table, an error
occurs in response to the statement that contains the SELECT, not to the
CONTROL TABLE directive.

CONTROL TABLE A; Clear all options set for table A, but not options set for
table A AS B

CONTROL TABLE *; Clear all options set for all tables
HP NonStop SQL/MP Reference Manual—523352-013
C-86

Considerations—CONTROL TABLE
 If an index for an UPDATE includes a column being updated, such as

UPDATE table SET index-column = index-column + 1

specifying that index as an access path can cause an operation that never
ends (the “Halloween problem” in database literature).

SQL issues an error message if it compiles an UPDATE statement that can
lead to the Halloween problem and a CONTROL TABLE directive prevents it
from selecting an alternate access path.

EXPLAIN reports indicate whether ACCESS PATH, JOIN METHOD, and JOIN
SEQUENCE were forced by the user rather than determined by SQL.

 Normally, the disk process automatically optimizes for sequential or nonsequential
inserts by changing its block splitting algorithm for a given table open when it
recognizes a series of sequential inserts. In a few unusual cases, however, the
disk process fails to recognize sequential inserts.

For example, suppose that each of two separate clients sends a series of
sequential records to the same server for insertion in a table. Client A sends
records with primary key values 1, 2, 3, and so forth. Client B sends records with
primary key values 1001, 1002, 1003, and so forth. The server then sends the
interleaved stream of records (1, 1001, 2, 1002, 3, 1003 ...) to the disk process for
insertion in the table.

Because the series of records sent by the server is not sequential, the disk process
fails to recognize that sequential inserts are occurring (although in two separate
sequences within the table) and does not change the block splitting algorithm
accordingly.

If you recognize such a situation you can force the use of the sequential blocksplit
algorithm by including code such as this in the server:

CONTROL TABLE SALES.CUSTOMER SEQUENTIAL BLOCKSPLIT ON;
 ...
INSERT INTO SALES.CUSTOMER ... ; <--- Series of inserts
 ...
CONTROL TABLE SALES.CUSTOMER SEQUENTIAL BLOCKSPLIT ENABLE;

Reset the SEQUENTIAL BLOCKSPLIT option to ENABLE (as in the final directive)
immediately after the sequential inserts. Using the sequential blocksplit algorithm
when inserts are not actually sequential can be extremely wasteful of disk space
and the disk process normally recognizes sequential inserts without forcing.

 Local autonomy means that a query can complete without error even if some
objects or nodes that contribute to the query are unavailable. The SKIP
UNAVAILABLE PARTITION option provides local autonomy for certain situations
by directing SQL to continue processing a query even if partitions required for the
access plan of the query are not available.
HP NonStop SQL/MP Reference Manual—523352-013
C-87

Considerations—CONTROL TABLE
For example, assume that a table, CUSTOMER, has three partitions, with first keys
1, 100, and 200 in the CUSTNUM column, and these DEFINE values:

$VOL1.SALES.CUSTOMER =CUST1
$VOL2.SALES.CUSTOMER =CUST2
$VOL3.SALES.CUSTOMER =CUST3

If partition =CUST2 is unavailable at execution time, the query

>> SELECT * FROM =CUST1 WHERE CUSTNUM BETWEEN 50 AND 300;

normally fails completely. If you specify the SKIP UNAVAILABLE PARTITION
option, however, the query:

 Returns rows with key values between 50 and 99.

 Skips partition =CUST2.

 Returns warning 8239 (Partition was skipped.) with the first row of partition
=CUST3.

 Returns all rows of =CUST3 with key values up to 300.

The query proceeds successfully even if you specified the name of the
unavailable partition in the FROM clause of the statement. (The partition
named in the FROM clause must be available at compile time, however.)

 When an operation is buffered, data is transferred between the file system and the
disk process, a block at a time instead of a row at a time. Buffering improves the
performance of SQL statements by reducing the number of messages exchanged
and the amount of data transferred between the file system and the disk process.

These guidelines apply to sequential block buffering operations enabled by the
SEQUENTIAL option:

 Sequential INSERT buffering applies to INSERT operations performed in
sequential primary key, clustering key, or SYSKEY order.

 Sequential READ buffering applies to explicit or implicit READ operations
performed in sequential primary key, clustering key, SYSKEY, or index order.
Note that buffering of READ operations can occur implicitly with a SELECT,
UPDATE, DELETE, or cursor statement.

 Sequential UPDATE buffering applies to UPDATE WHERE CURRENT
operations and other UPDATE operations performed on a set of sequential
rows.

 For INSERT and UPDATE operations on audited tables, any errors returned by
the disk process in flushing the buffer cause the current transaction to abort.
For nonaudited tables, errors returned by the disk process do not abort the
transaction, but might leave the table and its indexes inconsistent. In this case
SQL reports a possible loss of data by returning file-system error 122.

 After a sequential INSERT or UPDATE operation has begun, any other DML
operation on the same table (directly or through a view using the same
HP NonStop SQL/MP Reference Manual—523352-013
C-88

Considerations—CONTROL TABLE
underlying table) within the same process flushes the buffer and interrupts the
sequential operation.

 For INSERT and UPDATE operations, any errors the disk process encounters
while flushing the buffer are returned to the statement that triggers the buffer
flush, rather than to the INSERT or UPDATE statement. For more information,
see the discussion on page C-90.

 For sequential read operations that use STABLE access, virtual sequential block
buffering (VSBB) can reduce concurrency for other applications that need
exclusive locks on the rows in a block. (STABLE access normally provides greater
concurrency than REPEATABLE access for sequential read operations, but this is
not true with VSBB because the disk process does not release locks on any rows
within a virtual block until the cursor moves to the next block.)

To disable VSBB for read operations, use this directive:

CONTROL TABLE * SEQUENTIAL READ OFF

For inserts into a key-sequenced table that uses a SYSKEY column or a timestamp
as the primary key, VSBB is the usual method for insert operations. If concurrent
applications are inserting into the table, a high percentage of lock waits and
timeouts might occur. (For sequential insert operations, the disk process acquires a
range protector lock on the row that follows the last row inserted. If the last row
inserted is at the end of the file, the range protector lock is placed at the end of the
file, preventing other servers from inserting rows at the end of the table or view.)

To disable VSBB for INSERT operations, use this directive:

CONTROL TABLE * SEQUENTIAL INSERT OFF

 SQL buffers INSERT or UPDATE operations on nonaudited tables only if the
SEQUENTIAL option is ON and SYNCDEPTH is 0. (You can specify both these
options with CONTROL TABLE.) For INSERT operations, you must also set the
TABLELOCK option to ON (again, with CONTROL TABLE), or use a LOCK TABLE
statement that specifies IN EXCLUSIVE MODE. For an INSERT operation, specify
FOR REPEATABLE ACCESS also.

To ensure data integrity you must use the FREE RESOURCES statement to flush
buffers for nonaudited tables before you exit SQLCI or the host program. For host
programs, any flush errors are returned to the SQLCA.
HP NonStop SQL/MP Reference Manual—523352-013
C-89

Considerations—CONTROL TABLE
 The conditions listed in this table trigger flushing the INSERT/UPDATE buffer or
invalidating the READ buffers. If a problem such as a path error or disk full error
occurs during the flush, the disk process returns the error.

The buffer is flushed to the disk process, which puts the buffer in cache and writes
the data to disk when the table is closed or, for audited tables, when the
transaction commits. For nonaudited tables, the buffer is written to disk when the
FREE RESOURCES statement executes.

 SQL does not buffer operations if any of the conditions described in the table
occur.

Condition

Flushes Buffer
for INSERTs
and UPDATEs

Invalidates
Buffer for
READs

A DML operation occurs on a table, interrupting a
sequential operation that has already begun.

X X

The buffer is full. X N.A.

A cursor is opened or closed on a table or view
with a sequential operation running.

X N.A.

A TMF transaction completes on an audited
table.

X X

A server replies to a requester. X X

A FREE RESOURCES statement is executed by
the current process.

X X

The table is closed. X X

The current TMF transaction is not the same as
the TMF transaction corresponding to the active
INSERT or UPDATE operations.

X X

Condition

Prevents
Buffering
for UPDATES

Prevents
Buffering
for INSERTS

A table is not a base table (operations for index
maintenance are not buffered).

X X

A table has at least one cursor defined by the
same process.

N.A. X

A relative or entry-sequenced table is indexed. N.A. X

An operation on a relative table does not occur at
end-of-file.

N.A. X

An operation on a relative or entry-sequenced
table includes the RETURNING clause with a
host variable.

N.A. X

A nonaudited table has one or more indexes, and
the operation involves variable length character
columns.

X N.A.
HP NonStop SQL/MP Reference Manual—523352-013
C-90

Considerations—CONTROL TABLE
 The optimizer often chooses virtual sequential block buffering (VSBB) when
compiling a cursor definition. (You can determine whether SQL used VSBB in a
specific case by looking at the EXPLAIN output for the cursor.)

During a cursor session, conflicting DML operations can invalidate the cursor's
buffering for the table. Each invalidation forces the next FETCH operation to send
a message to the disk process to retrieve a new buffer; this can degrade
performance substantially.

These operations invalidate the buffer for cursor operations:

 Any INSERT on the same table by the current process

 A stand-alone UPDATE or DELETE on the same table (directly or through a
protection view) from within the same process

 An UPDATE WHERE CURRENT or DELETE WHERE CURRENT using a
different cursor to access the same table (directly or through a view) from
within the same process

For example, a loop containing both a FETCH statement and a stand-alone
UPDATE or DELETE statement on the same table would invalidate the cursor's
buffer on every loop iteration. You can change your program logic to minimize
or eliminate the performance penalty because of conflicts by doing:

 Avoid INSERT operations within a cursor session.

 Use UPDATE WHERE CURRENT or DELETE WHERE CURRENT operations
against the current cursor rather than stand-alone UPDATE or DELETE
operations.

A table has more than one cursor defined by the
same process, or an alternate access path is
selected.

X N.A.

SEQUENTIAL READ OFF is in effect for the
table.

X N.A.

SEQUENTIAL UPDATE OFF is in effect for the
table.

X N.A.

SEQUENTIAL INSERT OFF is in effect for the
table.

N.A. X

An INSERT or UPDATE operation is mixed with
other operations instead of occurring in
sequence.

X X

The INSERT or UPDATE operation is not in
sequential order.

X X

Condition

Prevents
Buffering
for UPDATES

Prevents
Buffering
for INSERTS
HP NonStop SQL/MP Reference Manual—523352-013
C-91

Examples—CONTROL TABLE
 Avoid having a process open multiple cursors on a table when any of the
cursors is used to update that table. If this is unavoidable, consider using
CONTROL TABLE SEQUENTIAL READ OFF.

Examples—CONTROL TABLE

 This example sets SYNCDEPTH to 0 for the nonaudited table DEPT. You might
use such a directive before selecting and displaying all rows of the table, for
example, but not before a query that changes data.

CONTROL TABLE PERSNL.DEPT SYNCDEPTH 0;

 This example requests buffering for sequential INSERT operations on table
CUSTOMER:

CONTROL TABLE SALES.CUSTOMER SEQUENTIAL INSERT ON;

 This example forces SQL to choose a specific access plan for a query that
accesses a view created:

CREATE VIEW EMPDEPT AS
SELECT EMP_NAME, EMP_NO, E.DEPT_NO, DEPT_NAME, DEPT_LOCN
 FROM EMPLOYEE E, DEPT D
 WHERE E.DEPT_NO = D.DEPT_NO;

The CONTROL TABLE directives force a join sequence and access path for table
EMPLOYEE and SALARY, leaving SQL to choose the join sequence for table
DEPT. Because the query involves only three tables, the CONTROL TABLE
directives implicitly force DEPT to have a join sequence of 1.

CONTROL TABLE EMPDEPT AS ED BASETABLE E
 ACCESS PATH INDEX IEMP
 JOIN SEQUENCE 2;
CONTROL TABLE SALARY
 ACCESS PATH PRIMARY
 JOIN SEQUENCE 3;
SELECT * FROM EMPDEPT ED, SALARY SA
 WHERE ED.EMP_NO = SA.EMP_NO
 AND ED.DEPT_NAME = "Engineering";

The use of the correlation name ED for the view is not necessary but is included in
the first CONTROL TABLE directive to demonstrate that a correlation name can be
included for views. The qualification of “BASETABLE E” in the first CONTROL
TABLE directive is necessary, however; without it, the CONTROL TABLE options
would apply to both the EMPLOYEE and DEPT tables of the view EMPDEPT, and
an error would occur.

 This example uses CONTROL TABLE to specify locks. The first directive requests
a table lock on table CUSTOMER. These statements lock and unlock the
nonaudited table DEPT, using CONTROL TABLE directives with the LOCK and
HP NonStop SQL/MP Reference Manual—523352-013
C-92

Examples—CONTROL TABLE
UNLOCK statements to make sure the compiler considers the locking mode when
selecting an access path for DEPT.

CONTROL TABLE SALES.CUSTOMER TABLELOCK ON;
LOCK TABLE PERSNL.DEPT IN EXCLUSIVE MODE;
CONTROL TABLE PERSNL.DEPT TABLELOCK ON;
 ...
UNLOCK TABLE PERSNL.DEPT;
CONTROL TABLE PERSNL.DEPT TABLELOCK ENABLE;

 This example shows how to force SQL to use a specific index, join order, and join
method for a single SELECT statement, then return control over access path, join
sequence, and join method for future SELECT operations to SQL. The example
uses table EMPLOYEE with a primary key of EMP_NO and an alternate index,
IEMP, on column DEPT_NO.

CONTROL TABLE EMPLOYEE AS E1 ACCESS PATH INDEX IEMP
 JOIN SEQUENCE 1;
CONTROL TABLE EMPLOYEE AS E2 ACCESS PATH PRIMARY
 JOIN SEQUENCE 2
 JOIN METHOD NESTED;
SELECT E1.EMP_NAME, E1.DEPT_NAME, E2.EMP_NAME, E2.DEPT_NAME
 FROM EMPLOYEE E1, EMPLOYEE E2
 WHERE E1.DEPT_NO = "9999" AND E1.MGR_ENO = E2.EMP_NO;
CONTROL TABLE * ACCESS PATH SYSTEM
 JOIN SEQUENCE SYSTEM
 JOIN METHOD SYSTEM;

The CONTROL TABLE directives that precede the SELECT force SQL to use two
different access paths to access two different instances of table EMPLOYEE
(IEMP for E1, and primary access for E2). The statements also force SQL to use a
specified join order for processing the data, and to use a nested join method to join
the second table (E2) with the first (E1).

 This example forces MDAM with 3 key columns for table T1:

CONTROL TABLE T1 ACCESS PATH PRIMARY MDAM ON USE 3 COLUMNS;

 This example cancels all previously set CONTROL TABLE options and uses only
the default values for the options:

CONTROL TABLE *;
HP NonStop SQL/MP Reference Manual—523352-013
C-93

CONVERT Command
CONVERT Command
CONVERT is an SQLCI utility that creates an EDIT file containing SQL commands to
convert an Enscribe file described in a Data Definition Language (DDL) dictionary to an
SQL table described in a specific catalog. You can invoke the EDIT file commands by
using the OBEY command to create:

 a table containing rows that correspond to the record definition of the Enscribe file
and columns that correspond to the fields in each record.

 indexes on the table that correspond to the alternate keys associated with the
Enscribe file.

If SMF is installed on your node, files you specify in CONVERT syntax cannot be on
any $*.ZYS*. subvolumes.

CONVERT RECORD ddl-record-name TO TABLE table-name

 [[,] convert-option] ... ;

convert-option is:

{ MAP NAME[S] { map } }
{ { (map [, map] ...) } }
{ }
{ CATALOG[S] { catalog-spec }
{ { (catalog-spec [, catalog-spec]...) }
{ }
{ COMMENTS }
{ }
{ DICTIONARY subvol }
{ }
{ FILE IS enscribe-file }
{ }
{ { LOAD | NO LOAD } }
{ }
{ { PART | NO PART } }
{ }
{ SOURCE edit-file [CLEAR] }
{ }
{ { VARCHARS | NO VARCHARS } }
{ }
{ REDEFINE (redef-spec [, redef-spec] ...) }
{ }
HP NonStop SQL/MP Reference Manual—523352-013
C-94

CONVERT Command
ddl-record-name

is a DDL data name that identifies the DDL record definition for the file to convert.
The record definition must be in the DDL dictionary specified by the DICTIONARY
clause (or, if the DICTIONARY clause is omitted, the DDL dictionary on the default
subvolume).

table-name

specifies a Guardian name (or an equivalent DEFINE) for the new table.

{ CHARACTER { ISO88591 } }
{ { ISO88592 } }
{ { ISO88593 } }
{ { ISO88594 } }
{ { ISO88595 } }
{ { ISO88596 } }
{ { ISO88597 } }
{ { ISO88598 } }
{ { ISO88599 } }
{ { KANJI } }
{ { KSC5601 } }
{ { UNKNOWN } }
{ }
{ NATIONAL { ISO88591 } }
{ { ISO88592 } }
{ { ISO88593 } }
{ { ISO88594 } }
{ { ISO88595 } }
{ { ISO88596 } }
{ { ISO88597 } }
{ { ISO88598 } }
{ { ISO88599 } }
{ { KANJI } }
{ { KSC5601 } }
{ { UNKNOWN } }
{ { DEFAULT } }
map is:

 simple-fileset-list TO files

catalog-spec is:

 catalog-name [FOR simple-fileset-list]

redef-spec is:

 original-qualified-name AS redefined-qualified-name
HP NonStop SQL/MP Reference Manual—523352-013
C-95

CONVERT Command
MAP NAME[S] { map }
 { (map [,map] ...) }

overrides the default names (and locations) used to generate names for secondary
partitions of tables and for indexes.

map is:

simple-fileset-list TO files
simple-fileset-list

is a simple fileset list that specifies the secondary partitions and alternate-key
files of the Enscribe file to map. For more information about simple fileset lists,
see Filesets on page F-29.

TO files

specifies the names and locations for the new partitions and indexes.

files is a Guardian name that can optionally contain an asterisk to indicate
that the portion of the name in which the asterisk appears should be the same
as the name of the corresponding portion of the source element in
simple-fileset-list. For example,

$VOL1.SUBV2.* TO *.PERSNL.*

specifies that the partitions or indexes will be on the volume and subvolume
$VOL1.PERSNL and will have the same names as the source objects.

If you specify more than one map and one conflicts with another, CONVERT uses
the first map.

If you do not specify the MAP NAMES option, CONVERT produces a command to
create a secondary partition on the same volume and subvolume as its
corresponding Enscribe file partition. CONVERT produces a command to create
indexes on the same volume and subvolume as the new table.

CATALOG[S] { catalog-spec }
 { (catalog-spec [, catalog-spec]...) }

specifies the catalogs in which to describe the target objects. catalog-spec is:

catalog-name [FOR simple-fileset-list]

catalog-name identifies the catalog to hold the descriptions of the objects.

FOR simple-fileset-list specifies which target objects to describe in the
catalog. Use the names of the converted objects, not the source objects or files. If
you omit this clause, the catalog is used for the descriptions of all target objects.

If you omit the CATALOGS option, SQL describes the new table and indexes in the
current default catalog.
HP NonStop SQL/MP Reference Manual—523352-013
C-96

CONVERT Command
COMMENTS

writes all qualifier names and their corresponding level numbers as comments in
the EDIT file specified in the SOURCE option (or the default EDIT file, CNVSRC).

DICTIONARY subvol

specifies the name of the subvolume (or an equivalent DEFINE) that contains the
DDL record definition ddl-record-name.

The default is the current default subvolume.

FILE IS enscribe-file

specifies the name (or an equivalent DEFINE) of the Enscribe file to convert.

The default is the file name in the FILE IS clause of the DDL record definition name
that follows the keyword RECORD.

{ LOAD | NO LOAD }

specifies or inhibits loading data from the file to be converted into the table. If you
specify NO LOAD, you can use the LOAD command later to load the data.

The default is LOAD.

{ PART | NO PART }

specifies whether to convert a partitioned Enscribe file to a partitioned table or a
nonpartitioned table.

The default is PART.

SOURCE edit-file [CLEAR]

identifies an EDIT file to contain the SQL commands. You can examine these
commands and modify them if necessary before executing the file with OBEY.

edit-file is the name of the file. CONVERT creates the file if it does not exist.

CLEAR clears all data from the file before adding the command. If you omit
CLEAR, CONVERT appends commands to the end of the file.

The default edit-file is CNVSRC.

{ VARCHARS | NO VARCHARS }

specifies or inhibits conversion of the special DDL group that represents
varying-length strings to the SQL VARCHAR data type:

VARCHARS converts the two elementary fields to one column with data
type VARCHAR

NO VARCHARS converts the two elementary fields to one column with data
type CHAR
HP NonStop SQL/MP Reference Manual—523352-013
C-97

CONVERT Command
The default is VARCHARS.

REDEFINE (redef-spec [, redef-spec] ...)

specifies that original items (groups or fields) are to be converted to columns
based on redefinitions of the items. Unless you include the REDEFINE option, all
items are converted according to the definition of the original items, and the
REDEFINES clause in the DDL record definition is ignored.

redef-spec is:

original-qualified-name AS redefined-qualified-name
original-qualified-name

identifies an original field or group in a DDL record. The name must be qualified by
the group names at all preceding levels; for example,
CUSTOMER.ADDRESS.STREET-ADDRESS is the qualified name for the
STREET-ADDRESS field of the ADDRESS group. The ADDRESS group is in the
CUSTOMER group.

redefined-qualified-name

identifies a redefined field or group that corresponds to the original field or group.
The name must be qualified by the group names at all preceding levels; for
example, CUSTOMER.ADDRESS.STREET-DETAIL is the qualified name of the
STREET-DETAIL field that redefines the STREET-ADDRESS field.

When the source field is converted, the conversion is based on the redefinition that
you specify.

If the item is redefined as a group, the elementary fields of the group are converted
to columns. When the redefined item is shorter than the original item, the resulting
columns are the size of the redefined item; CONVERT does not pad the columns
with blanks.

CHARACTER { ISO88591 | ISO88592 | ... | UNKNOWN }

specifies the character set for PIC X, PIC A, and TYPE CHARACTER fields. If you
omit the CHARACTER option, all items are converted according to the definitions
of the original items.

The character set can be one of the single-byte character sets ISO 8859/1 through
ISO 8859/9, or one of the double-byte character sets Kanji or KSC5601. (For more
information, see Character Sets on page C-17.)

UNKNOWN specifies that the character set is unknown, and specifying this option
is equivalent to omitting the CHARACTER clause. SQL uses the data as 8-bit data.
HP NonStop SQL/MP Reference Manual—523352-013
C-98

CONVERT Behavior
For more information about how the conversion is performed, see Conversion of
DDL Elementary Items on page C-103.

NATIONAL { ISO88591 | ISO88592 | ... | DEFAULT }

specifies the character set for PIC N fields. If you omit the NATIONAL option, all
items are converted according to the definitions of the original items.

The character set can be one of the single-byte character sets ISO 8859/1 through
ISO 8859/9, or one of the double-byte character sets Kanji or KSC5601. (For more
information, see Character Sets on page C-17.)

UNKNOWN specifies that the character set is unknown, and specifying this option
is equivalent to omitting the CHARACTER clause. SQL uses the data as 8-bit data.

DEFAULT specifies the system default multibyte character set.

For more information about how the conversion is performed, see Conversion of
DDL Elementary Items on page C-103.

CONVERT Behavior

CONVERT writes these to the EDIT file:

 A section header in the form ?SECTION CREATE_table-name

 A CREATE TABLE command that defines a table compatible with the DDL record
definition for the Enscribe file

 A CREATE INDEX command for each alternate-key file associated with the
Enscribe file

 A section header in the form ?SECTION LOAD_table-name

 A LOAD command (which includes the REDEFINE option you specify in the
CONVERT command) that loads data from the Enscribe file into the empty table
and data from the alternate-key files associated with the Enscribe file into the
empty indexes

CONVERT resolves any DEFINE names you specify in the CONVERT command and
uses the actual file names in the commands it writes. Except for table name in
?SECTION headers, all file names are fully qualified. You can examine and modify the
text of the file if necessary. You use OBEY to execute the commands in the file.

Because a load operation cannot run within a TMF transaction, you cannot execute the
OBEY command generated by CONVERT within a user-defined transaction. The
catalog manager defines transactions while the CREATE commands are executing.
For more information about how audited tables are loaded, see LOAD Command on
page L-18.

CONVERT requires authority to read the DDL dictionary and authority to write to the
EDIT file that receives the generated commands.
HP NonStop SQL/MP Reference Manual—523352-013
C-99

Enscribe Files and DDL Record Definitions
Executing the EDIT file with OBEY requires authority to read the EDIT file; authority to
write to the affected catalogs (for creating the table and indexes); authority to read the
DDL dictionary, the Enscribe source file, and the catalog in which the table is
described; and authority to read and write to the table (for loading the table and
indexes).

If you press the Break key while the CONVERT command is executing and the
BREAK_KEY option is ON, SQLCI stops execution, displays a message stating that
the command was terminated by a Break, and displays the standard SQLCI prompt.
The EDIT file is closed. If the BREAK_KEY option is OFF, control returns to the
previous Break key owner (usually the command interpreter process).

The CONVERT utility does not check any version information; therefore, the versions
of the table and any indexes you are creating cannot be greater than the version of the
catalog in which they will be registered.

CONVERT supports the HEADING, UPSHIFT, and HELP TEXT attributes.

Enscribe Files and DDL Record Definitions

CONVERT operates on Enscribe files only. CONVERT derives a table's file
organization and primary key location from the Enscribe file and derives column names
and column data types from the DDL record definition for the Enscribe file. CONVERT
also generates commands to create indexes on the table from the alternate key
specifications in the Enscribe file.

When a structured Enscribe file is converted to a table, the table is assigned the same
file organization as the file: key-sequenced, relative, or entry-sequenced. An
unstructured file is converted to an entry-sequenced table.

The file must have an associated DDL record definition. The actual file organization
and record length must be the same as the specifications for these attributes in the
DDL record definition.

If a DDL record definition defines an elementary item or group by means of a DDL DEF
structure, CONVERT uses the DEFs to convert the record definition, but a DEF does
not translate to an SQL data structure. During the conversion of a record definition,
CONVERT echoes the SQL table definition on the home terminal screen. (If you work
with data that includes multibyte characters, be aware that column DEFAULT clauses
can contain multibyte characters unsupported by the terminal and this can cause
unpredictable results in the screen display.)

DDL Primary Keys and Alternate Keys

CONVERT uses the primary key specification in the Enscribe file to assign the primary
key of the table. The SQL primary key is defined on columns derived from a field or
fields specified in the DDL record definition. If the key definition spans multiple fields, a
multicolumn SQL primary key is produced.
HP NonStop SQL/MP Reference Manual—523352-013
C-100

DDL Clause Mapping
CONVERT uses the alternate key specifications in the Enscribe file to define indexes
on the table. Because SQL requires a separate index file for each alternate key, a
CREATE INDEX command is generated for each alternate key named in the DDL
record definition.

Indexes are created on the same volume and subvolume as the table. Index names
are created by appending numbers to the table name. The name of the tables,
therefore, should be shorter than eight characters. For example, the first index of the
DEPT table is DEPT0, the second is DEPT1, and so forth.

You can use the MAP NAME option to override this naming pattern. Using the MAP
NAMES option, you can map the name of an alternate-key file to an index name. If
other index names are needed, they are created by appending numbers to the index
name specified in the MAP NAMES option.

The key specifier for each alternate key in the DDL record definition is used in the
KEYTAG clause of the CREATE INDEX command to associate a key specifier with an
index.

If a field name defined with a DDL REDEFINES clause is used as a primary or
alternate key, CONVERT determines which column is to be the key based on the
REDEFINE option of the CONVERT command. If you do not include the REDEFINE
option, CONVERT uses the original field as the key column.

For example, if the primary key CURRENT_DATA redefines EMPINFO, CONVERT
uses EMPINFO—not CURRENT_DATA—as the primary key. You can use the
REDEFINE option to specify that you want to use the redefined field instead of the
original one. For example, if you specify REDEFINE (EMPINFO AS
CURRENT_DATA), the CURRENT_DATA is used as the primary key.

Indexes are automatically loaded with data when the table is loaded.

DDL Clause Mapping

This DDL record definition clauses define constructs that are not used in SQL:

 OCCURS and OCCURS DEPENDING ON clauses define repeating fixed or
varying groups or arrays. For SQL, each elementary item in the OCCURS group is
converted to a table column, and the table column is repeated a fixed number of
times. The names of repeated columns are derived from the DDL elementary item
name combined with the array index value. For OCCURS MIN TO MAX TIMES
DEPENDING ON field-name, table columns are repeated MAX number of
times.

 Fields with FILLER clauses are skipped.

 Conversion of a VALUE IS clause depends on the CONVERT option specified. The
two forms of the DDL VALUE IS clause used with PIC X, PIC A, and TYPE
CHARACTER fields are:
HP NonStop SQL/MP Reference Manual—523352-013
C-101

DDL Clause Mapping
VALUE IS "default-string"
VALUE IS ALL "default-character"

The two forms of the DDL VALUE IS clause used with PIC N fields are:

VALUE IS N"default-string"
VALUE IS ALL N"default-character"

If the CHARACTER option, the NATIONAL option, or the NATIONAL DEFAULT
option is not specified, the VALUE IS clause is converted:

DEFAULT "default-string"
DEFAULT "default-character-repeated"
default-string

specifies a default value for the column. If the default-string value
specified in the DDL VALUE IS clause is longer than eight bytes, the value is
truncated to eight bytes and a warning is displayed.

default-character-repeated

specifies either a single-byte character (for PIC X, PIC A, or TYPE
CHARACTER fields) or a double-byte character (for PIC N fields) that is
repeated to make a total of eight bytes. If more than one character is specified,
only the first character is repeated.

 If the CHARACTER option or the NATIONAL option is specified, the VALUE IS
clauses are converted:

DEFAULT _char-set-name "default-string"
DEFAULT _char-set-name "default-character-repeated"
character-set-name

specifies the character set designated by either the CHARACTER or
NATIONAL option in the CONVERT command.

 If the NATIONAL DEFAULT option is specified, the PIC N VALUE IS clauses are
converted:

DEFAULT N"default-string"
DEFAULT N"default-character-repeated"

 CONVERT ignores these clauses:

 Level-66 RENAMES clauses

 Level-88 CONDITION-NAME clauses

 DISPLAY clauses

 MUST BE clauses
HP NonStop SQL/MP Reference Manual—523352-013
C-102

Conversion of DDL Elementary Items
Conversion of DDL Elementary Items

CONVERT converts each elementary field item in the record definition to a column
definition. The table that is created as a result of the conversion can contain at most
450 columns.

CONVERT uses the name of a DDL field as the name for the corresponding column
but replaces any hyphens (-) in the name with underscores (_).

If the data type of a DDL field is equivalent to an SQL data type, the column is
assigned the equivalent data type. If the data type is not equivalent to any SQL data
type, the column is assigned a compatible data type, if possible. If there is no
compatible data type, the column specification becomes a comment, and a warning is
appended.

DDL fields of various data types are converted as shown in the table.
HP NonStop SQL/MP Reference Manual—523352-013
C-103

Conversion of DDL Elementary Items
Conversion of DDL Character Strings

Conversion of Binary Data TypesConversion of Decimal Data

Option DDL Data Type SQL Data Type

None PIC A(j) PIC X(j)

PIC X(j) PIC X(j)

PIC N(k) PIC X(m)

TYPE CHARACTER j CHAR(j)

CHARACTER set PIC A(j) CHAR(x)
CHARACTER SET set

PIC X(j) CHAR(x)
CHARACTER SET set

TYPE CHARACTER j CHAR(x)
CHARACTER SET set

NATIONAL set PIC N(k) CHAR(y)
CHARACTER SET set

NATIONAL DEFAULT PIC N(k) NCHAR(k)

set An SQL-supported character set
j The number of single-byte characters
k The number of double-byte characters
m The number of characters in the SQL column; m is two times the corresponding k
x The number of characters; x equals j for single-byte characters sets and equals j/2 for
double-byte character sets
y The number of characters; y equals k for double-byte character sets and equals twice k for
single-byte character sets

DDL NonStop SQL/MP

PIC nines COMP PIC nines COMP or if precision is greater than 9, PIC S
nines COMP

PIC S nines COMP PIC S nines COMP

TYPE BINARY 8 PIC X(1)

TYPE BINARY 8 UNSIGNED PIC X(1)

TYPE BINARY 16 SMALLINT

TYPE BINARY 16 UNSIGNED SMALLINT UNSIGNED

TYPE BINARY 16,scale NUMERIC (4,scale)

TYPE BINARY 16,scale
UNSIGNED

NUMERIC (4,scale) UNSIGNED

TYPE BINARY 32 INTEGER

TYPE BINARY 32 UNSIGNED INTEGER UNSIGNED

nines is: { 9 (int [V9 (scale)] }
 { V9 (scale) }
HP NonStop SQL/MP Reference Manual—523352-013
C-104

Conversion of DDL Elementary Items
Types

Conversion of FORTRAN Data Types

TYPE BINARY 32,scale NUMERIC (9,scale)

TYPE BINARY 32, scale
UNSIGNED

NUMERIC (9,scale) UNSIGNED

TYPE BINARY 64 LARGEINT

TYPE BINARY 64,scale NUMERIC (18,scale)

DDL NonStop SQL/MP

PIC nines PIC nines or if precision is greater than 9, PIC S nines

PIC S nines PIC S nines

PIC nines S PIC S nines

PIC T PIC S9

PIC T9(int) PIC S9(int+1)

PIC TV9(scale) PIC S9V9(scale)

PIC T9(int)
 V9(scale)

PIC S9(int+1)V9(scale)

PIC 9(int)T PIC S9(int+1)

PIC V9(scale)T PIC SV9(scale+1)

PIC 9(int)
V9(scale)T

PIC S9(int)V9(scale+1)

nines is: { 9 (int [V9 (scale)] }
 { V9 (scale) }

Note. SQL supports only the unsigned and signed LEADING EMBEDDED DECIMAL data
types. The DDL SIGN LEADING SEPARATE or TRAILING SEPARATE DECIMAL data types
are converted to the SQL SIGN LEADING EMBEDDED DECIMAL data type.

DDL NonStop SQL/MP

TYPE COMPLEX PIC X(8)

TYPE FLOAT 32 REAL

TYPE FLOAT 64 DOUBLE PRECISION

DDL NonStop SQL/MP

nines is: { 9 (int [V9 (scale)] }
 { V9 (scale) }
HP NonStop SQL/MP Reference Manual—523352-013
C-105

Conversion of DDL Elementary Items
This special DDL group is converted to the SQL VARCHAR data type:

02 A-VARCHAR.
 03 LEN PIC S9(4) COMP.
 03 VAL PIC N(len).

The field names in the special DDL group have these meanings:

 A-VARCHAR is the name of the special DDL VARCHAR group. Any valid DDL
group name can be used in place of A-VARCHAR.

 LEN is a numeric field representing the actual length of the string. The string must
be defined as LEN PIC S9(4) COMP for the group to be recognized as this special
DDL group.

 VAL is a fixed-length character field representing the maximum length of the string.
The data type of the character field can be PIC X(n), PIC A(n), TYPE
CHARACTER, or PIC N(n).

This table shows how variable-length character strings are converted, depending on
the option you specify.

Conversion of Variable-Length Strings

TYPE LOGICAL 1 PIC X

TYPE LOGICAL 2 SMALLINT

TYPE LOGICAL 4 INTEGER

With VARCHARS Option

CONVERT Option
SQL Data Type
PIC N Field

SQL Data Type
PIC X, PIC A or
CHARACTER Field

None VARCHAR(m) VARCHAR(j)

CHARACTER set VARCHAR(x)

CHARACER SET set

NATIONAL set VARCHAR(y)

CHARACTER SET set

NATIONAL DEFAULT NCHAR VARYING(k)

set An SQL-supported character set
j The number of single-byte characters
k The number of double-byte characters
m The number of characters; m is twice the corresponding k
x The number of characters; x equals j for single-byte character sets and equals j/2 for
double-byte character sets
y The number of characters; y equals k for double-byte character sets and equals twice k for
single-byte character sets

DDL NonStop SQL/MP
HP NonStop SQL/MP Reference Manual—523352-013
C-106

DDL Groups
DDL Groups

SQL does not let you define groups of columns. When the record definition is
converted to a table definition, each elementary item in a group is translated to a
corresponding column. The group name is not translated.

If two fields in the same record definition convert to the same column name, a different
digit is appended to each one to make the names unique.

Physical File Attributes of Tables and Indexes

CONVERT derives most of the physical file attributes of a table directly from the
physical attributes of the Enscribe file being converted. For indexes, CONVERT
derives MAXEXTENTS and EXTENT file attributes from the physical attributes of the
Enscribe alternate key files. Attributes that CONVERT does not specifically set in the
CREATE INDEX statement default to predetermined values.

For the AUDIT attribute, the file is created with the same value as the original file if you
specify NO LOAD; otherwise, the file is created with NO AUDIT, then set to AUDIT
after loading if the original file was audited.

Without VARCHARS Option

None CHAR(m) CHAR(j)

CHARACTER set CHAR(x)

CHARACTER SET set

NATIONAL set CHAR(y)

CHARACTER SET set

NATIONAL DEFAULT NCHAR(k)

With VARCHARS Option

CONVERT Option
SQL Data Type
PIC N Field

SQL Data Type
PIC X, PIC A or
CHARACTER Field

set An SQL-supported character set
j The number of single-byte characters
k The number of double-byte characters
m The number of characters; m is twice the corresponding k
x The number of characters; x equals j for single-byte character sets and equals j/2 for
double-byte character sets
y The number of characters; y equals k for double-byte character sets and equals twice k for
single-byte character sets
HP NonStop SQL/MP Reference Manual—523352-013
C-107

Partition Attributes of Tables and Indexes
Partition Attributes of Tables and Indexes

If you convert a partitioned Enscribe file to a partitioned table, these rules apply:

 The partitions of the table are derived from the partitions of the file. Each table
partition, other than the first one, is created on the same subvolume as the
corresponding file partition, unless you use the MAP NAMES option to override this
naming pattern.

 The EXTENT and MAXEXTENTS physical attributes for each table partition are
derived from the corresponding Enscribe file partition.

 For key-sequenced files, each Enscribe file partition's LOW KEY attribute is used
to derive the FIRST KEY attribute of the corresponding table partition. An Enscribe
LOW KEY value must be a valid FIRST KEY value in a CREATE TABLE
command.

 Partitioned Enscribe alternate key files are converted to partitioned SQL indexes.

Examples—CONVERT

 Suppose that you have a key-sequenced Enscribe file named ORDERTAB on
subvolume $VOL3.DDL. The contents of the Enscribe file are described by the
record definition ORDER. The record ORDER includes two DDL groups named
ORDERDATE and DELDATE. The record definition also indicates that the primary
key is ORDERNUM and that the alternate key field is CUSTNUM.

Here is the DDL record definition for the ORDER file:

RECORD ORDER.
FILE IS "$VOL3.DDL.ORDERTAB" KEY-SEQUENCED.
02 ORDERNUM PIC 9(3).
02 ORDERDATE.
 03 MONTH PIC 9(2).
 03 DAY PIC 9(2).
 03 YEAR PIC 9(2).
02 DELDATE.
 03 MONTH PIC 9(2).
 03 DAY PIC 9(2).
 03 YEAR PIC 9(2).
02 SALES-PERSON PIC X(4).
02 BRANCHNUM TYPE BINARY 32 NULL RaS VALUE IS 9999.
02 CUSTNAME.
 03 LEN PIC S9(4) COMP.
 03 VAL PIC X(30) VALUE IS "RINTERNALS".
02 CUSTNUM PIC 9(4).
02 STATUS PIC X(8) VALUE IS "RON HOLDS".
02 TOTAL-AMOUNT PIC 9(5)V9(2) NULL 0.
KEY IS ORDERNUM DUPLICATES NOT ALLOWED.
KEY "oc" IS CUSTNUM.
END

 Suppose that your current default subvolume is $VOL3.DDL and that you want to
convert the Enscribe file ORDERTAB to a table named ORDERS on the
HP NonStop SQL/MP Reference Manual—523352-013
C-108

Examples—CONVERT
subvolume $VOL1.SALES. ORDERTAB resides on the current default subvolume
and is described by the record definition ORDER in a DDL dictionary. The SQL
catalog in which you want ORDERS to be described also resides on the
subvolume $VOL1.SALES. This command creates an EDIT file named CNVSRC
that contains the commands needed to perform the conversion:

>> CONVERT RECORD ORDER TO TABLE $VOL1.SALES.ORDERS

>+ CATALOG $VOL1.SALES;

CNVSRC contains these commands:

?SECTION CREATE_ORDERS
CREATE TABLE \NODE.$VOL1.SALES.ORDERS
(ORDERNUM PIC 9(3) NOT NULL,
 MONTH PIC 9(2) NOT NULL,
 DAY PIC 9(2) NOT NULL,
 YEAR PIC 9(2) NOT NULL,
 MONTH2 PIC 9(2) NOT NULL,
 DAY2 PIC 9(2) NOT NULL,
 YEAR2 PIC 9(2) NOT NULL,
 SALES_PERSON PIC X(4) NOT NULL,
 BRANCHNUM INTEGER
 DEFAULT 9999,
 CUSTNAME VARCHAR(30)
 DEFAULT "INTERNAL" NOT NULL,
 CUSTNUM PIC 9(4) NOT NULL,
 STATUS PIC X(8)
 DEFAULT "ON HOLD" NOT NULL,
 TOTAL_AMOUNT PIC 9(5)V9(2),
 PRIMARY KEY ORDERNUM
)
 ORGANIZATION KEY SEQUENCED
 CATALOG \NODE.$VOL1.SALES
 BLOCKSIZE 4096
 EXTENT (4,32)
 MAXEXTENTS 100
 TABLECODE 0
 NO AUDIT
 NO CLEARONPURGE
 NO DCOMPRESS
 NO ICOMPRESS
 NO SERIALWRITES
 NO VERIFIEDWRITES
 NO BUFFERED;
CREATE INDEX \NODE.$VOL1.SALES.ORDERS0
 ON \NODE.$VOL1.SALES.ORDERS (CUSTNUM)
 CATALOG \SYSTEM.$VOL1.SALES
 KEYTAG "oc"
 EXTENT (4,32)
 MAXEXTENTS 100;
?SECTION LOAD_ORDERS
LOAD \NODE.$VOL3.DDL.ORDERTAB, \SYSTEM.$VOL1.SALES.ORDERS,
SOURCEDICT \NODE.$VOL3.DDL,
HP NonStop SQL/MP Reference Manual—523352-013
C-109

Examples—CONVERT
SOURCEREC ORDER,
USESQLNULLS;

Note that the record definition has been altered by eliminating the DDL group
names and by creating a column for each elementary item in each group.
CONVERT makes these column names unique by appending 2 to the MONTH,
DAY, and YEAR columns derived from the DDL DELDATE group. You can change
these names by editing the file.

This command performs the conversion:

>> OBEY CNVSRC;

 This example is the DDL record definition for the key-sequenced Enscribe file
called TSTKANJI and uses the Kanji data type:

RECORD kanji.
FILE IS "$vol1.subvol1.tstkanji" KEY-SEQUENCED.
02 A PIC N.
02 B PIC N VALUE IS N"aa".
02 C PIC N(4).
02 D PIC N(3) VALUE IS N"abcdef".
02 E PIC N(5) VALUE IS N"abcdefghij".
02 F PIC N(4) REDEFINES E.
02 G.
 03 LEN PIC S9(4) COMP.
 03 VAL PIC N(4).
KEY IS C DUPLICATES NOT ALLOWED.
END

 This example creates an EDIT file named CNVSRC that contains the commands
needed to convert the DDL record definition to an SQL table:

>> CONVERT RECORD kanji TO TABLE $vol2.subvol2.kanjitbl;

Note that the CONVERT command does not include the REDEFINE clause, so F
in the DDL record definition is ignored and does not redefine E.

CNVSRC contains this CREATE TABLE command:

?SECTION CREATE_KANJITBL
CREATE TABLE \NODE.$VOL2.SUBVOL2.KANJITBL
(
A PIC X(2) NOT NULL , -- WARNING - PIC N
B PIC X(2) -- WARNING - PIC N
 DEFAULT "aa" NOT NULL ,
--WARNING Default literal originally national language
 string
C PIC X(8) NOT NULL , -- WARNING - PIC N
D PIC X(6) -- WARNING - PIC N

 DEFAULT "abcdef" NOT NULL ,
--WARNING Default literal originally national language
 string
E PIC X(10) -- WARNING - PIC N
 DEFAULT "abcdefgh" NOT NULL ,
--WARNING Default literal originally national language
HP NonStop SQL/MP Reference Manual—523352-013
C-110

Examples—CONVERT
 string
--WARNING The default value is truncated.
G VARCHAR(8) NOT NULL , -- WARNING - PIC N
PRIMARY KEY C
)

If the DDL default string is longer than eight characters, CONVERT truncates the
default string to eight bytes long.

 This example illustrates more features of the CONVERT command. The DDL
record definition follows:

RECORD SCHEDULE.
FILE IS "$VOL3.DDL.SCHEDULE" KEY-SEQUENCED.
 02 EMP-SCHEDULE.
 03 EMPNUM PIC 9(5).
 03 EMPNUM-KEY REDEFINES EMPNUM.
 05 DEP-KEY PIC X(2).
 05 EMP-KEY PIC X(3).
 03 DAY-SCHED OCCURS 5 TIMES.
 04 DAYNUM PIC X(2).
 04 SHIFTS OCCURS 2 TIMES.
 05 START-HOUR PIC 9(2).
 05 END-HOUR PIC 9(2).
KEY IS EMPNUM DUPLICATES NOT ALLOWED.
END

 This command produces an EDIT file named SCHDCONV, which contains
commands that convert the Enscribe file to a table and includes comments in the
CREATE TABLE command:

>>CONVERT RECORD SCHEDULE TO TABLE $VOL1.PERSNL.SCHEDULE

+>REDEFINE(EMP-SCHEDULE.EMPNUM AS EMP-SCHEDULE.EMPNUM-KEY)

+>COMMENTS SOURCE SCHDCONV CLEAR;

The EMPNUM field is converted to two columns named DEP_KEY and EMP_KEY
based on the elementary fields of the EMPNUM-KEY redefinition. The column
definitions in the CREATE TABLE command are:

DEP_KEY PIC X(2),

EMP_KEY PIC X(3),

The LOAD command in the SCHDCONV file contains the
REDEFINE (EMP-SCHEDULE.EMPNUM AS EMP-SCHEDULE.EMPNUM-KEY)
option. The CREATE TABLE command follows:

CREATE TABLE $VOL1.PERSNL.SCHEDULE
(
-- 02 EMP-SCHEDULE
-- 03 EMPNUM-KEY
-- 04 DEP-KEY
DEP_KEY PIC X(2) NOT NULL,
-- 04 EMP-KEY
EMP_KEY PIC X(3) NOT NULL,
HP NonStop SQL/MP Reference Manual—523352-013
C-111

Examples—CONVERT
-- 03 DAY-SCHED OCCURS 1/5 TIMES
-- 04 DAYNUM
DAYNUM_1 PIC X(2) NOT NULL,
-- 04 SHIFTS OCCURS 1/2 TIMES
-- 05 START-HOUR
START_HOUR_1_1 PIC 9(2) NOT NULL,
-- 05 END-HOUR
END_HOUR_1_1 PIC 9(2) NOT NULL,
-- 05 START-HOUR
START_HOUR_1_2 PIC 9(2) NOT NULL,
-- 05 END-HOUR
END_HOUR_1_2 PIC 9(2) NOT NULL,
 ...
DAYNUM_5 PIC X(2) NOT NULL,
-- 04 SHIFTS OCCURS 1/2 TIMES
-- 05 START-HOUR
START_HOUR_5_1 PIC 9(2) NOT NULL,
 ...

END_HOUR_5_2 PIC 9(2) NOT NULL,
PRIMARY KEY (
 DEP_KEY ,
 EMP_KEY
)
)
ORGANIZATION KEY SEQUENCED
 ...
NO BUFFERED
;

Each elementary item of the OCCURS group is converted to a column. The two
fields of the EMPNUM-KEY group, which redefined EMPNUM, are used as the
primary key of the table. This command performs the conversion:

>> OBEY SCHDCONV;
HP NonStop SQL/MP Reference Manual—523352-013
C-112

CONVERTTIMESTAMP Function
CONVERTTIMESTAMP Function
CONVERTTIMESTAMP is a function that converts a Julian timestamp to a DATETIME
value. It returns a value of DATETIME that has the range of fields YEAR TO
FRACTION(6).

julian-timestamp

is an expression that evaluates to a Julian timestamp, which is a LARGEINT value.

Example—CONVERTTIMESTAMP

This example converts a Julian timestamp into a DATETIME value:

>> SELECT CONVERTTIMESTAMP (HIRE_DATE) FROM EMPLOYEE;

COPY Command
COPY is an SQLCI utility command that copies data to and from Guardian files
(including Guardian processes and devices, unstructured disk files, and Enscribe
structured disk files) and SQL tables, appending the data to any existing data, or
displays the contents of a file or table. If you copy data to a table, COPY automatically
updates the indexes of the table.

COPY resembles the FUP COPY command but, unlike FUP COPY, COPY works with
SQL objects.

If SMF is installed on your node, files you specify in COPY syntax cannot be on any
$*.ZYS*. subvolumes. However, remote files on a non-SMF node can reside on any
subvolume.

CONVERTTIMESTAMP (julian-timestamp)
HP NonStop SQL/MP Reference Manual—523352-013
C-113

COPY Command
COPY in-file [[, out-file [[,] option] ...]] ;
 [,, option [[,] option] ...]

option is:

 { control-option }
 { in-option }
 { out-option }
 { display-option }
 { move-option }

control-option is:

 { ALLOWERRORS [ON | OFF | num] }
 { }
 { COUNT num-records }
 { }
 { FIRST { ordinal-record-num } }
 { { KEY record-spec } }
 { { KEY (key-value [, key-value]...) } }
 { { key-specifier ALTKEY (key-value } }
 { { [, key-value] ...) } }
 { }
 { REPLACE SPACES WITH { ZERO[ES] | DEFAULT[S] } }
 { }
 { UNSTRUCTURED }
 { }
 { UPSHIFT }
 { }
 { USESQLNULLS }
 { }
 { SQLNULLABLE }

in-option is:

 { BLOCKIN in-block-length }
 { { COMPACT | NO COMPACT } }
 { EBCDICIN }
 { RECIN in-record-length }
 { REELS num-reels }
 { { REWINDIN | NO REWINDIN } }
 { SHARE }
 { SKIPIN num-eofs }
 { TRIM trim-character }
 { { UNLOADIN | NO UNLOADIN } }
 { VARIN }
HP NonStop SQL/MP Reference Manual—523352-013
C-114

COPY Command
in-file

is the name (or an equivalent DEFINE) of the table or file from which to copy data.
in-file can be a table, a disk file, a labeled or unlabeled tape, a terminal, or a
process.

out-option is:

 { BLOCKOUT out-block-length }
 { EBCDICOUT }
 { FOLD }
 { PAD pad-character }
 { RECOUT out-record-length }
 { { REWINDOUT | NO REWINDOUT } }
 { SKIPOUT num-eofs }
 { { UNLOADOUT | NO UNLOADOUT } }
 { VAROUT }
 { SHAREOUT }

display-option is:

 { O[CTAL] }
 { D[ECIMAL] }
 { H[EX] }
 { BYTE }
 { A[SCII] }
 { NO HEAD }

move-option is:

 { SOURCEDICT dictionary-name }
 { SOURCEREC ddl-record-name }
 { TARGETDICT dictionary-name }
 { TARGETREC ddl-record-name }
 { }
 { MOVE { source-name TO target-name } }
 { { (source-name TO target-name } }
 { { [, source-name TO target-name]...) } }
 { }
 { MOVEBYNAME [ON | OFF] }
 { MOVEBYORDER [ON | OFF] }
 { TRUNC[ATION] [ON | OFF] }
 { REDEFINE (redefine-spec [, redefine-spec]...) }

redefine-spec is:

 original-qualified-name AS redefined-qualified-name
HP NonStop SQL/MP Reference Manual—523352-013
C-115

COPY Command
out-file

is the name (or an equivalent DEFINE) of the table, file, tape, process, printer,
spooler, or terminal to which to copy the data. If you copy to a file or table, the file
or table must exist before you execute the COPY.

If you omit out-file, SQL uses the current OUT file.

ALLOWERRORS [ON | OFF | num]

specifies action when conversion errors occur.

If you omit the ALLOWERRORS clause completely, the default is
ALLOWERRORS OFF. If you specify ALLOWERRORS but do not specify an
option, the default is ALLOWERRORS ON.

Nonconvertible records include records that contain a nonnumeric value in a
numeric field, records that contain a duplicate key value in the primary key field of
the output file, records that are inconsistent with constraints defined for the output
table, and records that contain parity errors. For more information about rules for
data conversion, see CONVERT Command on page C-94.

COUNT num-records

specifies the number of records to copy. The default is all records.

FIRST { ordinal-record-num }
 { KEY record-spec }
 { KEY (key-value [, key-value]...) }
 { key-specifier ALTKEY (key-value }
 { [, key-value] ...) }

specifies the starting record of the input file from which to begin copying. If you
omit the FIRST clause, COPY starts with the first record.

The FIRST clause is the same as the FIRST clause in the LOAD command. For
information, see LOAD Command on page L-18.

REPLACE SPACES WITH { ZERO[ES] | DEFAULT[S] }

specifies how to copy an Enscribe ASCII numeric decimal field containing all
blanks to an SQL numeric column. (Does not apply to Enscribe numeric binary
fields)

ON Skip nonconvertible records but process subsequent records

OFF Stop the copy operation after the first conversion error

num Skip nonconvertible records until the number of such records exceeds
the value of num. The maximum value for num is 32,767.

ZEROES sets the target column to 0

DEFAULTS sets the target column to its default value
HP NonStop SQL/MP Reference Manual—523352-013
C-116

COPY Command
If you do not specify this option for an Enscribe ASCII numeric decimal field, a
conversion error occurs for any record in which the field contains blanks.

UNSTRUCTURED

(for copying from a table or disk file only) directs COPY to handle the data as a
sequence of bytes, ignoring any record structures normally recognized for the table
or file. The UNSTRUCTURED option lets you examine only the one partition
named as the source file in the command.

UPSHIFT

(for copying to an Enscribe file only) converts all bytes of the input that contain
lowercase ASCII characters to uppercase ASCII characters before copying the
data to the target record.

The UPSHIFT conversion is made without regard to the data types of fields or
columns of the input, so undesired changes to the data can occur if you use
UPSHIFT with input that is not composed of simple character data.

Although you cannot specify the UPSHIFT option if out-file is an SQL table,
data moved to an SQL column that has the UPSHIFT attribute is automatically
upshifted.

USESQLNULLS

(for copying from Enscribe files to SQL tables only) specifies that a null value from
an Enscribe file be copied as an SQL null value.

USESQLNULLS applies only if the SQL column being copied to allows null values,
if you also specify the SOURCEREC option, and if the Enscribe null value appears
in every byte of the Enscribe field. (Enscribe allows you to specify a character to
use as the “null character” for a field at file-creation time, then uses that character
to represent null values within the field. Any field that is filled entirely with the null
character is handled as null.)

If you omit USESQLNULLS, COPY provides no special treatment for Enscribe null
characters.

SQLNULLABLE

specifies that the support for null indicator values for Enscribe fields is enabled
when loading data from Enscribe to SQL or from SQL to Enscribe.

The SQLNULLABLE option causes COPY to look for the SQLNULLABLE DDL
clause in the TARGETREC or SOURCEREC option, and depending on this clause,
add or read a two-byte null indicator for the Enscribe field value. Without
TARGETREC and SOURCEREC options, COPY adds or reads the null indicator
for all Enscribe fields that correspond to a nullable column in the SQL table.

If you omit the SQLNULLABLE clause, COPY does not support null indicators for
Enscribe fields. SQLNULLABLE does not affect loading from SQL tables to SQL
HP NonStop SQL/MP Reference Manual—523352-013
C-117

COPY Command
tables and Enscribe files to Enscribe files. The SQLNULLABLE option for Enscribe
to SQL loading automatically enables the USESQLNULLS option.

in-option

specifies characteristics of the input file. It is identical to the in-option for the
LOAD command. For information on in-option clauses, see LOAD Command
on page L-18.

out-option

specifies characteristics of the output file.

BLOCKOUT out-block-length

(for copying to non-SQL files and processes only) specifies the number of bytes in
a block of the output file (the maximum number of bytes written in a single physical
operation).

out-block-length is an integer in the range 1 to 32767 that specifies a
blocksize supported for out-file. (Not all file types support the full range of
blocksizes.)

If the length of the output block is greater than the RECOUT
out-record-length, output record blocking occurs. The block is filled with
out-record-length records until it is full or until the last output record is
encountered.

If the block length is not an even multiple of out-record-length, the last record
in a full block is truncated.

The actual number of bytes written in a physical operation is out-block-length
for all blocks but the last one. If the last block is not full, the actual number of bytes
written is equal to the number of records in the last block times the out-record-
length.

If you omit BLOCKOUT and out-file is not a labeled tape, COPY uses the
RECOUT value for out-block-length and writes each output record in a
separate physical operation.

If out-file is a labeled tape, you can specify the output block length with either
the BLOCKOUT clause of the COPY command (as described here) or with the
BLOCKLEN attribute of the CLASS TAPE DEFINE for the tape. If you specify
values for both the BLOCKOUT clause and the BLOCKLEN attribute, the values
must match.

EBCDICOUT

(for copying to non-SQL files and processes only) translates ASCII characters to
their EBCDIC equivalents in the output file. If you omit EBCDICOUT, COPY does
not translate output.
HP NonStop SQL/MP Reference Manual—523352-013
C-118

COPY Command
In a conversion between ASCII and EBCDIC, the symbols representing each
character are the same in ASCII and EBCDIC except for:

The conversion is done without regard to the data types of fields or columns of the
input, so undesired changes to the data can occur if you use EBCDICOUT with
input that is not composed of simple character data.

FOLD

(for copying to Enscribe files only) divides input records that are longer than
RECOUT out-record-length into as many out-record-length records as
needed to copy the entire input record. If the last record written is shorter than
out-record-length because of a FOLD, and you specify PAD, padding occurs.
If you omit FOLD, truncation occurs when an input record is longer than the output
file's record length.

PAD pad-character

(for copying to Enscribe files only) pads output records that contain less than
out-record-length bytes with pad-character, up to the record length
specified in the file label of the output file. Specify pad-character as a single
ASCII character inside quotation marks (“c”) or as a numeric literal in the range 0
through 255, representing the byte value of the character.

RECOUT out-record-length

(for copying to Enscribe files or tapes only) specifies the maximum length of an
output record in bytes. The actual number of bytes written for each output record
(the write count) depends on whether you also specify PAD:

 If you do not specify PAD, the write count is either the read count or
out-record-length, whichever is less.

 If you specify PAD, the write count is out-record-length.

In either case, if the number of input bytes exceeds out-record-length,
the input record is truncated at output-record length bytes (unless you specify
FOLD).

 If you omit RECOUT and out-file is not a labeled tape, COPY determines
the out-record-length:

 If you specify out-block-length as less than or equal to 4096, the
value of out-block-length is used for out-record-length. If

ASCII EBCDIC

Exclamation point Logical OR

Left square bracket Cent sign

Right square bracket Exclamation point

Circumflex Logical NOT sign
HP NonStop SQL/MP Reference Manual—523352-013
C-119

COPY Command
out-block-length is greater than 4096, out-record-length is
4096.

 If you do not specify out-block-length and if out-file is an
unstructured disk file, if in-file is an SQL table, VAROUT is not
specified, and no display option was specified, out-record-length is
the length of the logical record specified by TARGETREC, or—if
TARGETREC is not specified—the length of the logical record implied by
the description of the input table. Otherwise, out-record-length is 132.

 If you do not specify out-block-length and if out-file is a process
file, out-record-length is 132.

 If you do not specify out-block-length and if out-file is a structured
disk file or a nondisk device, out-record-length is the record length
specified or assigned when the file is created (or when the system is
generated).

If out-file is a labeled tape, you can specify the output record length with
either the RECOUT clause of the COPY command (as described here) or with
the RECLEN attribute of the CLASS TAPE DEFINE for the tape. If you specify
values for both the RECOUT clause and the RECLEN attribute, the values
must match.

{ REWINDOUT | NO REWINDOUT }

(for copying to magnetic tapes only) specifies whether to rewind the tape when
COPY completes. The default is REWINDOUT (the tape is rewound).

SKIPOUT num-eofs

(for copying to unlabeled magnetic tapes only) moves the tape past num-eofs
end-of-file (EOF) marks before starting to copy the data. Specify num-eofs as an
integer from -255 through 255.

If you specify a positive value for num-eofs, the tape is wound forward past
num-eofs EOF marks and is positioned immediately after the last EOF mark
passed.

If you specify a negative value for num-eofs, the tape is wound backwards over
(-1 times num-eofs) EOF marks, moved forward so that it is positioned
immediately ahead of the last EOF mark passed.

If you specify a value of 0 for num-eofs, the SKIPOUT option is ignored.

If you omit the SKIPOUT option, the tape remains at its current position, and data
transfer begins with the next physical record on tape.
HP NonStop SQL/MP Reference Manual—523352-013
C-120

COPY Command
{ UNLOADOUT | NO UNLOADOUT }

(for copying to magnetic tapes only) specifies whether the tape is unloaded when
rewinding occurs. The default is UNLOADOUT (the tape is unloaded when it is
rewound).

VAROUT

(for copying to Enscribe files only) writes variable-length, blocked records.

Each Enscribe variable-length record is preceded by a one-word indicator
containing the record length in bytes. The indicator is always aligned on a word
boundary, although records might contain an odd number of bytes. The indicator
and the write count are equal although the record might have been truncated.
Truncation occurs if the record is longer than out-record-length or
out-block-length minus two. (Two extra bytes are required for the indicator.)

Records cannot span blocks. If the next record with its indicator does not fit into the
current block, VAROUT terminates the current block and begins a new block.

VAROUT terminates a block by writing a 1-word block terminator of -1 (%177777)
to indicate that no more valid records are in the block, then padding the remainder
of the physical block. VAROUT cannot write the terminator when the previous
record ends on a block boundary or when out-block-length is odd and only
one byte remains in the block.

Empty or zero-length records are supported.

The PAD and FOLD options are not allowed with VAROUT.

This sample block has a BLOCKOUT length of %30. The three records “FRESNO”,
“MUNICIPAL”, and “BANK” illustrate the action of VAROUT:

| %000006 | <- Length indicator for record 1
| F R | <-
| E S | | Record 1
| N O | <-
| %000011 | <- Length indicator for record 2
| M U | <-
| N I | |
| C I | | Record 2
| P A | |
| L | <-
| %177777 | <- Block terminator (end of block)
| p p | <- Padding
|___________|

For the third record, BANK and its record-length indicator require six bytes,
beginning on a word boundary. Because only four bytes remain in the sample
block, VAROUT terminates the block and writes the BANK record to the next block.
HP NonStop SQL/MP Reference Manual—523352-013
C-121

Considerations—COPY
SHAREOUT

opens the output file with SHARED access. If you omit SHAREOUT, the output file
is opened with EXCLUSIVE access.

display-option

(for copying to Enscribe files only) specifies the format for displaying the file:

If you do not specify BYTE, COPY handles each word as a single value and
converts it accordingly. If you specify BYTE but not OCTAL, DECIMAL, or HEX, the
display appears in byte-octal format.

If you specify more than one of OCTAL, DECIMAL, and HEX, each line is
displayed in each specified format in the order: octal, decimal, and hexadecimal.

The ASCII option has no meaning when combined with OCTAL, DECIMAL, HEX,
or BYTE.

move-option

specifies names of elements related to the table or Enscribe file and how to map
source names to different target names. move-option is identical to
move-option for the LOAD command. For information on move-option
clauses, see LOAD Command on page L-18 and for considerations related to
move options, see Considerations—LOAD on page L-33.

Considerations—COPY

 COPY requires authority to read the source file and authority to write to the target
file. If you are copying to or from a table, you must also have authority to read the
catalog in which the table is described.

 COPY performs these operations:

 From an Enscribe file to a table—each source record from the file is inserted
as a row in the target table. Each elementary field value in the source record is
converted into a column value in the table row generated from the source
record. Values are also copied to the indexes of the table.

 From a table to an Enscribe file—each row from the table is added as a record
to the target file. Each column value in the source row is converted to an
elementary field value in the target record.

O[CTAL] Display in octal and ASCII

D[ECIMAL] Display in decimal and ASCII

H[EX] Display in hexadecimal and ASCII.

BYTE Display in byte format and ASCII, convert each byte separately

A[SCII] Display in ASCII

NO HEAD Omit the heading preceding each record
HP NonStop SQL/MP Reference Manual—523352-013
C-122

Considerations—COPY
 From one table to another—each source row is inserted as a row in the target
table.

 You might want to use COPY instead of LOAD for these reasons:

 You can copy data within a user-defined TMF transaction.

 You can copy data to an unstructured file or a nondisk file.

 You can append or insert data without erasing existing data.

 These rules govern the transfer of data across character sets. A COPY that
violates these rules terminates with an error.

For example, if the source field character set is UNKNOWN, you can copy it to a
target field associated with any character set. If the source field character set is
one of the nine supported ISO character sets, you can copy it only to a target field
associated with that same character set.

In addition, if you copy double-byte data into a single-byte field or copy single-byte
data into a double-byte field, the target field must be the same length, in bytes, as
the source field.

(Enscribe-to-Enscribe copies do no field-by-field conversion, so that case is not
shown in the previous table.)

 You can use COPY to display the contents of a table or Enscribe file on a terminal
or printer. For example, this command prints ten rows of the EMPLOYEE table:

>> COPY PERSNL.EMPLOYEE, $SYS1.#PRINTER, ASCII COUNT 10;

Source and Target
File Types

Source Field
Character Set

Target Field
Character Set

SQL to SQL UNKNOWN Any character
set

ISO88591 ISO88591

ISO88599 ISO88599

KANJI KANJI

KSC5601 KSC5601

SQL to Enscribe UNKNOWN PIC X or PIC N

ISO88591 PIC X

ISO88599 PIC X

KANJI PIC N

KSC5601 PIC N

Enscribe to SQL PIC X Any character
set

PIC N Any character
set
HP NonStop SQL/MP Reference Manual—523352-013
C-123

Considerations—COPY
The display includes the file name, the ordinal number of each row or record, the
length of each record (in decimal bytes), and the ASCII representation of each line.

 If you use COPY to write to an audited file or table, the write always takes place
within a TMF transaction. COPY starts a transaction if a user-defined transaction is
not in progress. Because copying large amounts of data results in large amounts of
TMF audit information, you might want to use ALTER TABLE to turn off the AUDIT
attribute of the target file before the COPY and reset it after the COPY.

If you use COPY to write to a nonaudited file or table within a user-defined
transaction, COPY issues a warning but performs the COPY anyway.

You can press the Break key to interrupt COPY. If the target file or table is audited,
the COPY is rolled back and all the work is undone. If the target is nonaudited, all
the work done by COPY up to the point of the break is committed.

If COPY fails and the target table is audited, TMF performs the recovery operation.
If the target table is nonaudited, the data might be partially copied.

 COPY does not overwrite existing data. If out-file has key-sequenced file
organization, COPY inserts data at the appropriate locations in the table or file, as
determined by the key. COPY reports an error if a record already exists that has
the same key as a record to be inserted. If out-file has entry-sequenced,
relative, or unstructured file organization, COPY appends data to the end of the
file.

 When you enter a COPY command without the SHARE option, COPY opens the
input file in read-only access mode and protected exclusion mode (unless the
source file is a terminal, which is always opened with shared exclusion mode). If,
however, you include the SHARE option in the command when copying a disk file,
COPY opens the file with shared exclusion mode.

By default, COPY opens the output file with protected exclusion mode unless the
file is a terminal.

 If you copy a table or file that contains data records and zero-length (empty)
records to a table or file with relative file organization, all records are written with
this exception: if the in-file also has relative file organization, the empty records
are skipped unless you specify NO COMPACT.

For example, when you copy a table or file with relative file organization that
contains a combination of eight data records and two empty records, out-file
file has eight records instead of ten. Thus, if you copy empty records from a table
or file with relative file organization to another table or file with relative file
organization, you lose the empty records. To transfer empty records from a table or
file with relative file organization, include the NO COMPACT option.

 If the target is a table, using the COPY command is equivalent to using a set of
INSERT commands with STABLE ACCESS and APPEND options. Values are
inserted in the indexes of the table automatically. All the conditions that must be
satisfied for an INSERT must be satisfied for each target row.
HP NonStop SQL/MP Reference Manual—523352-013
C-124

Considerations—COPY
When a source column is undefined and the target column is defined with the NO
DEFAULT clause, an error occurs. The source row must supply a value for every
column of the target row that is defined with the NO DEFAULT clause. In addition,
a target row must satisfy any constraint defined on the table to be inserted in the
table. The TRUNC option determines whether values are truncated. For more
information, see INSERT Statement on page I-14.

Any column except a system-defined primary key can be a source or target item.

 Rules for using CLASS TAPE DEFINEs or labelled tapes are described in the
discussion of the FUP COPY command in the File Utility Program (FUP)
Reference Manual.

You cannot copy a multireel set of tapes created by a COBOL program, because
COBOL does not mark the end of a multireel set in the same way that COPY does.
You must use a COBOL program to copy such tapes. For more information, see
the COBOL Reference Manual.

 Using COPY with non-SQL files

 If the source is an EDIT file, COPY handles it like a structured file: each text
line is handled as a logical record with a read count attribute. (This differs from
the usual treatment of unstructured files in which each physical read, except
possibly the last read of a file, returns exactly in-record-length bytes.) If
an EDIT file record ends in the middle of a field, SQL adds blanks to the target
file for the remainder of the field.

 Although you can specify a block size up to 32,767 bytes for the BLOCKIN and
BLOCKOUT parameters, some peripheral devices have smaller maximum
block sizes that must not be exceeded when using the COPY command.

 Be careful when you use PAD and TRIM options. If your data contains
trim-character or pad-character, data might be added or lost. Use a
pad character or trim character that is not contained in your data. For example,
suppose that you pad each record of a file with zeros to a standard size in
bytes and then store the records in another file. If you later trim the trailing
zeros when you COPY the stored records, zeros at the end of the original data
are trimmed.

 Rules for enscribe files with variable-length records

Copying Into SQL Tables

 The target file must have default values defined for columns that do not have
source fields mapped to them and for all fields missing from the source record.
A column must be defined with the DEFAULT clause of the CREATE TABLE or
ALTER TABLE command. A DDL data item must be defined with the VALUE IS
clause.

 If a record from a non-SQL source is not long enough to supply data to all
fields mapped to target columns, each target column whose source field is
missing must have a default value defined for it.
HP NonStop SQL/MP Reference Manual—523352-013
C-125

Enscribe Field Formats
 In general, if a source record from a non-SQL source does not end exactly at a
field boundary, an error occurs. These exceptions apply:

 If the record ends in the middle of a VARCHAR field, the end of the record
defines the end of the VARCHAR data.

 If the file is an EDIT file and the record ends in the middle of a field, SQL
adds enough blanks to the end of the input record to fill the field. In such a
case, blanks must be acceptable in that column of the source record. For
example, a DECIMAL column would not accept blanks; a CHAR column
would.

 If the record contains an array defined by an OCCURS DEPENDING ON
clause and at least one element of the array is present, the field that contains
the count must be present and the number of elements in the record must be
equal to the value of the field that contains the count.

Enscribe Field Formats

If an Enscribe file is the source or target, COPY copies only fields whose DDL
definitions conform to these rules:

 The field must be elementary unless it is the special DDL group that represents a
variable-length character string, in which case it is handled as one field during the
COPY operation. This DDL group has this structure and is converted to a column
with data type VARCHAR:

02 A-VARCHAR.
 03 LEN PIC S9(4) COMP.
 03 VAL PIC X(len).

 The field must not be a FILLER field.

 COPY ignores these DDL clauses:

Level-88 CONDITION-NAME clause

Level-66 RENAMES clause

 Unless you specify a REDEFINES clause in the REDEFINE option of the COPY
command, COPY ignores the clause and uses the original field definition.

Field Conversions

For any COPY operation, the data type of each source field must be compatible with
the data type of its corresponding target field. The details of data type compatibility and
Enscribe-to-SQL and SQL-to-Enscribe field conversions are identical for COPY and
LOAD; For information, see Data type compatibility and field conversions on
page L-36.
HP NonStop SQL/MP Reference Manual—523352-013
C-126

Examples—COPY
Examples—COPY

 Suppose that in addition to the table EMPLOYEE described in the catalog
$VOL1.PERSNL, you have created an identical table EMPLOYEE described in a
catalog named $VOL2.TESTC. You must qualify the table names enough to
identify the location of each one uniquely. COPY determines which catalogs to use,
such as,

>> COPY $VOL1.PERSNL.EMPLOYEE, $VOL2.TEST.EMPLOYEE;

If the default subvolume is $VOL1.PERSNL, this command performs the same
function:

>> COPY EMPLOYEE, $VOL2.TEST.EMPLOYEE;

The tables have identical descriptions. You need not specify any move options;
MOVEBYORDER is used by default.

 This command displays the first 100 rows of table $VOL1.SALES.PARTS at your
terminal and specifies the octal display format:

>> COPY $VOL1.SALES.PARTS,,OCTAL COUNT 100;

 This example demonstrates the COUNT and MOVEBYNAME options. The table
SPAREPRT contains columns of the same names as the PARTS table, but the
columns in the two tables are arranged in a different order. This copies the first 300
rows from $VOL1.SALES.PARTS table to $VOL1.SALES.SPAREPRT table and
copies each column in the source table to the column with the same name in the
target table:

>> COPY $VOL1.SALES.PARTS, $VOL1.SALES.SPAREPRT,
+> COUNT 300 MOVEBYNAME;

 This command copies data from the Enscribe file $VOL2.SUBV1.CLIENTS to the
table $VOL1.SALES.CUSTOMER:

>> COPY $VOL2.SUBV1.CLIENTS, $VOL1.SALES.CUSTOMER,
+> SOURCEDICT $VOL2.SUBV1, SOURCEREC CLREC,
+> MOVEBYORDER, TRUNC ON;

Because the source is an Enscribe file, the command includes a SOURCEREC
option to identify the DDL record definition for the Enscribe file. The values are
copied in order from fields to columns, as shown:

Fields in Record CLREC Columns in Table CUSTOMER
02 CUSTNUM PIC 9(4). CUSTNUM DECIMAL(4) UNSIGNED,
02 CUSTNAME PIC X(20). CUSTNAME CHAR(18),
02 ADDR.
 03 ADDRESS PIC X(22). STREET CHAR(22),
 03 CITY PIC X(14). CITY CHAR(14),
 03 STATE PIC X(2). STATE CHAR(12),
 03 ZIP-CODE PIC X(6). POSTCODE CHAR(10),
 CREDIT CHAR(2) DEFAULT "C1"
HP NonStop SQL/MP Reference Manual—523352-013
C-127

Correlation Names
The CUSTNAME value is truncated because the column length is less than the
field length. The default value is used for the CREDIT column in each new row of
CUSTOMER because no source field maps to this column.

 This example demonstrates the MOVE option. This command copies data from the
table $VOL1.SALES.PARTS to the Enscribe file $TESTVOL.SALES.PARTS,
copying only the PARTNUM and PARTDESC columns to the PARTNUMR and
PARID columns respectively:

>> COPY $VOL1.SALES.PARTS, $TESTVOL.SALES.PARTS,
+> TARGETDICT $TESTVOL.SALES, TARGETREC DFORMAT,
+> MOVE (PARTNUM TO PARTNUMR, PARTDESC TO PARTD);

A target column that does not have a source column mapped to it receives its
default value, unless no default value is defined for it, in that case COPY returns
an error.

Because the target is an Enscribe file, the command includes a TARGETREC
option to identify the DDL record definition for the Enscribe file.

 This example demonstrates the FIRST KEY option, provided that a table with a
two-column key as described by this CREATE TABLE statement exists:

>> CREATE TABLE EMP (
+> EMPNUM SMALLINT, EMPNAME VARCHAR (20),
+> SALARY SMALLINT, PRIMARY KEY (EMPNUM, EMPNAME));

The COPY command displays rows of table EMP at your terminal in hexadecimal
format, starting with the row for the employee whose employee number is 100 and
whose name is Martin Smith:

>> COPY EMP,,HEX,FIRST KEY (0, 100, "MARTIN SMITH ");

The EMPNUM column is defined as a SMALLINT, which uses two bytes of storage.
For an employee number of 100, the first byte of the EMPNUM column contains 0
and the second byte contains 100. The second byte contains 100 because the data
is shifted to the right. For the EMPNAME column, the key-value must be fully
padded to 20 characters, which is the maximum length of the VARCHAR used to
define the column.

Correlation Names
A correlation name is a name associated with a table or view in an SQL statement for
one or more of these reasons:

 To distinguish the table or view from another table or view referred to in the
statement

 To qualify an ambiguous column reference

 To distinguish different uses of the same table

 To make the query shorter
HP NonStop SQL/MP Reference Manual—523352-013
C-128

Correlation Names
A correlation name can be explicit or implicit.

An explicit correlation name is an SQL identifier associated with a table or view in the
FROM clause of a SELECT statement, in the select-statement of an INSERT
statement, or in a subquery. The name must be unique within the FROM clause.

An explicit correlation name is known only to the statement in which you define it. You
can use the same identifier as a correlation name in another statement.

A table or view reference that has no explicit correlation name has an implicit
correlation name. The implicit correlation name is the table or view name without the
optional subvolume, volume, and node qualifiers, or—if the reference to the table or
view is a DEFINE—the portion of the DEFINE name that follows the equals sign (=).

You cannot use an implicit correlation name for a reference that has an explicit
correlation name within the statement.

This example shows the uses of both explicit and implicit correlation names. The query
refers to two tables (ORDERS and CUSTOMER) that contain columns named
CUSTNUM. In the WHERE clause, one column reference is qualified by an implicit
correlation name (ORDERS) and the other by an explicit correlation name (X):

SELECT ORDERNUM, CUSTNAME FROM ORDERS, CUSTOMER X

 WHERE ORDERS.CUSTNUM = X.CUSTNUM and ORDERS.CUSTNUM = 543;
HP NonStop SQL/MP Reference Manual—523352-013
C-129

COUNT Function
COUNT Function
COUNT is a function that counts the number of rows that result from a query or the
number of rows that contain a distinct value in a specific column.

The result of COUNT is data type LARGEINT. The result can never be null.

*

specifies that COUNT should not exclude null values from the aggregate set. If the
set is empty, COUNT returns zero.

DISTINCT column-name

specifies a set of distinct column values from each row of the result table to
determine COUNT. The column cannot be a column from a view that corresponds
to an expression in the view definition.

Duplicate rows are eliminated only if you specify DISTINCT; otherwise, all rows are
included whether or not you specify ALL.

If you specify DISTINCT in more than one COUNT function in the same statement,
the functions must refer the same column.

Specifying DISTINCT with the COUNT function places no restrictions on the use of
DISTINCT with AVG, SUM, MAX, or MIN.

Considerations—COUNT

 COUNT is evaluated after eliminating all null values from the aggregate set, unless
you specify an asterisk (*). If the set is empty, COUNT returns zero.

Example—COUNT

This example counts the number of distinct departments:

>> SELECT COUNT (DISTINCT DEPTNUM) FROM PERSNL.EMPLOYEE;
(EXPR)

 11
--- 1 row(s) selected.
>>

COUNT { (*) }
 { (DISTINCT column-name) }
HP NonStop SQL/MP Reference Manual—523352-013
C-130

CPRLSRCE Table
CPRLSRCE Table
The CPRLSRCE table is a catalog table that contains source definitions for each
collation described in the CPRULES table. Table C-9 lists the contents of the
CPRLSRCE table.

The CPRLSRCE table was added in version 300.

Guardian names in the CPRLSRCE table are fully qualified and use uppercase
characters.

CPRULES Table
The CPRULES table is a catalog table that contains one row for each collation.
Table C-10 describes the contents of the CPRULES table.

The CPRULES table was added in version 300.

Guardian names in the CPRULES table are fully qualified and use uppercase
characters.

Table C-9. The CPRLSRCE Table

Column Name Data Type Description

1 CPRULESNAME * CHAR(34) Collation name

2 SEQNUMBER * SMALLINT
UNSIGNED

Sequence number for the source line; first line has
SEQNUMBER = 1

 3 TEXT VARCHAR
(256)

Source text

* Indicates primary key

Table C-10. The CPRULES Table

Column Name Data Type Description

1 CPRULESNAME * CHAR(34) Collation name

 2 CHARACTERISTICS CHAR(1) Properties of the collation: O, if only
identical strings sort equal N, if some
nonidentical strings sort equal

 3 CPRULESCLASS CHAR(1) Always U.

 4 CPROBJSIZE INTEGER
UNSIGNED

Minimum size of buffer needed to store
object

 5 CHARACTERSET CHAR (30) Name of character set assumed by the
collation

 6 CPRULESVERSION SMALLINT
UNSIGNED

Version number of most recent version
feature used in collation

* Indicates primary key
HP NonStop SQL/MP Reference Manual—523352-013
C-131

CREATE CATALOG Statement
CREATE CATALOG Statement
CREATE CATALOG is a DDL statement that creates a new catalog. Each new catalog
includes a complete set of catalog tables and indexes. For information about the
contents of a catalog, see Catalogs on page C-8.

catalog

is the name of the Guardian subvolume to contain the catalog (or an equivalent
DEFINE) and is also the name of the new catalog. The volume on which the
subvolume resides must be audited by the TMF subsystem and catalog must be
a unique catalog name on that volume. If SMF is installed on your node, the
volume on which the subvolume resides can be a virtual or direct volume. You
cannot specify any $*.ZYS*. subvolumes for catalog.

If SMF is installed on your node and the default volume is a virtual volume, SQL
places the set of catalog tables on the virtual volume. If the default volume is a
direct volume, the catalog tables reside on the physical volume as direct files not
managed by SMF.

If you omit catalog, SQL uses the current default catalog.

SECURE "rwep"

specifies security for the new catalog. If you omit the SECURE clause, SQL uses
the default security of the user who creates the catalog. (For more information, see
Security on page S-11.)

PHYSVOL volume-name

If SMF is installed on your node, specifies a physical volume on which to place the
set of catalog tables. This option overrides SMF features. volume-name can be
either the name of a physical volume or equivalent DEFINE. Do not include the
node name in your volume name.

This option is available only if you specify a virtual volume and subvolume for
catalog. volume-name must belong to the virtual volume you specify.

CREATE CATALOG [catalog] [SECURE "rwep"]
 [PHYSVOL volume-name] [attribute-spec]

attribute-spec is:
{ EXTENT { (pri-ext-size[,sec-ext-size]) }
 { ext-size }
{ MAXEXTENTS integer }

Note. The attribute-spec option is supported on systems running J06.05 and later J-
series RVUs or H06.16 and later H-series RVUs.
HP NonStop SQL/MP Reference Manual—523352-013
C-132

CREATE CATALOG Statement
attribute-spec

specifies physical file attributes for the file that holds catalog tables and indexes.
The following file attributes can be specified through the attribute-spec option:

EXTENT { (pri-ext-size [, sec-ext-size]) }
 { ext-size }

The various options allowed under ext-size, pri-ext-size, or sec-ext-
size are:

integer[PAGE[S]]
[BYTE[S]]
[REC[S]]
[MEGABYTE[S]]
[GIGABYTE[S]]

For Catalog tables, the default is 16 pages for the primary extent and 128
pages for each secondary extent.

For Catalog indexes, the default is 16 pages for the primary extent and 64
pages for each secondary extent.

The default unit type is PAGE.

For more information see, EXTENT File Attribute on page E-30

MAXEXTENTS num-extents

is an integer from 1 to 940 that specifies the maximum number of extents that
can be allocated.

The catalog tables and indexes are of Format 1 type.

For more information see, MAXEXTENTS File Attribute on page M-2.

Note. The attribute-spec option is supported on systems running J06.05 and later J-
series RVUs, or H06.16 and later H-series RVUs.
HP NonStop SQL/MP Reference Manual—523352-013
C-133

Considerations—CREATE CATALOG
Considerations—CREATE CATALOG

 CREATE CATALOG requires authority to write to the SQL.CATALOGS table,
because SQL adds an entry to that table for the new catalog.

The owner of the new catalog is the user whose process created the catalog.
However, the operations allowed on the tables and indexes that make up the
catalog itself (as described under Catalogs on page C-8) are more limited than
those allowed on ordinary tables and indexes, even for the owner. You can delete
catalog tables only with DROP CATALOG (not even with CLEANUP unless you
specify CLEANUP *,CATALOG;), you cannot divide catalog tables, and you cannot
alter file attributes of catalog tables except for those related to security.

Secure catalogs so that other users who need to access them have appropriate
authority. Users who require write access must have read access as well.
Programs that use objects described in a catalog must have write access to the
TRANSIDS and USAGES tables. For programs to be registered in a catalog, the
SQL-compiling process must have write access to the PROGRAMS, TRANSIDS,
and USAGES tables.

Catalogs can be resecured with ALTER CATALOG. The PROGRAMS, TRANSIDS,
and USAGES tables (but not other catalog tables) can be individually resecured
with ALTER TABLE.

Only one DDL statement can operate on a given SQL object (or partition of an SQL
object) at a time. An error occurs if you attempt to execute a CREATE CATALOG
statement while another process is executing a DDL operation on the same object.
The specific error depends on the DDL operation involved and the phase of the
operation at which the conflict occurs. (For information, see DDL (Data Definition
Language) Statements on page D-20.)

 For better performance when several SQL catalogs are on the same disk volume,
the system administrator should set the disk process cache to an appropriate value
with the Peripheral Utility Program (PUP) SETCACHE command. This strategy is
especially important for tables with many partitions. The performance of DDL
statements such as CREATE TABLE, ALTER TABLE ADD PARTITION, and DROP
TABLE can be greatly enhanced with an effective cache setting.

For example, a table with 200 partitions, all described in a single catalog, has
40,000 rows in the PARTNS catalog table and in the IXPART01 index on the
PARTNS catalog table. Creating such a table causes more than 80,000 writes to
the catalog. Using the default cache value can cause the operation to take up to 25
times longer than if you set disk cache to 4 MB.

For more information about managing cache, see the SQL/MP Installation and
Management Guide. For information about PUP for D-series systems, see the
Peripheral Utility Program (PUP) Reference Manual.

If SMF is installed on your node, there are two ways to place the set of catalog
tables on a single physical volume:
HP NonStop SQL/MP Reference Manual—523352-013
C-134

Examples—CREATE CATALOG
 Specify a direct subvolume for catalog

 Specify a virtual volume and subvolume for catalog and a physical volume
that belongs to the virtual volume in PHYSVOL. Do not include node name in
your volume name.

If you specify a virtual volume for catalog and omit the PHYSVOL option, SQL
can distribute catalog tables among multiple physical volumes in the virtual volume.

 The version number of a new catalog is the version of NonStop SQL/MP on the
node where the catalog resides, even if you create the catalog from a node with a
different version number.

For example, if you issue CREATE CATALOG from a version 315 node but specify
a catalog subvolume on a version 1 node, the new catalog is a version 1 catalog.

 The user specified EXTENT and MAXEXTENTS attributes apply for catalog tables
and indexes.

 If the user specifies the EXTENT attribute with only primary extent value, then the
secondary extent value is also set with the same value as primary extent.

 If the user specifies the EXTENT attribute but does not specify the MAXEXTENTS
attribute, then MAXEXTENTS will be calculated by SQL, based on the primary and
secondary extents value.

 If the user specifies the EXTENT attribute and MAXEXTENTS attribute, then SQL
will check if the user specified MAXEXTENTS is lower than the maximum possible
extents based on the primary and secondary extents value. If it is lower, SQL
accepts the user specified MAXEXTENTS. If it is higher, an error is returned during
file creation.

Examples—CREATE CATALOG

 This example creates a catalog named PERSNL on node \SYS1 and volume
$VOL1, with security “nunu”:

CREATE CATALOG \SYS1.$VOL1.PERSNL SECURE "nunu";

 This SQLCI example uses ALTER DEFINE to set the CATALOG attribute of the
=_DEFAULTS DEFINE before creating a catalog. The new catalog is created on
\SYS1.$VOL.SALES.

ALTER DEFINE =_DEFAULTS, CATALOG \SYS1.$VOL.SALES;

CREATE CATALOG;

 This example creates a catalog named PERSNL on node \SYS1 and volume
$VOL1, with EXTENT 100. MAXEXTENTS will be calculated by SQL:

CREATE CATALOG \SYS1.$VOL1.PERSNL EXTENT 100;
HP NonStop SQL/MP Reference Manual—523352-013
C-135

Examples—CREATE CATALOG
 This example creates a catalog named PERSNL on node \SYS1 and volume
$VOL1, with EXTENT (100,200). MAXEXTENTS will be calculated by SQL:

CREATE CATALOG \SYS1.$VOL1.PERSNL EXTENT (100,200);

 This example creates a catalog named PERSNL on node \SYS1 and volume
$VOL1, with EXTENT (100,200) and MAXEXTENTS 150:

CREATE CATALOG \SYS1.$VOL1.PERSNL EXTENT (100,200) MAXEXTENTS
150;
HP NonStop SQL/MP Reference Manual—523352-013
C-136

CREATE COLLATION Statement
CREATE COLLATION Statement
CREATE COLLATION is a DDL statement that creates a collation.

name

is a Guardian name (or an equivalent DEFINE) that is the name of the new
collation.

If SMF is installed on your node, the volume portion of name can be a virtual or
direct volume. If you specify only a subvolume, SQL creates a new collation object
in the current default volume. If the default volume is virtual, the collation resides
on the virtual volume. If the default volume is direct, the collation resides on the
physical volume as a direct file not managed by SMF.

FROM source

directs SQL to create the new collation by calling the collation compiler to compile
the definition in the EDIT file source (or an equivalent DEFINE). For information
about the contents of source, see Collation Definitions on page C-30.

If the compilation fails, SQL returns an error and does not update the catalog or
create the collation. The error message includes the name of a file that contains
diagnostic information about the compilation. For information about the diagnostic,
see the SQL/MP Messages Manual.

LIKE coll [WITH COMMENTS]

directs SQL to create the new collation like an existing collation coll. coll is a
collation name or an equivalent DEFINE. SQL does not include comments from
coll in the new collation unless you specify WITH COMMENTS.

CATALOG catalog

is the name of the catalog (or an equivalent DEFINE) in which to register the new
collation. If you omit the CATALOG clause, SQL uses the current default catalog.

PHYSVOL volume-name

If SMF is installed on your node, the PHYSVOL option directs SQL to override
SMF and place the collation object on the physical volume volume-name. For
volume-name, specify either a physical volume or equivalent DEFINE. Do not
include the node name in your volume name.

This option is available only if you specify a virtual volume for name. volume-
name must belong to the virtual volume you specify.

CREATE COLLATION name { FROM source }
 { LIKE coll [WITH COMMENTS] }

 [CATALOG catalog] [PHYSVOL volume-name]
HP NonStop SQL/MP Reference Manual—523352-013
C-137

Consideration—CREATE COLLATION
Consideration—CREATE COLLATION

CREATE COLLATION requires read and write authority for the catalog in which the
new collation is registered. The FROM clause requires read authority for the source
file. The LIKE clause requires read authority for the existing collation coll and for the
associated catalog tables.

Example—CREATE COLLATION

This example statement creates a collation named TRANSL2 from the definition in the
EDIT file $DATA.COLL.TRANSL2:

CREATE COLLATION TRANSL2 FROM $DATA.COLL.TRANSL2;
HP NonStop SQL/MP Reference Manual—523352-013
C-138

CREATE CONSTRAINT Statement
CREATE CONSTRAINT Statement
CREATE CONSTRAINT is a DDL statement that defines a constraint for a table. When
a constraint is in effect, all rows in the table, either directly or through a view, must
satisfy the constraint.

constraint

is the name of the constraint. constraint must be an SQL identifier that is
unique for the associated table. If SMF is installed on your node, the name of the
associated table must be either a virtual or direct name.

ON table

specifies the table associated with the constraint (or an equivalent DEFINE).

If table is a partition, the constraint applies to the entire table to which the
partition belongs. To create a constraint that applies only to a specific partition,
include the range of key values as part of the CHECK clause criteria. For example,
a constraint on a partition of the PARTLOC table in the sample database could
include this clause:

CHECK LOC_CODE >= "G00" AND LOC_CODE < "P00"

CHECK condition

is a search condition that specifies the conditions of the constraint and that is
satisfied by all existing rows of table. The search condition must follow these
rules:

 The text of the condition must have fewer than 3,000 bytes.

 The combined search conditions of all constraints associated with a table must
have fewer than 31,000 bytes.

 The search condition cannot include a function other than UPSHIFT, and
cannot include a subquery, a host variable, or a system-created SYSKEY
column.

 For any row of table, the search condition must be resolved by looking only
at that row.

DEFERRED

is an option to delay the validation of the constraint against all the existing rows in
the table. The constraint is applied immediately to the table to validate the new
inserts or updates. The locks on the table are released after the constraint is
applied. Then a browse-mode validation of the existing rows is completed. This

CREATE CONSTRAINT constraint ON table

 CHECK condition [DEFERRED]
HP NonStop SQL/MP Reference Manual—523352-013
C-139

Considerations—CREATE CONSTRAINT
enables concurrent DML operations on the table to complete without waiting
behind the locks.

Considerations—CREATE CONSTRAINT

 To create a constraint, you must be a generalized owner of the underlying table.
You must also have authority to read the table and authority to write to affected
catalogs.

CREATE CONSTRAINT requires an exclusive open on table, including any
partitions. The operation fails if the table is inaccessible or if other users have the
table open.

Only one DDL statement can operate on a given SQL object (or partition of an SQL
object) at a time. An error occurs if you attempt to execute a CREATE
CONSTRAINT statement while another process is executing a DDL operation on
the same object. The specific error depends on the DDL operation involved and
the phase of the operation at which the conflict occurs. (For information, see DDL
(Data Definition Language) Statements on page D-20.)

 When you create a constraint, SQL adds it to those constraints that already exist
for the table. The new constraint affects later INSERT and UPDATE operations; it
does not affect existing constraints.

You can determine the existing constraints for a table by querying the CONSTRNT
table of the catalog that contains the table description.

To cancel a constraint, use the DROP statement.

 CREATE CONSTRAINT fails if the table contains data that violates the constraint
being created.

 The DEFERRED option is not supported in a user-defined TMF transaction.

 When your table is large, you might want to avoid executing CREATE
CONSTRAINT in a user-defined TMF transaction. For a large table, the CREATE
CONSTRAINT operation might run for a long time. The delay could cause TMF to
require too much log file space to perform the logging required for all users.

If no user-defined TMF transaction is in progress when CREATE CONSTRAINT
executes, SQL automatically starts several separate transactions during the
operation. None of these transactions spans the entire lengthy period during which
the table is tested for qualifying rows.

 When a CREATE CONSTRAINT with the DEFERRED option is used, the
constraint is applied on the table and a browse-mode validation of the existing
rows is performed. In this window, certain inserts or updates on the table fail if the
constraint is violated. Later, if the browse-mode validation of the existing rows does
not satisfy the constraint, it will be dropped. As a result, the inserts or updates fail
due to the nonexistent constraint.

 CREATE CONSTRAINT invalidates SQL programs that use the underlying table.
HP NonStop SQL/MP Reference Manual—523352-013
C-140

Examples—CREATE CONSTRAINT
Examples—CREATE CONSTRAINT

 This example creates a constraint to ensure that only values greater than $10,000
are entered in the SALARY column:

CREATE CONSTRAINT ASAL ON \SYS1.$VOL1.PERSNL.EMPLOYEE

 CHECK SALARY > 10000;

 This example creates a constraint that enforces a relationship between two items
in a row. In this case, the constraint ensures that a delivery date for an order is not
earlier than the date the order was taken:

CREATE CONSTRAINT DATE_CONSTRNT ON SALES.ORDERS

 CHECK DELIV_DATE >= ORDER_DATE;

 This example creates a constraint to ensure that data in a character column is
stored in uppercase letters:

CREATE CONSTRAINT UPSHIFT_DESCRIPTION ON PARTS

 CHECK PARTDESC = UPSHIFT (PARTDESC);
HP NonStop SQL/MP Reference Manual—523352-013
C-141

CREATE INDEX Statement
CREATE INDEX Statement
CREATE INDEX is a DDL statement that creates an index based on one or more
columns of a table.

CREATE [UNIQUE] INDEX index ON table

 (col [ASC[ENDING]] [collate-spec]
 [DESC[ENDING]]

 [, col [ASC[ENDING]] [collate-spec]] ...)
 [DESC[ENDING]]

 [| CATALOG catalog |]
 [| PHYSVOL volume-name |]
 [| { INVALIDATE | NO INVALIDATE } |]
 [| KEYTAG key-specifier |]
 [| PARALLEL EXECUTION { ON [CONFIG file] | OFF } |]
 [| PARTITION (partition [, partition] ...) |]
 [| WITH SHARED ACCESS [wsa-spec] |]
 [| attribute-spec |]

collate-spec is:

 COLLATE { collation | CHARACTER SET }

wsa-spec is:

 {| NAME operation-name |}
 {| REPORT [TO collector | ON | OFF] |}
 {| { COMMIT [WORK] commit-options } |}
 {| { ROLLBACK [WORK] } |}

attribute-spec is:

 {| ALLOCATE integer |}
 {| { AUDITCOMPRESS | NO AUDITCOMPRESS } |}
 {| BLOCKSIZE integer |}
 {| { BUFFERED | NO BUFFERED } |}
 {| { CLEARONPURGE | NO CLEARONPURGE } |}
 {| { DCOMPRESS | NO DCOMPRESS } |}
 {| DSLACK percent |}
 {| EXTENT { size | (pri-size [,sec-size]) } |}
 {| { FORMAT 1 | FORMAT 2 } |}
 {| { ICOMPRESS | NO ICOMPRESS } |}
 {| ISLACK percent |}
 {| LOCKLENGTH integer |}
 {| MAXEXTENTS integer |} {| NOPURGEUNTIL date |}
 {| { SERIALWRITES | NO SERIALWRITES } |}
 {| SLACK percent |} {| TABLECODE integer |}
 {| { VERIFIEDWRITES | NO VERIFIEDWRITES } |}
HP NonStop SQL/MP Reference Manual—523352-013
C-142

CREATE INDEX Statement
UNIQUE

specifies that values in the column or set of columns that make up the index field
cannot be the same for two or more rows of the table. For indexes with multiple
columns, the value of the columns as a group determines uniqueness, not the
values of the individual columns.

SQL cannot create a UNIQUE index if any col specified for the index is a column
that allows null values or if the underlying table has duplicate row values for the
group of indexed columns.

index

is a Guardian name (or an equivalent DEFINE) for the new index. The fully
expanded index name must be unique in the network. If the index is partitioned,
index identifies the primary partition.

If SMF is installed on your node, the volume portion of index can be either a
direct or virtual volume. If you specify only a subvolume and index name, SQL
creates an index in the current default volume. If the default volume is virtual, the
index resides on the virtual volume. If the default volume is direct, the index
resides on the physical volume as a direct file not managed by SMF.

index can reside on any node or volume, independent of the location of the
underlying table, but the volume on which the index is created must be audited by
the TMF subsystem, even if the index itself is nonaudited. (An index is nonaudited
if its underlying table is nonaudited.)

table

is the name of the table for which to create the index (or an equivalent DEFINE).

col [ASC[ENDING] | DESC[ENDING]] [collate-spec]

specifies a column to include in the index, the order in which to store and retrieve
key values in the column within the index, and a collating sequence for the column
within the index.

The number of columns allowed in an index depends on the length of the index
key. For more information on limitations, see Index Keys on page I-9.

col must be a column in table, but does not need to be adjacent to other
columns specified for the index or in the same order relative to other columns as in
the table.

ASCENDING is the default order for col.
HP NonStop SQL/MP Reference Manual—523352-013
C-143

CREATE INDEX Statement
COLLATE { collation | CHARACTER SET }

specifies an alternate collating sequence for the column within the index. You can
use this clause only if the associated column is of a data type that allows a
collating sequence as part of its definition.

Specifying a collation for the index might affect the performance of certain
queries using the index because SQL cannot perform hash joins or hash groupings
on indexes with collations.

The default collating sequence for the column within the index is the same as the
collating sequence for the corresponding column of the underlying table.

CATALOG catalog

specifies the name of the catalog in which to describe the index (or an equivalent
DEFINE). catalog is the name of the subvolume that contains the catalog. The
index and catalog must be on the same node. The default is the current default
catalog.

PHYSVOL volume-name

If SMF is installed on your node, the PHYSVOL option directs SQL to override
SMF and place the index or primary partition on the physical volume
volume-name. For volume-name, specify either a physical volume or equivalent
DEFINE. Do not include the node name in your volume name.

You can specify a physical volume for each secondary partition in the PARTITION
clause.

This option is available only if you specify a virtual volume for index.
volume-name must belong to the virtual volume you specify.

INVALIDATE | NO INVALIDATE

specifies whether to invalidate programs that use the underlying table,:

If you do not specify either INVALIDATE or NO INVALIDATE and the underlying
table has similarity checks enabled, SQL handles programs compiled with CHECK
INOPERABLE plans as if you specified NO INVALIDATE and handles other
programs as if you specified INVALIDATE.

collation is the name of an existing collation (or an equivalent
DEFINE) that specifies a collating sequence and uses the
same character set as the associated column

CHARACTER
SET

specifies a collating sequence based on the binary value of
characters in the column

INVALIDATE Invalidate all programs that use the underlying table and
modify the table's redefinition timestamp

NO INVALIDATE Do not invalidate programs or modify the table's redefinition
timestamp
HP NonStop SQL/MP Reference Manual—523352-013
C-144

CREATE INDEX Statement
In all other cases, the default is INVALIDATE.

KEYTAG key-specifier

specifies a two-byte key specifier unique among indexes for the table that is stored
in every row of the index.

If you omit the KEYTAG clause, SQL generates a keytag for the table.
System-generated keytags are sequential numbers, beginning with one.
User-specified keytag values can be either two bytes of character data or a
SMALLINT UNSIGNED value in the range 1 through 65535.

PARALLEL EXECUTION { ON [CONFIG file] | OFF }

specifies whether to load partitions of a partitioned index in parallel. (The
PARALLEL EXECUTION clause has no effect when you create an index on an
empty table.)

PARALLEL EXECUTION ON directs SQL to load index partitions in parallel.
PARALLEL EXECUTION OFF, the default, directs SQL to load index partitions
serially.

file is the name of an EDIT file (or an equivalent DEFINE) that contains
instructions for configuring the processes that load the index. For more information
about how to specify configuration instructions in file, see Parallel Index Loading
on page P-5.

If table and index are not partitioned, sorting by subsort process is usually
faster than the PARALLEL EXECUTION option. (Sorting by subsorts is not
recommended if the index is partitioned and parallel processing is used.) You
configure subsorts with class SUBSORT DEFINEs and the SUBSORT attribute of
the =_SORT_DEFAULTS DEFINE. For more information on configuring subsorts,
see the FastSort Manual. See Examples—CREATE INDEX on page C-150.

PARTITION (partition [, partition] ...)

defines secondary partitions for a partitioned index.

partition is the definition of a single secondary partition and includes the
location of the partition, the first key value for the partition, and (optionally) the
catalog, physical volume, and EXTENT, MAXEXTENT, and FORMAT values for the
partition. For information on this clause, see PARTITION Clause on page P-16.
HP NonStop SQL/MP Reference Manual—523352-013
C-145

CREATE INDEX Statement
 [NAME operation-name]
 []
WITH SHARED ACCESS [REPORT [TO collector | ON | OFF]]
 []
 [{ COMMIT [WORK] commit-options }]
 [{ ROLLBACK [WORK] }]

specifies that the table being indexed be available for read and write access by
DML statements and read access by utilities throughout most of the create index
operation.

The optional clauses allow you to name the operation, control EMS reporting for
the operation, specify a time window for the beginning of the commit phase of the
operation (the phase in which DML and utilities operations on the table are
temporarily restricted), and specify the timeout period for lock requests and the
handling of retryable errors during the commit phase of the operation.

You can use WITH SHARED ACCESS only if the table being indexed is audited
and if each partition of the table resides on a node running version 315 or later of
NonStop SQL/MP. You cannot use WITH SHARED ACCESS on a CREATE INDEX
statement that executes within a user-defined transaction.

For information about operations that use WITH SHARED ACCESS, see WITH
SHARED ACCESS OPTION on page W-4. For information about the optional
clauses, see NAME Option on page N-2, REPORT Option on page R-3, or
COMMIT Option on page C-52.

attribute-spec

specifies file attributes for the key-sequenced file that holds the index. This is a
summary of the file attributes you can specify:

Attribute Action

ALLOCATE Controls amount of disk space allocated. Default is to allocate
space as needed.

AUDITCOMPRESS Controls whether unchanged columns are included in audit
records. Default is to include only changed columns.

BLOCKSIZE Sets size of data blocks. Default is 4096.

BUFFERED* Turns buffering on or off.

CLEARONPURGE* Controls disk erasure when file is dropped.

DCOMPRESS* Controls key compression in data blocks.

DSLACK Sets percent of slack in data blocks. Default is value of the
SLACK attribute.

EXTENT Sets extent sizes. Default is 16 pages for the first extent, 64 for
others.

FORMAT* Sets format for primary partition of the index. Only valid on a
node running version 350 or later.
HP NonStop SQL/MP Reference Manual—523352-013
C-146

Considerations—CREATE INDEX
Attributes marked with an asterisk (*) default to the same value as the
corresponding attribute in the underlying table. For information, see the entry for a
specific attribute.

Considerations—CREATE INDEX

 Note that CREATE INDEX effectively invalidates online dumps of the table
underlying the new index. To ensure TMF file-recovery protection, make new
online dumps of all partitions of the table and its indexes. For information about
online dumps, see the SQL/MP Installation and Management Guide.

 To create an index, you must be a generalized owner of the underlying table. You
must also have authority to read and write to the underlying table, authority to write
to the USAGES table of catalogs that describe the table, and authority to write to
catalogs that receive the description of the index and partitions of a partitioned
index, and catalogs of dependent programs.

The underlying table and any protection views declared on that table must be
accessible at the time an index is created. If the table is partitioned, all partitions
must be accessible.

If you omit WITH SHARED ACCESS, CREATE INDEX locks out write operations
(including INSERT, DELETE, and UPDATE operations) on the table being indexed
throughout the operation. If other processes have rows in the table locked when
the operation begins, CREATE INDEX waits until its lock request is granted or
timeout occurs. If other processes are performing cursor SELECT or set-oriented
INSERT, UPDATE, or DELETE operations on the table and the CREATE INDEX
statement does not specify NO INVALIDATE, CREATE INDEX preempts those
processes to acquire its own lock, causing error 60 or error 8204 in the preempted
processes. While the index is being created, other processes can execute
SELECT statements and read-only utility operations on the table, except during the
final phase of the operation, when no access by other processes is allowed.

ICOMPRESS* Controls key compression in index blocks.

ISLACK Sets percent of slack in index blocks. Default is value of the
SLACK attribute.

LOCKLENGTH Sets number of leading bytes in the key to use for generic
locks. Default is 0, which specifies the entire key.

MAXEXTENTS Sets maximum extents. Default is 160.

NOPURGEUNTIL Sets date after which drop is allowed. Default allows
immediate drop.

SERIALWRITES* Specifies serial or parallel writes.

SLACK Sets percent of slack in blocks if not specified by DSLACK or
ISLACK. Default is 15 percent.

TABLECODE* Sets tablecode. Default is 0.

VERIFIEDWRITES* Controls verification of writes to disk.
HP NonStop SQL/MP Reference Manual—523352-013
C-147

Considerations—CREATE INDEX
If you specify WITH SHARED ACCESS, CREATE INDEX does not lock out
INSERT, DELETE, and UPDATE operations to the table being indexed except for a
relatively brief period during the final phase. CREATE INDEX does not preempt
other processes to acquire its lock even then. In addition, WITH SHARED
ACCESS includes a COMMIT option that allows you to control when the operation
starts the commit phase and whether to retry errors such as time outs during lock
requests.

You cannot perform other DDL operations on the table being indexed until the
CREATE INDEX operation finishes, with or without WITH SHARED ACCESS.

An index inherits the OWNER, SECURE, and AUDIT file attributes from its
underlying table. The security of the underlying table must authorize network
access if the index is to be partitioned across nodes or if the index is created on a
node different from the node on which the table resides.

Only one DDL statement can operate on a given SQL object (or partition of an SQL
object) at a time. An error occurs if you attempt to execute a CREATE INDEX
statement while another process is executing a DDL operation on the same object.
The specific error depends on the DDL operation involved and the phase of the
operation at which the conflict occurs. (For information, see DDL (Data Definition
Language) Statements on page D-20.)

 CREATE INDEX operations that use WITH SHARED ACCESS generally take
longer to complete than those that do not. However, because WITH SHARED
ACCESS operations allow concurrent read and write access to the source
partition, they cause far less application downtime than equivalent operations
without WITH SHARED ACCESS.

The duration of a WITH SHARED ACCESS operation increases with the number
and length of transactions on the node that contains the source partition,
particularly with the number and length of transactions that involve the source
partition and the amount of activity on the audit trail used for the source partition.

 If a CREATE INDEX operation terminates abnormally, you (or another user with
access to the super ID) must remove the new index with CLEANUP. If the
operation used the WITH SHARED ACCESS option to index a table with the
AUDITCOMPRESS file attribute (the default), you must also use ALTER TABLE to
reset the attribute.

When you create an index with a large number of partitions, the PARTNS catalog
table and associated IXPART01 index might become full. To correct the situation,
distribute object and partition definitions across multiple catalogs. For more
information about partition limits, see Limits on page L-6.

 An operation that uses WITH SHARED ACCESS cannot complete successfully
unless the TMF audit trail generated during the operation is available for reading
later in the operation. If a required audit trail has been overwritten, a WITH
SHARED ACCESS operation cancels changes made to the database and
terminates.
HP NonStop SQL/MP Reference Manual—523352-013
C-148

Considerations—CREATE INDEX
When performed on a base table whose partitions have valid TMF online dumps, a
CREATE INDEX operation that uses WITH SHARED ACCESS generates audit
information for each of the new index partitions. The index partitions might not
audit to the same audit trail as the source.

In addition, a CREATE INDEX operation that uses WITH SHARED ACCESS turns
off the AUDITCOMPRESS file attribute for the table being indexed for the duration
of the operation. This increases the amount of audit information for the table during
this period.

Lengthy operations that use WITH SHARED ACCESS might require an operator to
mount tapes of previously taken TMF audit dumps. (Requests to mount TMF audit
dump tapes for WITH SHARED ACCESS operations are not distinguishable from
other requests to mount TMF audit dump tapes. Such requests are generally sent
to an operator's console. SQL does not return information about such requests to
the terminal or process that started the operation.)

 Rows in an index are stored in ascending or descending order, as defined with
CREATE INDEX, for the first column and subsequent columns of the index. For
sorting purposes, null values are considered greater than all other values.

If multiple index rows share the same value for the first column, SQL uses values
in the second column to order the rows, and so forth. If duplicate index rows occur
in a nonunique index, SQL stores duplicate index key values in ascending or
descending order, depending on the sequence specified for the columns of the
primary key of the underlying table.

 There is a limit on the number of indexes that can exist for a table and on the
number of partitions that can exist for an index. For information, see Limits on
page L-6.

The type of partition array associated with an index affects these limits. The
partition array for an index is always the same type as that associated with the
underlying base table.

 These considerations apply to index partition formats:

 The default partition format is based on the partition array value of the
underlying table. If the partition array of the underlying table is STANDARD or
EXTENDED, the default partition format is 1. If the partition array of the
underlying table is FORMAT2ENABLED, the default partition format is 2. For
relative and entry-sequenced tables, the partition format is always 1 because
such tables cannot have a FORMAT2ENABLED partition array.

 An index inherits its partition array value from the underlying table. Because
there is no command to explicitly set the partition array value for an index, a
table must be Format 2-enabled before any of its index partitions can be
Format 2.

 When you create a table with a FORMAT2ENABLED partition array, the table
will have an object version of at least version 350. Therefore, all partitions of
HP NonStop SQL/MP Reference Manual—523352-013
C-149

Examples—CREATE INDEX
the table and its index’s partitions must be cataloged in version 350 or later
catalogs for the CREATE INDEX catalog to succeed.

Examples—CREATE INDEX

 This example creates an index on the LAST_NAME and FIRST_NAME columns of
table EMPLOYEE:

CREATE INDEX \SYS1.$VOL1.PERSNL.EMPLOYE0 ON
 \SYS1.$VOL1.PERSNL.EMPLOYEE (LAST_NAME, FIRST_NAME) CATALOG
 \SYS1.$VOL1.PERSNL;

 This example creates an index on a single column of the EMPLOYEE table and
specifies a maximum number of extents for the index.

CREATE INDEX EMPLOYE2 ON EMPLOYEE (JOBCODE)
 CATALOG PERSNL MAXEXTENTS 200
 WITH SHARED ACCESS NAME CR_IND_EMP2 COMMIT BY REQUEST;
 ...
 CONTINUE CR_IND_EMP2 ONCOMMITERROR COMMIT BY REQUEST;

The WITH SHARED ACCESS option allows other processes to select, delete,
insert, and update records in the EMPLOYEE table during most of the operation;
without WITH SHARED ACCESS, other processes would be able to select from
the EMPLOYEE table only during the operation. The COMMIT BY REQUEST
option allows the user to control entry to the commit phase of the operation, which
does lock out other processes. The CONTINUE statement starts the commit
phase, directing SQL to return control to the user if a retryable error occurs during
the phase.

 This example improves the efficiency of queries on customers placing orders by
adding an index on the CUSTNUM column in the ORDERS table. It specifies WITH
SHARED ACCESS so that—as in the previous example—there is no application
downtime during most of the operation.

CREATE INDEX SALES.XORDCUS ON SALES.ORDERS (CUSTNUM)
 CATALOG SALES
 MAXEXTENTS 500
 WITH SHARED ACCESS REPORT ON COMMIT BY REQUEST;
 ...
 CONTINUE CREATE_INDEX;

Because the statement does not specify the NAME option of WITH SHARED
ACCESS, the operation name defaults to CREATE_INDEX. REPORT ON turns on
EMS reporting for the WITH SHARED ACCESS operation. COMMIT BY
REQUEST allows the user to control entry to the final phase of the operation, as
explained in the preceding example, but in this case, the CONTINUE statement
that starts the commit phase does not request user control if retryable errors occur.
Any errors in the final phase of the operation cause the entire operation to be rolled
back.
HP NonStop SQL/MP Reference Manual—523352-013
C-150

Examples—CREATE INDEX
 This example prevents the addition of duplicate employee names to the employee
table by creating a unique index on the LAST_NAME and FIRST_NAME columns:

CREATE UNIQUE INDEX PERSNL.XEMPNAM
 ON PERSNL.EMPLOYEE (LAST_NAME FIRST_NAME)
 CATALOG PERSNL;

 This example creates a nonpartitioned index using a simple parallel sort with
subsorts. The DEFINEs set up a sort operation with four subsort processes. The
CREATE INDEX statement starts a sort process that uses the specified subsort
processes:

>> ADD DEFINE =_SORT_DEFAULTS, CLASS SORT, SUBSORTS (=SS1,
+> =SS2, =SS3, =SS4);
>> ADD DEFINE =SS1, CLASS SUBSORT, SCRATCH $VOL1;
>> ADD DEFINE =SS2, CLASS SUBSORT, SCRATCH $VOL2;
>> ADD DEFINE =SS3, CLASS SUBSORT, SCRATCH $VOL3;
>> ADD DEFINE =SS4, CLASS SUBSORT, SCRATCH $VOL4;
>> CREATE INDEX AGEINDEX ON CUSTABLE (COL2);

 This example creates a Format 2-enabled index with four Format 2 partitions
(assuming that the EMPLOYEE table is a format 2-enabled table):

CREATE INDEX $VOL1.PERSNL.EMPLOYE0 ON
 \SYS1.$VOL1.PERSNL.EMPLOYEE (LAST_NAME)
PARTITION ($VOL2.PERSNL.EMPLOYE0 FIRST KEY “D” ,
 ($VOL3.PERSNL.EMPLOYE0 FIRST KEY “K” ,
 ($VOL4.PERSNL.EMPLOYE0 FIRST KEY “S”)
FORMAT 2;
HP NonStop SQL/MP Reference Manual—523352-013
C-151

CREATE SYSTEM CATALOG Command
CREATE SYSTEM CATALOG Command
CREATE SYSTEM CATALOG is an SQLCI command that allows the local super ID to
create the system catalog, including the SQL.CATALOGS table, when NonStop
SQL/MP is first installed on a node.

catalog-name

specifies the location of the system catalog on the local node.

catalog-name is the volume and subvolume name of the new system catalog (or
an equivalent CLASS CATALOG DEFINE). The volume you specify must be
audited. The subvolume name must be unique among catalog names on the
volume.

The default catalog-name is $SYSTEM.SQL.

If SMF is installed on your node, catalog-name can be either a direct or virtual
volume.

If you specify only a subvolume for catalog-name, SQL creates the set of system
catalog tables in the current default volume. If the default is a virtual volume, the
set of system catalog tables resides on the virtual volume. If the default is a
physical volume, the set of catalog tables resides on the physical volume as direct
files not managed by SMF.

PHYSVOL volume-name

If SMF is installed on your node, the PHYSVOL option directs SQL to override
SMF and place the system catalog on the physical volume volume-name. For
volume-name, specify either a physical volume or equivalent DEFINE. Do not
include the node name in your volume name.

This option is available only if you specify a virtual volume for catalog-name.
volume-name most belong to the virtual volume you specify.

Considerations—CREATE SYSTEM CATALOG

 Only the local super ID can create a system catalog.

 The TMF subsystem must be operating when you execute CREATE SYSTEM
CATALOG.

 SQL creates the CATALOGS table on a subvolume named SQL on the same
volume as the remainder of the system catalog. The CATALOGS table is described
in the system catalog, and the system catalog is registered in the CATALOGS
table.

CREATE SYSTEM CATALOG [[catalog-name]
 [PHYSVOL volume-name]];
HP NonStop SQL/MP Reference Manual—523352-013
C-152

Examples—CREATE SYSTEM CATALOG
 The security defined for the CATALOGS table is the default security for the super
ID. Use ALTER TABLE to alter the security as needed to grant other users
authority to read and write to the table to create catalogs.

 If you execute CREATE SYSTEM CATALOG when a system catalog already exists
on the node, SQLCI reports an error.

 If SMF is installed on your node, there are two ways to place the set of catalog
tables on a single physical volume:

 Specify a direct volume and subvolume for catalog-name

 Specify a virtual volume and subvolume for catalog-name and a physical
volume that belongs to the virtual volume in PHYSVOL. Do not include the
node name in your volume name.

If you specify a virtual volume for catalog and omit the PHYSVOL option,
SQL can distribute catalog tables among multiple physical volumes in the
virtual volume.

Examples—CREATE SYSTEM CATALOG

 This example creates a system catalog on $SYSTEM.SQL:

CREATE SYSTEM CATALOG;

 This example creates a system catalog $VOL.SUBVOL. The CATALOGS table
resides on $VOL.SQL, but the other catalog tables and indexes reside on
$VOL.SUBVOL:

CREATE SYSTEM CATALOG $VOL.SUBVOL;
HP NonStop SQL/MP Reference Manual—523352-013
C-153

CREATE TABLE Statement
CREATE TABLE Statement
CREATE TABLE is a DDL statement that creates a table.

CREATE TABLE requires you to specify a table name and a description of each
column in the table, but allows you to specify many other attributes of the table as well.
A typical table definition also includes a description of the primary key or clustering key
for the table (which affects data retrieval and storage for the table) and the name of the
catalog to receive the description of the table.

CREATE TABLE table { like-spec }
 { definition-spec }

 [| CATALOG catalog |]
 [| PHYSVOL volume-name |]
 [| CLUSTERING KEY key-column-list |]
 [| { ORGANIZATION } { K[EY SEQUENCED] } |]
 [| { ORGANISATION } { E[NTRY SEQUENCED] } |]
 [| { R[ELATIVE] } |]
 [| PARTITION (partition [, partition] ...) |]
 [| PARTITION ARRAY { | STANDARD | } |]
 [| { | EXTENDED | } |]
 [| { | FORMAT2ENABLED | } |]
 [| SECURE "rwep" |]
 [| SIMILARITY CHECK { ENABLE | DISABLE } |]
 [| attribute-spec |]

like-spec is:

 [| WITH COMMENTS |]
 LIKE source-table [| WITH CONSTRAINTS |]
 [| WITH HEADINGS |]
 [| WITH HELP TEXT |]

definition-spec is:

 { (col-def [, col-def] ... }
 { [, [PRIMARY] KEY key-column-list] }
 { [, col-def] ...) }
 { ([PRIMARY] KEY key-column-list , col-def }
 { [, col-def] ...) }
col-def is:

 column-name data-type
 [DEFAULT default | NO DEFAULT] [NOT NULL]
 [HEADING string | NO HEADING]

key-column-list for CLUSTERING KEY or PRIMARY KEY is:

 { col-name [ASC[ENDING] | DESC[ENDING]] }
 { (col-name [ASC[ENDING] | DESC[ENDING] }
 { [, col-name [ASC[ENDING] | DESC[ENDING]] ...) }
HP NonStop SQL/MP Reference Manual—523352-013
C-154

CREATE TABLE Statement
table

is a Guardian name (or an equivalent DEFINE) for the new table. The fully
expanded table name must be unique in the network. If the table is partitioned,
table identifies the primary partition.

The volume on which the table is created must be audited by the TMF subsystem,
even if the table itself is nonaudited.

If SMF is installed on your node, the volume portion of table can be either a
virtual or direct volume. If you specify only a subvolume for table, SQL places the
table or primary table partition on the current default volume. If the default is a
virtual volume, the table or primary partition resides on the virtual volume. If the
default is a direct volume, the table or primary table partition resides on the
physical volume as a direct file not managed by SMF.

LIKE source-table

directs SQL to create a table like the existing table or partition source-table,
omitting comments, constraints, headings, and help text unless these clauses are
specified:

If you specify LIKE, you cannot specify ORGANIZATION or CLUSTERING KEY
because they are defined by source-table.

attribute-spec is:

 {| ALLOCATE integer |}
 {| { AUDIT | NO AUDIT } |}
 {| { AUDITCOMPRESS | NO AUDITCOMPRESS } |}
 {| BLOCKSIZE integer |}
 {| { BUFFERED | NO BUFFERED } |}
 {| { CLEARONPURGE | NO CLEARONPURGE } |}
 {| { DCOMPRESS { 1 | 2 } | NO DCOMPRESS } |}
 {| EXTENT { (pri-ext-size[,sec-ext-size]) } |}
 {| { ext-size } |}
 [| FORMAT {1|2} |]
 {| { ICOMPRESS | NO ICOMPRESS } |}
 {| LOCKLENGTH integer |}
 {| MAXEXTENTS integer |}
 {| NOPURGEUNTIL date |}
 {| RECLENGTH integer |}
 {| { SERIALWRITES | NO SERIALWRITES } |}
 {| TABLECODE integer |}
 {| { VERIFIEDWRITES | NO VERIFIEDWRITES } |}

WITH COMMENTS uses comments from source-table

WITH CONSTRAINTS uses constraints from source-table

WITH HEADINGS uses headings from source-table

WITH HELP TEXT uses help text from source-table
HP NonStop SQL/MP Reference Manual—523352-013
C-155

CREATE TABLE Statement
You can use the CREATE TABLE command with the LIKE option to create a table
with a similar schema as a partition of an existing table. You can also use the
PARTITION clause with LIKE to create a partitioned table where all partitions of the
new table will be like the specified partition of the original table. Each partition of
the new table will be created using the same partition format as the specified
partition of the original table. You cannot use the FORMAT clause to override the
format.

For example, suppose that you have a two partition; Format 2 enabled table with a
Format 1 primary partition and a Format 2 secondary partition. If you specify the
primary partition as the template in a CREATE TABLE LIKE command, all
partitions of the new table will be Format 1. If, instead, you specify the secondary
partition as the template, all partitions of the new table will be Format 2. In either
case, the new table will also be Format 2 enabled.

SQL does not apply partitions, views, indexes, or owner information from the
source table to the created table. (The SQLCI DUP command applies partitions
and owner information to a duplicate copy of a table and optionally duplicates
views and indexes of the table.)

source-table is the name of an existing table (or an equivalent DEFINE).

col-def

defines a column in the table by specifying the name, data type, and (optionally)
other information about the column.

The sum of the lengths of all columns for the table cannot exceed the maximum
row length, which is the block size minus the header. For additional restrictions on
the number of columns allowed, see Limits on page L-6 and Data Types on
page D-1.

column-name

is an SQL identifier that is the name of a column. Each column name must be
unique within the table and cannot be an SQL reserved word. You cannot use
SYSKEY as a column name except when the table has a user-defined primary key.

data-type

specifies a data type for the column and (optionally, if the data type allows) an
alternate character set or collation for the column. For information, see Data Types
on page D-1.

A specific host language might not support all SQL data types. For more
information about host language type compatibility, see the SQL/MP programming
manual for your host language.
HP NonStop SQL/MP Reference Manual—523352-013
C-156

CREATE TABLE Statement
DEFAULT default | NO DEFAULT

specifies a default value for the column or specifies that the column does not have
a default value. default can be a literal of one of the special values CURRENT,
SYSTEM, or NULL. For information, see DEFAULT Clause on page D-26.

You must specify the DEFAULT clause if you specify the NOT NULL clause
because the default is DEFAULT NULL.

NOT NULL

specifies that the column cannot contain any null values. SQL allows null values in
a column unless you specify NOT NULL.

If you specify NOT NULL and NO DEFAULT, you must supply a value for the
column in each row inserted. You cannot specify NOT NULL if you also specify
DEFAULT NULL, either explicitly or by default.

HEADING string | NO HEADING

specifies a default heading for the column or specifies that the column has no
default heading.

If you omit this clause, the default heading is the column name.

For more information, see HEADING Clause on page H-1.

[PRIMARY] KEY key-column-list

specifies the set of columns that make up the primary key for a key-sequenced
table. Each column in the set must be a column previously defined for the table.
The columns do not need to be contiguous, but their combined length cannot
exceed 255 bytes.

SQL stores and retrieves rows in ascending or descending order, as specified, for
the first column in the list. If multiple rows have the same value in the first column,
SQL uses values in the second column to determine the order. If those are the
same, SQL uses the third column, and so on.

You can specify only one primary key (or one clustering key) for any particular
key-sequenced table. If you do not specify either the PRIMARY KEY clause or
CLUSTERING KEY clause for a key-sequenced table, SQL adds a SYSKEY
column to the table to use as the primary key.

Columns in the primary key definition cannot be updated and cannot contain null
values, even if you omit the NOT NULL clause in the column definition.

For more information, see Primary Keys on page P-27, Syskeys on page S-90, or
Clustering Keys on page C-28.

CATALOG catalog

specifies the catalog to hold the description of the table. The catalog and the table
must be on the same node. The default is the current default catalog.
HP NonStop SQL/MP Reference Manual—523352-013
C-157

CREATE TABLE Statement
PHYSVOL volume-name

If SMF is installed on your node, the PHYSVOL option directs SQL to override
SMF and place the table or primary table partition on the physical volume
volume-name. For volume-name, specify either a physical volume or equivalent
DEFINE. Do not specify the node name in your volume name.

This option is available only if you specify a virtual volume for
table.volume-name must belong to the virtual volume you specify.

You can specify a physical volume for each secondary partition in the PARTITION
clause.

CLUSTERING KEY key-column-list

specifies the set of columns that make up a clustering key for a key-sequenced
table. Each column in the set must be a column previously defined for the table.
The columns do not need to be contiguous, but their combined length cannot
exceed 247 bytes (not including the 8-byte SYSKEY).

You can specify only one clustering key (or one primary key) for any particular
key-sequenced table. If you do not specify either the PRIMARY KEY clause or
CLUSTERING KEY clause for a key-sequenced table, SQL adds a SYSKEY
column to the table to use as the primary key.

References to keys in other tables, or any references that require a unique key,
should always use a primary key rather than a SYSKEY or clustering key.

Columns in the clustering key definition cannot be updated and cannot contain null
values, even if you omit the NOT NULL clause in the column definition.

For information, see Primary Keys on page P-27, Syskeys on page S-90, or
Clustering Keys on page C-28.

[{ ORGANIZATION } { K[EY SEQUENCED] }]
[{ ORGANISATION } { E[NTRY SEQUENCED] }]
[{ R[ELATIVE] }]

specifies the file organization for the physical file that holds the table. For more
information, see File Organizations on page F-8. The default is KEY
SEQUENCED.

PARTITION (partition [, partition] ...)

defines the secondary partitions of a partitioned table.

partition is the definition of a single secondary partition and includes the
location of the partition, the first key value for the partition, and (optionally) the
catalog, physical volume, and EXTENT and MAXEXTENTS values for the partition.
For information, see PARTITION Clause on page P-16.
HP NonStop SQL/MP Reference Manual—523352-013
C-158

CREATE TABLE Statement
PARTITION ARRAY { STANDARD | EXTENDED | FORMAT2ENABLED }

specifies the type of partition array created for the underlying table and all
associated indexes:

The size of the partition array affects how many partitions can be created for a
table and its indexes. It also affects how many indexes can be created against the
base table. An extended and Format 2 enabled partition array supports a larger
number of indexes and table and index partitions.

PARTITION ARRAY applies to partitions created later for a table, even if the table
is not initially partitioned. To change the setting for a table, use the ALTER TABLE
command.

You can use the PARTITION ARRAY clause in SQLCI or in dynamic SQL
statements. To check the value of PARTITION ARRAY, use the FILEINFO DETAIL
command.

Tables and indexes using extended arrays require a version 320 or later catalog.
DML and DDL statements on tables and indexes with extended arrays can be
performed only from nodes running version 320 or later of NonStop SQL/MP. If
these conditions are not met, SQL returns an error.

Tables and indexes using Format 2 enabled arrays require a version 350 or later
catalog. DML and DDL statements on tables and indexes with Format 2 enabled
arrays can be performed only from nodes running version 350 or later of NonStop
SQL/MP. If these conditions are not met, SQL returns an error.

You can set the partition array value to FORMAT2ENABLED by either specifying
PARTITION ARRAY FORMAT2ENABLED or by specifying FORMAT 2 for an
individual partition.

If you omit this clause, the default PARTITION ARRAY type is STANDARD for all
table types.

SECURE "rwep"

specifies the security for the table. For more information, see Security on
page S-11. The default is the security of the user who executes the CREATE
TABLE.

EXTENDED specifies the extended partition array available for
versions 320 and later of NonStop SQL/MP

STANDARD specifies the type of array used by default by NonStop
SQL/MP

FORMAT2ENABLED specifies a Format 2 enabled table that can contain any
combination of Format 1 or Format 2 partitions.
FORMAT2ENABLED implies that the partition array has
the same limits as a file with EXTENDED partition array.
Only valid on a node running version 350 or later.
HP NonStop SQL/MP Reference Manual—523352-013
C-159

CREATE TABLE Statement
SIMILARITY CHECK { ENABLE | DISABLE }

authorizes or prohibits similarity checks on the table. The default is SIMILARITY
CHECK DISABLE.

Tables that authorize similarity checks (SIMILARITY CHECK ENABLE) have
version 310 or later. Such tables cannot be registered in older catalogs or
accessed by older versions of NonStop SQL/MP.

attribute-spec

specifies physical file attributes for the file that holds the table. This list provides a
brief description of each attribute and its default value:

ALLOCATE Controls amount of disk space allocated. Default is to
allocate space as needed.

AUDIT Controls TMF auditing. Default is AUDIT.

AUDITCOMPRESS Controls whether unchanged columns are included in
audit records. Default is to include only changed columns.

BLOCKSIZE Sets size of data blocks. Default is 4096.

BUFFERED Turns buffering on or off. Default is on when audited, else
it is off.

CLEARONPURGE Controls disk erasure when file is dropped. Default is no
erasure.

DCOMPRESS Controls key compression in data blocks, and
compression method. Default is no compression (no
DCOMPRESS). Default compression method is 1, the
former method.

EXTENT Sets extent sizes. Default is 16 pages for the first extent,
64 for others.

FORMAT Specifies the format for the base partition of the table. To
specify the format for secondary partitions, you must
specify FORMAT in the PARTITION clauses defining each
partition. Only valid on a node running version 350 or
later.

ICOMPRESS Controls key compression in index blocks. Default is no
compression.

LOCKLENGTH Sets number of bytes in key to use for generic locks.
Default is entire key.

MAXEXTENTS Sets maximum extents. Default is 160.

NOPURGEUNTIL Sets date after which drop is allowed. Default allows
immediate drop.

RECLENGTH Sets bytes reserved for a relative-file row. Default is total
column lengths.
HP NonStop SQL/MP Reference Manual—523352-013
C-160

Considerations—CREATE TABLE
For more information, see the entry for a specific attribute.

Considerations—CREATE TABLE

 CREATE TABLE requires authority to write to the catalogs that receive the
description of the table and any partitions of the table.

The LIKE clause also requires authority to read the source table and the catalog
that describes the source table.

Only one DDL statement can operate on a given SQL object (or partition of an SQL
object) at a time. An error occurs if you attempt to execute a CREATE TABLE
statement while another process is executing a DDL operation on the same object.
The specific error depends on the DDL operation involved and the phase of the
operation at which the conflict occurs. For information, see DDL (Data Definition
Language) Statements on page D-20.

 For partitioned tables, if SMF is installed on your node and you omit the PHYSVOL
option, SQL can place all partitions on a single physical volume in the virtual
volume. To distribute partitions among multiple physical volumes, do one of these:

 create partitions in different virtual volumes

 specify PHYSVOL for the primary and secondary partitions

 specify direct file names for partitions

 A table definition must comply with NonStop SQL/MP limits. For information, see
Limits on page L-6.

When you create a table with a large number of partitions, the PARTNS catalog
table and associated IXPART01 index might become full. To correct the situation,
distribute object and partition definitions across multiple catalogs. For information
about partition limits, see Limits on page L-6.

 If you plan to add columns to a relative file organization, you should use
RECLENGTH.

 The DCOMPRESS extension applies only to key-sequenced tables.

 These considerations apply to partition formats:

 If you create a table with a FORMAT2ENABLED partition array, the table will
have an object version of at least version 350. Therefore, all partitions of the
table must be cataloged in version 350 or later catalogs for the CREATE
TABLE command to succeed.

SERIALWRITES Specifies serial or parallel writes. Default is serialwrites.

TABLECODE Sets tablecode. Default is 0.

VERIFIEDWRITES Controls verification of writes to disk. Default is no
verification.
HP NonStop SQL/MP Reference Manual—523352-013
C-161

Examples—CREATE TABLE
 Only key-sequenced tables can be Format 2 enabled and might have partitions
that are either Format 1 or 2. Relative and entry-sequenced tables can only be
Format 1 enabled and must have Format 1 partitions. If you attempt to specify
FORMAT 2 or PARTITION ARRAY FORMAT2ENABLED for a relative or
entry-sequenced table, you will receive an error. Specifying FORMAT 1 for
relative or entry-sequenced partitions is allowed.

 The default partition format is based on the partition array value for
key-sequenced tables. For STANDARD and EXTENDED, the default partition
format is 1. For FORMAT2ENABLED, the default partition format is 2.

 If PARTITION ARRAY is explicitly specified, a value of STANDARD or
EXTENDED requires the partition format for the base and all other partitions to
be FORMAT 1.

 If the partition array parameter is not explicitly specified and if one or more
partitions are explicitly specified as FORMAT, the result is as if you explicitly
specified PARTITION ARRAY FORMAT2ENABLED. You are only required to
specify either a single partition as FORMAT 2 or PARTITION ARRAY
FORMAT2ENABLED to create a Format 2-enabled table where all partitions
are Format 2.

 The partition array, format, and file parameters such as extent sizes must be
consistent for the CREATE TABLE command to succeed. This is true for both
explicitly specified and defaulted values.

Examples—CREATE TABLE

 This example creates a table named ORDERS on subvolume $VOL1.SALES. The
catalog also resides on subvolume $VOL1.SALES and the primary key is the
ORDERNUM column.

CREATE TABLE $VOL1.SALES.ORDERS (
 ORDERNUM NUMERIC (6) UNSIGNED NO DEFAULT NOT NULL,
 ORDER_DATE NUMERIC (6) NO DEFAULT NOT NULL,
 DELIV_DATE NUMERIC (6) NO DEFAULT NOT NULL,
 SALESREP NUMERIC (4) UNSIGNED NO DEFAULT NOT NULL,
 CUSTNUM NUMERIC (4) UNSIGNED NO DEFAULT NOT NULL,
 PRIMARY KEY ORDERNUM
)
 CATALOG $VOL1.SALES;

 This example creates a table with two columns: JOBCODE and JOBDESC. The
table is key-sequenced, and the primary key is JOBCODE. JOBCODE cannot
contain null values because it is used in the primary key.

CREATE TABLE \SYS1.$VOL1.PERSNL.JOB (
 JOBCODE DECIMAL (4) UNSIGNED NO DEFAULT,
 JOBDESC VARCHAR (18) NO DEFAULT,
 PRIMARY KEY JOBCODE)
CATALOG \SYS1.$VOL1.PERSNL ORGANIZATION KEY SEQUENCED;
HP NonStop SQL/MP Reference Manual—523352-013
C-162

Examples—CREATE TABLE
 This example creates a table with column headings. The EMP table contains three
columns, EMPNUM, EMPNAME, and SALARY, that are assigned the headings
“Employee/Number,” “Employee Name,” and “Monthly Salary,” respectively. The
primary key is EMPNUM.

CREATE TABLE EMP (
 EMPNUM DEC(5) NO DEFAULT NOT NULL
 HEADING "Employee/Number",
 EMPNAME CHAR(30) UPSHIFT NO DEFAULT
 HEADING "Employee Name",
 SALARY DEC(8,2) DEFAULT SYSTEM
 HEADING "Monthly Salary", PRIMARY KEY EMPNUM);
One row of EMP, with column headings, might appear as
follows. The SALARY column has the default value, and the
EMPNAME column is upshifted.
Employee
Number Employee Name Monthly Salary
-------- -------------------------------- --------------
 62389 ANNA JONES 3882.50

 This example creates a table with a clustering key.

CREATE TABLE PROC.HISTORY (
 SYSTEM_ID SMALLINT UNSIGNED,
 CPU SMALLINT UNSIGNED,
 PIN SMALLINT UNSIGNED,
 PROGRAM_FILE_NAME VARCHAR (34)
)
CATALOG \SYS3.$VOL1.SYSCAT
ORGANIZATION KEY SEQUENCED
CLUSTERING KEY (SYSTEM_ID, CPU, PIN);

 This example creates a table with Format 2 enabled partitions. Suppose that table
ODETAIL contains about 5 million rows. Each row has 20 bytes: ORDERNUM, 6;
PARTNUM, 4; UNIT_PRICE, 6; and QTY_ORDERED, 4. The PARTITION
specification could describe 24 partitions:

CREATE TABLE \SYS1.$VOL1.SALES.ODETAIL (
 ORDERNUM NUMERIC (6) UNSIGNED NO DEFAULT NOT NULL,
 PARTNUM NUMERIC (4) UNSIGNED NO DEFAULT NOT NULL,
 UNIT_PRICE NUMERIC (8,2) NO DEFAULT NOT NULL
 QTY_ORDERED NUMERIC (5) UNSIGNED NO DEFAULT NOT NULL,
 PRIMARY KEY (ORDERNUM , PARTNUM)
)
 CATALOG \SYS1.$VOL1.SALES
 ORGANIZATION KEY SEQUENCED

 PARTITION (
 \SYS1.$VOL2.SALES.ODETAIL
 CATALOG \SYS1.$VOL1.SALES
 EXTENT (16368,64)
 MAXEXTENTS 919
 FORMAT 2
 FIRST KEY 030000
 ,
HP NonStop SQL/MP Reference Manual—523352-013
C-163

Examples—CREATE TABLE
 \SYS1.$VOL3.SALES.ODETAIL
 CATALOG \SYS1.$VOL1.SALES
 EXTENT (16368,64)
 MAXEXTENTS 919
 FIRST KEY 040000
 ,
 ... --indicates 20 more
 \SYS5.$VOL23.SALES.ODETAIL --partition
 CATALOG \SYS5.VOL1.SALES --specifications
 EXTENT (16368,64)
 MAXEXTENTS 919 FIRST KEY 980000)
 LOCKLENGTH 6
 EXTENT (16368,64)
 MAXEXTENTS 919
 NOPURGEUNTIL OCT 31 2003, 23:59
 NO AUDIT;

Some of the attributes specified apply to the entire table and some only to the
primary partition. NOPURGEUNTIL, NO AUDIT, and LOCKLENGTH apply to all
partitions. The example specifies NO AUDIT for an initial load operation, after
which the attribute can be changed to AUDIT. The EXTENT and MAXEXTENTS
attributes apply to the primary partition.

 This example creates a partitioned, key-sequenced table with a clustering key:

CREATE TABLE HD.HISTORY (
 REGION_ID INTEGER,
 SYSTEM_ID SMALLINT UNSIGNED,
 CPU SMALLINT UNSIGNED,
 PIN SMALLINT UNSIGNED,
 PROGRAM_FILE_NAME VARCHAR (34),
 AGE LARGEINT
)
CATALOG HC
CLUSTERING KEY (REGION_ID DESC, SYSTEM_ID)
PARTITION (
 \SA.$VOL1.HD.HISTORY FIRST KEY
 (1000 -- region_id
 -- system_id has low value
)
 CATALOG \SA.$VOL1.HC,
 \NA.$VM.HD.HISTORY FIRST KEY
 (500 -- region_id
 -- system_id has low value
)
 CATALOG \NA.$VM.HC
);

 This example creates a table with the primary key of the TIMESTAMP data type
and partitions the table on a TIMESTAMP value. Another column has the TIME
data type.

CREATE TABLE $VOL1.SUBV1.PARTTIME
 (A TIMESTAMP DEFAULT CURRENT NOT NULL
 , B TIME DEFAULT TIME "11:00:00" NOT NULL
HP NonStop SQL/MP Reference Manual—523352-013
C-164

Examples—CREATE TABLE
 , C VARCHAR(300) NO DEFAULT NOT NULL
 , PRIMARY KEY A
)
 PARTITION (
 $VOL2.SUBV1.PARTTIME FIRST KEY TIMESTAMP
 "1989-12-1:12:00:00.000000");

 This example column definitions show various combinations of DEFAULT, NULL,
and NOT NULL clauses and their effects.

Column PARTNUM can contain null values. Because no DEFAULT clause is
specified, the column is initialized to a null value when a row is inserted without
supplying a value for PARTNUM:

(... PARTNUM NUMERIC (4) UNSIGNED ...)

Column DEPTNUM cannot contain null values. The user must supply a nonnull
value when a row is inserted:

(... DEPTNUM NUMERIC (4) UNSIGNED NO DEFAULT NOT NULL ...)

Column ORDERNUM can contain null values. The column is initialized to a system
default value when a row is inserted without supplying a value for ORDERNUM:

(... ORDERNUM NUMERIC (6) UNSIGNED DEFAULT SYSTEM ...)

Column EMPNUM cannot contain null values. The column is initialized to a system
default value when a row is inserted without supplying a value for EMPNUM:

(...EMPNUM NUMERIC (4) UNSIGNED DEFAULT SYSTEM NOT NULL...)

Column JOBCODE can contain null values. The user must supply a value for
JOBCODE when a row is inserted. The value supplied could be a null value:

(... JOBCODE NUMERIC (4) UNSIGNED NO DEFAULT ...)

 These examples create a Format 2 enabled table with four partitions, all of which
will be Format 2:

CREATE TABLE $VOL1.SALES.ORDERS (
 ORDERNUM PIX X(6) NO DEFAULT NOT NULL,
 ORDER_DATE PIC X(6) NO DEFAULT NOT NULL,
 DELIV_DATE PIC X(6) NO DEFAULT NOT NULL,
 SALESREP PIC X(4) NO DEFAULT NOT NULL,
 CUSTNUM PIC X(4) NO DEFAULT NOT NULL,
 PRIMARY KEY (ORDERNUM))
PARTITION ($VOL2.SALES.ORDERS FIRST KEY “D”,
 $VOL3.SALES.ORDERS FIRST KEY “K”,
 $VOL4.SALES.ORDERS FIRST KEY “S”)
PARTITION ARRAY FORMAT2ENABLED;

You could specify FORMAT 2 and get the same result:

CREATE TABLE $VOL1.SALES.ORDERS (
 ORDERNUM PIX X(6) NO DEFAULT NOT NULL,
 ORDER_DATE PIC X(6) NO DEFAULT NOT NULL,
 DELIV_DATE PIC X(6) NO DEFAULT NOT NULL,
HP NonStop SQL/MP Reference Manual—523352-013
C-165

CREATE VIEW Statement
 SALESREP PIC X(4) NO DEFAULT NOT NULL,
 CUSTNUM PIC X(4) NO DEFAULT NOT NULL,
 PRIMARY KEY (ORDERNUM))
PARTITION ($VOL2.SALES.ORDERS FIRST KEY “D”,
 $VOL3.SALES.ORDERS FIRST KEY “K”,
 $VOL4.SALES.ORDERS FIRST KEY “S”)
FORMAT 2;

 This example creates a Format 2 enabled table with four partitions. The first three
partitions are Format 1 and the last is Format 2:

CREATE TABLE $VOL1.SALES.ORDERS (
 ORDERNUM PIX X(6) NO DEFAULT NOT NULL,
 ORDER_DATE PIC X(6) NO DEFAULT NOT NULL,
 DELIV_DATE PIC X(6) NO DEFAULT NOT NULL,
 SALESREP PIC X(4) NO DEFAULT NOT NULL,
 CUSTNUM PIC X(4) NO DEFAULT NOT NULL,
 PRIMARY KEY (ORDERNUM))
PARTITION ($VOL2.SALES.ORDERS FIRST KEY “D”, FORMAT 1
 $VOL3.SALES.ORDERS FIRST KEY “K”, FORMAT 1
 $VOL4.SALES.ORDERS FIRST KEY “S”,FORMAT 2)
PARTITION ARRAY FORMAT2ENABLED;

CREATE VIEW Statement
CREATE VIEW is a DDL statement that creates a view.

view

specifies a Guardian name for the view (or an equivalent DEFINE). The fully
expanded view name must be unique among object names in the network.

The volume on which the view is created must be audited by the TMF subsystem,
even if the view itself is nonaudited.

CREATE VIEW view [(new-name [, new-name] ...)]

 AS select-statement

 [| FOR PROTECTION |]
 [| SIMILARITY CHECK { ENABLE | DISABLE } |]
 [| CATALOG catalog-name |]
 [| SECURE "rwep" |]
 [| WITH CHECK OPTION |]
 [| WITH HEADINGS |]
 [| WITH HELP TEXT |]

new-name is:

 new-column-name [HEADING string | NO HEADING]
HP NonStop SQL/MP Reference Manual—523352-013
C-166

CREATE VIEW Statement
[(new-name [, new-name] ...)]

specifies names for the columns of the view and, optionally, headings for the
columns. If you do not specify this clause, columns in the view have the same
names as the columns in the select list of select-statement.

No two columns of the view can have the same name; if a view refers to more than
one table and the select list refers to columns from different tables with the same
name, you must specify new names for columns that would otherwise have
duplicate names.

new-name is:

new-column-name [HEADING string | NO HEADING]

new-column-name

is an SQL identifier that is not a reserved word and that is unique among column
names for the view. Column names in the list must match one-for-one with
columns in the select-list of the AS select-statement clause.

HEADING string | NO HEADING

specifies a default heading for the column. (For more information, see HEADING
Clause on page H-1.)

AS select-statement

specifies the columns for the view and sets the selection criteria that determines
the rows that make up the view.

select-statement cannot include a host variable, an INTO or ORDER BY
clause, or (except in a subquery) the BROWSE, STABLE, or REPEATABLE access
option.

A select-statement that defines a shorthand view can include subqueries, a
FROM clause with multiple table references, and WHERE, GROUP BY, HAVING,
and ALL clauses. However, if any column in the select list is a function or an
expression, select-statement must include a column list. In addition, the
DISTINCT clause is allowed only within a function; for example, this statement is
allowed:

 CREATE VIEW v (c) AS
 SELECT COUNT (DISTINCT LAST_NAME) FROM EMPLOYEE;

However, this statement is not allowed:

 CREATE VIEW v (c) AS
 SELECT DISTINCT LAST_NAME FROM EMPLOYEE;

A select-statement that defines a protection view must also meet these
requirements:
HP NonStop SQL/MP Reference Manual—523352-013
C-167

CREATE VIEW Statement
 The FROM clause can refer to one table (with a correlation name, if desired),
but cannot refer to another view.

 The WHERE clause can refer only to columns in its select list.

 The select list cannot include expressions or functions and cannot refer to
duplicate column names.

 The statement cannot be combined with another SELECT statement using a
UNION operator and cannot include subqueries, the keyword DISTINCT, or the
GROUP BY or HAVING clause.

If select-statement includes a UNION operator, the view cannot be updated
and the view cannot participate in an inner or outer join.

If select-statement includes a LEFT JOIN operator, the view can be specified
only on the lefthand side of the first LEFT JOIN.

If SMF is installed on your node, any table to which the view refers must have
either a virtual or direct name.

FOR PROTECTION

specifies a protection view. If you omit this clause, the view is a shorthand view.

SIMILARITY CHECK { ENABLE | DISABLE }

authorizes or prohibits similarity checks on a protection view. (You cannot specify
this clause unless you also specify the FOR PROTECTION clause.) The default is
SIMILARITY CHECK DISABLE.

Views that authorize similarity checks (SIMILARITY CHECK ENABLE) have
version 310 or later. Such views cannot be registered in catalogs with old versions
or accessed by older versions of NonStop SQL/MP.

CATALOG catalog

specifies the catalog to hold the description of the view. catalog is the name of
the subvolume that contains the catalog and that is on the same node as the view.
For a protection view, catalog must be the catalog that holds the description of
the underlying table. (If the table is partitioned, the protection view is partitioned,
too, and each partition of the protection view is registered in the same catalog as
the corresponding partition of the table.)

The default is the current default catalog.

SECURE "rwep"

defines the security assigned to the view. The default is the default security of the
user whose process creates the view.

Security is interpreted differently for protection and shorthand views. For protection
views, you must ensure that users who have write access also have read access.
HP NonStop SQL/MP Reference Manual—523352-013
C-168

Considerations—CREATE VIEW
You must also ensure that purge authority includes the users with authority to
purge the underlying table. For a shorthand view, only purge authority has
meaning, although you must specify a complete security string. Anyone with
authority to read the underlying tables and views can also read the shorthand view.

For information, see Security on page S-11.

WITH CHECK OPTION

specifies that no row can be placed in the database through the view unless the
row satisfies the view definition. WITH CHECK OPTION applies only to protection
views. If you omit this option, a newly inserted row or an updated row need not
satisfy the view definition, which means that such a row can be inserted in the
table but it does not appear in the view.

WITH CHECK OPTION does not affect select-statement; rows must always
satisfy the view definition in this case.

WITH HEADINGS

specifies that the heading for a view column is inherited from the underlying table
or view column from which the new view column is derived. If you specify the
HEADING or NO HEADING clause in new-column-name, no heading is inherited.
A view column that is a function or an expression cannot inherit a heading.

WITH HELP TEXT

specifies that help text for a view column is inherited from an underlying base table
or view. A view column that is a function or an expression cannot inherit help text.

Considerations—CREATE VIEW

 CREATE VIEW requires authority to write to the catalog that receives the view
description and to the USAGES tables of catalogs describing the underlying tables
and views.

To create a protection view, you must also be the owner of the underlying table.
Any partitions or indexes of the table underlying the protection view must be
accessible when you create the view. To specify write access for a protection view,
you must have authority to write to the underlying table and all associated indexes
unless you are the super ID. To specify read access for a protection view, you must
have authority to read the underlying table and all associated indexes unless you
are the super ID. For protection views managed by SMF, view must be the same
type of name, virtual or direct, as the underlying table.

Only one DDL statement can operate on a given SQL object (or partition of an SQL
object) at a time. An error occurs if you attempt to execute a CREATE VIEW
statement while another process is executing a DDL operation on the same object.
The specific error depends on the DDL operation involved and the phase of the
operation at which the conflict occurs. (For more information, see DDL (Data
Definition Language) Statements on page D-20.)
HP NonStop SQL/MP Reference Manual—523352-013
C-169

Considerations—CREATE VIEW
 The CREATE VIEW statement, including any name expansion from the use of
asterisks in column, view, and table specifications, can have a maximum of 3,000
bytes.

 The data types of the columns of the view are inherited from the columns of the
table or view in which they are defined.

 A view can have as many as 200 to 400 columns, depending on the size of the
column definitions. The column definitions for the view must fit in a file label.

 A protection view and the underlying table must both be on the same volume and
must both be described in the same catalog. If the table is partitioned, the
protection view is partitioned, too, and each partition of the protection view is
registered in the same catalog as the corresponding partition of the table.

You cannot insert data in a protection view unless the view includes all the columns
of the underlying table that are defined with the NO DEFAULT option. In addition, if
the table underlying the view is an entry-sequenced table or a key-sequenced table
with a system-defined primary key, you cannot insert data in the view if the view
definition includes the system-defined primary key column in the WHERE clause.

A protection view inherits the AUDIT attribute of the underlying table. The OWNER
of a protection view is set to the owner of the underlying table.

The maximum number of protection views allowed on a table is approximately 180.

 A shorthand view is audited if all referenced tables and views are audited. A
shorthand view is nonaudited if all referenced tables and views are nonaudited. A
shorthand view has a mixed audit classification if some of the referenced tables or
views are audited and others are nonaudited, or if one of the referenced views has
a mixed audit classification.

The OWNER of a shorthand view is set to the process accessor ID of the creating
process.

A shorthand view that uses UNION cannot participate in a join. In addition, a
SELECT on such a view cannot specify a GROUP BY or HAVING clause or
include an aggregate function on any view column. A shorthand view based on an
inner or outer join cannot become an inner table of an outer join.

There is no limit on the number of shorthand views allowed on a table.

 A grouped view is a view defined with a SELECT that contains a GROUP BY or
HAVING clause that is not in a subquery, contains an aggregate function in the
select list, or contains another grouped view in the FROM clause.

A grouped view cannot be joined with any other table or view. A query on a
grouped view cannot contain a GROUP BY or HAVING clause, nor can it specify
an aggregate function on any columns of the grouped view.
HP NonStop SQL/MP Reference Manual—523352-013
C-170

Examples—CREATE VIEW
Examples—CREATE VIEW

 This example creates a shorthand view that includes part numbers and supplier
numbers for parts in which fewer than ten are in stock:

CREATE VIEW GETPARTS (PNUM, SNUM)
 AS SELECT P.PARTNUM, SUPPNUM FROM PARTLOC P, PARTSUPP S
 WHERE P.PARTNUM = S.PARTNUM AND QTY_ON_HAND < 10
 CATALOG $VOL1.INVENT;

 This example creates a protection view on the table EMPLOYEE that contains
rows with employee numbers greater than 1000. The view is secured so that
anyone on the network can read the view, but only a local user with super ID
authority can write to it. Any member of the owner's user group can purge the view.

CREATE VIEW \SYS1.$VOL1.PERSNL.EMPVIEW
 AS SELECT *
 FROM \SYS1.$VOL1.PERSNL.EMPLOYEE WHERE EMPNUM > 1000
 FOR PROTECTION
 CATALOG \SYS1.$VOL1.PERSNL
 SECURE "N-NC"
 WITH CHECK OPTION;

 This shorthand view retrieves average salary for each department:

CREATE VIEW \SYS1.$VOL1.PERSNL.DAVGSAL (DNUM, AVSAL)
 AS SELECT DEPTNUM, AVG(SALARY)
 FROM EMPLOYEE GROUP BY DEPTNUM CATALOG PERSNL;

 This view retrieves the annual salary for each employee and assigns the heading
“ANNUAL SALARY” to the ANNUAL_SALARY column. All other columns inherit
headings from the underlying table, EMP.

CREATE VIEW EMPV
 (EMPNUM, EMPNAME,
 ANNUAL_SALARY HEADING "ANNUAL SALARY", DEPTNUM)
 AS SELECT EMPNUM, EMPNAME, SALARY * 12, DEPTNUM
 FROM EMP WITH HEADINGS;

 This example shows an inappropriate way to join CUSTOMER and ORDERS. The
CUSTOMER table has 100 rows, and the ORDERS table has 300 rows. Because
the SELECT statement that defines the view does not include a WHERE clause,
each row in the CUSTOMER table is concatenated with each row in the ORDERS
table, resulting in a view with 30,000 rows.

Each row has the number of columns indicated in the column list of the CREATE
VIEW statement. Most rows in the view have no meaning because they are a
concatenation of a customer with an unrelated order. (See the next example for a
better way to join these two tables.)

CREATE VIEW BAD
 (C_CUSTNUM,O_CUSTNUM,CUSTNAME,STATE,ORDERNUM)
 AS SELECT C.CUSTNUM,O.CUSTNUM,CUSTNAME,STATE,ORDERNUM
 FROM SALES.CUSTOMER C, SALES.ORDERS O CATALOG SALES;
HP NonStop SQL/MP Reference Manual—523352-013
C-171

Examples—CREATE VIEW
This statement creates a view that joins the CUSTOMER and ORDERS tables in a
better way than in the previous example. The CREATE VIEW statement uses a
WHERE clause to join the two tables only at rows in which CUSTNUM values are
equal. The view can never contain more rows than the number of rows in the
largest table.

CREATE VIEW GOOD
 (C_CUSTNUM,O_CUSTNUM,CUSTNAME,STATE,ORDERNUM)
 AS SELECT C.CUSTNUM,O.CUSTNUM,CUSTNAME,STATE,ORDERNUM
 FROM SALES.CUSTOMER C, SALES.ORDERS O
 WHERE C.CUSTNUM = O.CUSTNUM CATALOG SALES;

For information about join methods, see Joins on page J-1 or the SQL/MP Query
Guide.
HP NonStop SQL/MP Reference Manual—523352-013
C-172

CURRENT Function
CURRENT Function
CURRENT is a function that returns the current local date, time, or both as a value of
type DATETIME.

SQL evaluates CURRENT only once in an SQL statement. If you use CURRENT more
than once in the same statement, each reference returns the same value.

[start-date-time TO] end-date-time

specifies the range of DATETIME fields on which CURRENT operates. The default
is YEAR TO FRACTION(6).

precision

is an unsigned integer in the range 1 through 6 that specifies the number of
significant digits with which the fraction of a second is expressed. The default is 6.

Example—CURRENT

If you execute an SQL statement on February 20, 2004 at 11:30 pm that contains this
call to CURRENT:

CURRENT YEAR TO DAY

the function returns this value:

2004-02-20

CURRENT [[start-date-time TO] end-date-time]

start-date-time is:

 { YEAR }
 { MONTH }
 { DAY }
 { HOUR }
 { MINUTE }
 { SECOND }
 { FRACTION }

end-date-time is:

 { YEAR }
 { MONTH }
 { DAY }
 { HOUR }
 { MINUTE }
 { SECOND }
 { FRACTION [(precision)] }
HP NonStop SQL/MP Reference Manual—523352-013
C-173

CURRENT_TIMESTAMP Function
CURRENT_TIMESTAMP Function
CURRENT_TIMESTAMP is an SQLCI function that returns a Julian timestamp in
Greenwich mean time for the current date and time. The data type of the returned
value is NUMERIC(18) or LARGEINT.

CURRENT_TIMESTAMP works in the SQLCI commands BREAK FOOTING, BREAK
TITLE, DETAIL, EXECUTE, PAGE FOOTING, PAGE TITLE, REPORT FOOTING,
REPORT TITLE, and SET PARAM. It does not work in DML statements or other SQL
statements.

Considerations—CURRENT_TIMESTAMP

 In reports, CURRENT_TIMESTAMP returns a new value for each detail line
printed. If you want the value of a timestamp to remain constant throughout a
report, use CURRENT instead of CURRENT_TIMESTAMP. SQLCI determines the
value of CURRENT only once for each query. (For example, if you use CURRENT
in a report title and footing, the printed timestamp value is the same in both
places.) CURRENT returns a timestamp with data type DATETIME.

 If you specify CURRENT_TIMESTAMP as a parameter value in a SET PARAM or
EXECUTE, it returns a timestamp for the time SET PARAM or EXECUTE
executes. Note that the results depend on whether you set the parameter in SET
PARAM or EXECUTE.

For example, these statements execute statement S (which uses parameter ?T)
twice, using a different Julian timestamp for each execution:

EXECUTE S USING ?T=CURRENT_TIMESTAMP; EXECUTE S
USING ?T=CURRENT_TIMESTAMP;

In contrast, this statement also execute the same statement S twice, but use the
same Julian timestamp (the time SET PARAM executed) for each execution:

SET PARAM ?T CURRENT_TIMESTAMP; EXECUTE S; EXECUTE S:

Example—CURRENT_TIMESTAMP

To print the current date in a detail line, include these items in the print list:

"Date: ", CURRENT_TIMESTAMP AS DATE "D2/M2/Y2", SPACE 5,
"Time: ", CURRENT_TIMESTAMP AS TIME "HP2:M2"

For example, on March 15, 2004 at 1:30 p.m., the detail line prints:

Date: 03/15/04 Time: 01:30 PM

CURRENT_TIMESTAMP
HP NonStop SQL/MP Reference Manual—523352-013
C-174

Cursors
Cursors
A cursor is a named mechanism defined by a SELECT statement and used in a host
language program. An opened cursor can be thought of as scanning the set of records
specified by the SELECT operation. The program processes a cursor like a sequential
file, fetching rows one by one. The row being fetched is at the current position of the
cursor. The program can use the current cursor position to designate a row to delete or
update. A cursor name is an SQL identifier.

Operations for each cursor used must execute in this order:

1. DECLARE defines the cursor.

2. OPEN determines the result table to fill the cursor and, for audited tables or views,
associates the cursor with a TMF transaction. The program must set values of host
variables or parameters in the cursor definition before the OPEN.

3. FETCH fills the cursor on the first fetch and then locks rows according to the
access specified on the SELECT statement associated with the cursor. If a sort is
required, all rows in the result table might be retrieved at this time and placed in a
temporary, sorted table.

4. DELETE or UPDATE WHERE CURRENT deletes or updates the row at the current
position of the cursor.

5. CLOSE (or FREE RESOURCES) releases the result table established on the
OPEN.

A loop can execute multiple sequences of operations 3 and 4. Operation 5 can be
performed any time after operation 2.

If the cursor locks or updates an audited table, the FETCH operation and subsequent
cursor operations must be within a TMF transaction.

A process that uses a cursor must have read authority for tables and protection views
referred to in the SELECT associated with the cursor. If the cursor refers to a
shorthand view, the process must have read authority for tables or protection views
underlying the shorthand view. If the cursor declaration specifies FOR UPDATE, the
process must also have write authority for the referenced table, protection view, and
underlying table of a view. SQL checks authority to use a cursor when you execute an
OPEN statement.

If you use a cursor to locate rows to delete without specifying FOR UPDATE in the
declaration, SQL checks only the read authority when the OPEN executes, although
the delete requires write authority. SQL checks for write authority when the DELETE
executes. If your program is having problems contending for data access with other
users, you can specify the IN EXCLUSIVE MODE clause on the SELECT statement in
the cursor declaration so that SQL does not have to escalate the lock when an
UPDATE or DELETE executes. If, however, your program is reading records
concurrently accessed by a cursor defined with an IN EXCLUSIVE MODE clause, your
program must wait for access.
HP NonStop SQL/MP Reference Manual—523352-013
C-175

Cursor Position
Cursor Position

Cursor position is similar to record position in a sequential file. Operations cause the
cursor to be positioned:

Your SELECT determines the order in which rows are returned through a cursor. To
specify the order, include an ORDER BY clause; otherwise, the order is undefined.

Cursor Stability

Cursor stability guarantees that the row at the current position of the cursor cannot be
modified by another transaction. SQL does not guarantee cursor stability unless you
define the cursor with the FOR UPDATE clause or you specify the REPEATABLE
access option.

A cursor lacks stability if it points to a copy of the data and the data is concurrently
available to other applications. Unless you specify the FOR UPDATE clause, this can
happen when the SELECT that defines the cursor requires any of these operations:

 Ordering the rows by a column

 Removing duplicate rows

 Performing other operations requiring that the table be copied into an interim result
table before use by your program

C89
The c89 command invokes components of the C compilation system from the OSS
environment. You can use it to perform any phase of a C compilation, including
compiling, binding, accelerating, and SQL-compiling (compiling C programs that
contain embedded SQL statements).

For information about c89, see the C/C++ Programmer's Guide or the SQL/MP
Programming Manual for C.

OPEN Before the first row

FETCH On the retrieved row (the current position)

DELETE Between rows

UPDATE No change (the current position)

CLOSE No position
HP NonStop SQL/MP Reference Manual—523352-013
C-176

D
Data Dictionary

The SQL/MP data dictionary is the set of all the catalogs on a network, together with
the disk file labels for all the objects described in the catalogs.

A catalog is a set of tables and indexes that describes SQL/MP objects. For
information, see Catalogs on page C-8.

Disk file labels are stored in directories on disk volumes. Each disk volume has a
directory that contains one file label for each file on the volume. The label for a file that
contains an SQL/MP object includes the name of the object, the name of the catalog
that describes the object, and other information about the file. The label information
enables NonStop SQL/MP to open and operate on the file without accessing the
catalog.

Data Types
Each column in an SQL table is associated with a data type. You specify the data type
for a column when you create the column with the CREATE TABLE or ALTER TABLE
statement by using this syntax.

{ CHAR[ACTER] [VARYING] [(len)] [char-set] [UPSHIFT] }
{ [COLLATE { collation | CHARACTER SET }] }
{ }
{ PIC[TURE] X [(len)] [DISPLAY] [char-set] [UPSHIFT] }
{ [COLLATE { collation | CHARACTER SET }] }
{ }
{ VARCHAR[ACTER] [(len)] [char-set] [UPSHIFT] }
{ [COLLATE { collation | CHARACTER SET }] }
{ }
{ NATIONAL CHAR[ACTER] [VARYING] [(len)] }
{ }
{ NCHAR[ACTER] [VARYING] [(len)] }
{ }
{ NUMERIC [(digits[,scale])] [SIGNED | UNSIGNED] }
{ }
{ {SMALLINT | INT[EGER] | LARGEINT } [SIGNED | UNSIGNED] }
{ }
{ {FLOAT [(precision)] | REAL | DOUBLE PRECISION } }
{ }
{ DEC[IMAL] (digits[,scale]) [SIGNED | UNSIGNED] }
{ }
{ PIC[TURE] [S]{ 9(integer) [V[9(scale)]] } }
{ { V9(scale) } }
{ [DISPLAY [SIGN IS LEADING]] }
{ [COMP] }
{ }
HP NonStop SQL/MP Reference Manual—523352-013
D-1

Data Types
CHAR[ACTER]

specifies a column with character data.

Unless you specify additional clauses, data type CHAR specifies a fixed-length,
single-byte column with an UNKNOWN character set and a collating sequence
based on the binary values of the characters.

VARYING

specifies that the number of characters in a value stored in the column can be
fewer than the maximum number of characters allowed in the column. Unless you
specify VARYING, each item stored in the column is handled as having the
maximum length for the column.

Note that values in a column declared as VARYING can be logically shorter than
the maximum length, but the internal size of a VARYING column is actually two
bytes larger than the size required for an equivalent column that is not VARYING.

len

is a positive integer that specifies the maximum number of characters allowed in
the column.

The maximum value you can specify for len depends on the file organization of
the table that contains the column, on whether the character set associated with

{ DATETIME [start-date-time TO] end-date-time }
{ }
{ DATE }
{ }
{ TIME }
{ }
{ TIMESTAMP }
{ }
{ INTERVAL start-field [(sf-prec)] [TO end-field] }

charset is:

 { ISO88591 }
 { ISO88592 }
 { ISO88593 }
 { ISO88594 }
 { ISO88595 }
 { ISO88596 }
 CHAR[ACTER] SET { ISO88597 }
 { ISO88598 }
 { ISO88599 }
 { KANJI }
 { KSC5601 }
 { UNKNOWN }
HP NonStop SQL/MP Reference Manual—523352-013
D-2

Data Types
the column is a single-byte or double-byte character set, and on whether the data
type declaration for the column includes the VARYING clause.

CHAR[ACTER] SET { ISO88591 | ISO88592 | ... UNKNOWN }

associates a character set with the column or indicates that the character set
associated with the column is unknown.

The character set can be one of the single-byte character sets ISO 8859/1 through
ISO 8859/9 or one of the double-byte character sets Kanji (KANJI) or KSC5601
(KSC5601). If you specify one of the double-byte character sets, however, the data
type declaration for the item cannot include the UPSHIFT or COLLATION clause.
(SQL cannot upshift double-byte characters or associate collations with
double-byte characters. SQL always collates double-byte characters according to
their binary values.) For information about specific character sets, see Character
Sets on page C-17.

UNKNOWN specifies that the data has an unknown character set. Specifying
UNKNOWN is equivalent to omitting the character set specification. SQL handles
the data as 8-bit data.

UPSHIFT

directs SQL to upshift characters before storing them in the column.

You cannot specify UPSHIFT for a column associated with a double-byte character
set. If you specify both the UPSHIFT clause and the COLLATE clause for a
column, the rules for upshifting depend on those specified in the collation named in
the COLLATE clause.

COLLATE { collation | CHARACTER SET }

specifies a collating sequence for the column. The collating sequence determines
the default ordering of data returned by a SELECT and the default ordering for
comparison predicates, although you can override these defaults for specific
statements. For a key column, the collating sequence also determines storage
order within the table.

Data Type
Key-
Sequenced

Relative or Entry-
Sequenced

Single-byte unvarying 4061 4072

Single-byte VARYING 4059 4070

Double-byte unvarying 2030 2036

Double-byte VARYING 2029 2035
HP NonStop SQL/MP Reference Manual—523352-013
D-3

Data Types
Specifying a collation for the column might effect the performance of certain
queries using the column because SQL cannot perform hash joins or hash
groupings on columns associated with collations.

The default is CHARACTER SET.

PIC[TURE] X [(len)] [DISPLAY]

specifies a column with fixed-length character data.

You can specify the number of characters in a PIC X column with either the len
option described earlier or by specifying multiple Xs, with each X representing one
character position. DISPLAY is an optional keyword that does not change the
meaning of the clause.

Unless you specify additional clauses, the default for data type PIC X is a
single-byte column with an UNKNOWN character set and a collating sequence
based on the binary values of the characters, the same as for data type CHAR.

VARCHAR[ACTER]

specifies a column with varying-length character data. VARCHAR is equivalent to
data type CHAR VARYING.

NATIONAL CHAR[ACTER]

specifies a column with double-byte character data from the system default
multibyte character set.

Unless you specify additional clauses, an item in the column consists of one
fixed-length, double-byte character.

NCHAR[ACTER]

is equivalent to data type NATIONAL CHARACTER.

NUMERIC [(digits[,scale])] [SIGNED | UNSIGNED]

specifies an exact numeric column.

digits and scale are positive integers that specify the number of digits and the
number of digits to the right of the decimal point, respectively. digits cannot
exceed 18.

collation is the name of an existing collation (or an equivalent
DEFINE) that specifies a collating sequence that is
associated with the same character set as the column

CHARACTER SET specifies a collating sequence based on the binary value
of characters in the column
HP NonStop SQL/MP Reference Manual—523352-013
D-4

Data Types
SIGNED or UNSIGNED indicates whether the column values are signed or
unsigned. If digits is 10 or more, the values must be SIGNED.

The default is NUMERIC (1,0) SIGNED.

{ SMALLINT | INT[EGER] | LARGEINT } [SIGNED | UNSIGNED]

defines a binary integer column:

The default is SIGNED.

{ FLOAT [(precision)] | REAL | DOUBLE PRECISION }

specifies a column that stores floating point values:

Values stored as floating point numbers are approximate. SQL stores the values in
scientific notation with a mantissa and an exponent, which decreases the precision
of the stored value. Floating point data types should be used for values that are
very large or very small and cannot easily be stored as one of the other numeric
data types. If you can represent column values with one of the exact numeric data
types (such as INTEGER or NUMERIC), choose the exact data type over the
approximate data type.

DEC[IMAL] (digits[,scale]) [SIGNED | UNSIGNED]

specifies a column that stores decimal numeric values as ASCII characters.

digits and scale are positive integers that specify the precision in the number
of digits and the number of digits to the right of the decimal point, respectively.
digits cannot exceed 18.

SMALLINT Two bytes, SIGNED or UNSIGNED; stores integers in the range
unsigned 0 to 65535 or signed -32768 to +32767.

INTEGER Four bytes, SIGNED or UNSIGNED; stores integers in the range
unsigned 0 to 4294967295 or signed -2147483648 to
2147483647.

LARGEINT Eight bytes, must be SIGNED; stores integers in the range -2**63
to 2**63 -1 (approximately 9.223 times 10 to the eighteenth
power).

FLOAT Stores floating point numbers in the range +/-8.62* 10**-78 to
+/-1.16* 10**77. Uses 22 or 54 bits depending on precision.
precision is an integer in the range 1 to 54. The default is 54.

REAL Equivalent to FLOAT(22); stores floating point values with
approximately seven decimal digits of precision.

DOUBLE
PRECISION

Equivalent to FLOAT(54); stores floating point values with
approximately 16 decimal digits of precision.
HP NonStop SQL/MP Reference Manual—523352-013
D-5

Data Types
SIGNED or UNSIGNED indicates whether the column values are signed or
unsigned. The sign is stored as the first bit of the leftmost byte. If digits is 10 or
more, the values must be signed.

The default is DECIMAL (1,0) SIGNED.

PIC[TURE] [S]{ 9(integer) [V[9(scale)]] }
 { V9(scale) }
 [DISPLAY [SIGN IS LEADING]]
 [COMP]

specifies a numeric column. If you specify COMP, the column is binary and
equivalent to the data type NUMERIC. If you omit COMP, DISPLAY SIGN IS
LEADING is the default and the data type is equivalent to the data type DECIMAL.
The value of the number stored in the data item cannot exceed the number of 9s in
the PICTURE specification.

The S specifies a signed column. The sign is stored as the first bit of the leftmost
byte (digit). If you omit S, the column is unsigned.

A column with 10 or more digits must be signed.

The 9(integer) specifies integer number of digits. The value of integer must be
positive.

The V designates a decimal position. The 9(scale) designates the number of
positions to the right of the decimal point. The value of scale must be a positive
integer. If you omit V9(scale), the scale is 0. If you specify V9, the scale is 1.

Instead of integer or scale, you can specify multiple 9s, with each 9
representing one digit. For example, PIC 9V999 has a scale of 3.

The values stored in the column cannot exceed a value defined by the PICTURE
specification. The values of integer and scale determine the length of the column.
The sum of these values cannot exceed 18.

There is no default numeric column definition. You must specify either 9(integer)
or V9(scale).

DATETIME [start-field TO] end-field

specifies a column that contains date, time, or date and time values.

start-field and end-field must be one of these logically contiguous fields:
YEAR, MONTH, DAY, HOUR, MINUTE, SECOND, FRACTION. For information,
see DATETIME Data Type on page D-15.

DATE

is equivalent to DATETIME YEAR TO DAY.
HP NonStop SQL/MP Reference Manual—523352-013
D-6

Data Types
TIME

is equivalent to DATETIME HOUR TO SECOND.

TIMESTAMP

is equivalent to DATETIME YEAR TO FRACTION(6).

INTERVAL start-field [(sf-prec)] [TO end-field]

specifies a column that represents a duration of time as a year-month or day-time
interval. start-field and end-field specify the starting or ending field in one
of these ranges of interval fields:

YEAR, MONTH
DAY, HOUR, MINUTE, SECOND, FRACTION(fraction-prec)

If the ending field is FRACTION, you can specify a precision of from 1 to 18 digits,
within parentheses; the default is FRACTION(6).

sf-prec is an unsigned integer greater than 0 that specifies the number of
significant digits allowed for the first field of INTERVAL values.

DEFAULT default-type | NO DEFAULT

specifies a default value for the column or specifies that the column has no default
value. default-type must be a literal compatible with the data type of the
column or one of the keywords CURRENT, SYSTEM, or NULL. For information,
see DEFAULT Clause on page D-26.

The default is DEFAULT NULL.

NOT NULL

specifies that the column cannot contain any null values. For information, see Null
Values on page N-7.

You cannot specify NOT NULL if you also specify DEFAULT NULL, either explicitly
or by default.
HP NonStop SQL/MP Reference Manual—523352-013
D-7

DATE Data Type
DATE Data Type
An item with data type DATE represents a date according to the Gregorian calendar.
Values of data type DATE are equivalent to values of data type DATETIME declared
as:

DATETIME YEAR TO DAY.

For information, see DATETIME Data Type on page D-15.

Example—DATE Data Type

These examples are literals of data type DATE in (respectively) default, USA, and
European format:

 DATE "2004-01-22"
 DATE "01/22/2004"
 DATE "22.01.2004"

For information, see Date-Time Literals on page D-10.

DATE_FORMAT Option
DATE_FORMAT is an option of the SQLCI report writer SET STYLE command that
specifies a default format for dates.

date-format

is a string that defines a new default format for print items specified with
AS DATE *. It must contain a valid numeric format as described in AS DATE/TIME.

The default format is M2/D2/Y2.

Example—DATE_FORMAT

This example sets a new default date format:

 >> SET STYLE DATE_FORMAT "MA DB2, Y4";

An example of a date in this format follows:

 December 25, 2004.

DATE_FORMAT "date-format"
HP NonStop SQL/MP Reference Manual—523352-013
D-8

Date-Time Data Types
Date-Time Data Types
An item of a date-time data type represents a point in time. It can include a date, a
time, or a date and time. There are four date-time data types:

 DATETIME

 DATE

 TIME

 TIMESTAMP

The term “date-time data type” refers to all four of these data types. The term
“DATETIME data type” refers only to the first of these data types.

The DATETIME data type has a range of logically contiguous fields in this order:
YEAR, MONTH, DAY, HOUR, MINUTE, SECOND, and FRACTION. A specific
DATETIME data type has a subset or range of these fields, and a specified number of
significant digits for the FRACTION field. For example:

DATETIME YEAR TO MONTH

DATETIME DAY TO FRACTION(3)

Each of the other date-time data types is equivalent to a specific range of DATETIME
fields:

A specific date-time data type is compatible only with another date-time data type that
has the same range of fields.

For more information about the contents of DATETIME fields, see DATETIME Data
Type on page D-15.

DATE DATETIME YEAR TO DAY (4 bytes)

TIME DATETIME HOUR TO SECOND (3 bytes)

TIMESTAMP DATETIME YEAR TO FRACTION(6) (11 bytes)
HP NonStop SQL/MP Reference Manual—523352-013
D-9

Date-Time Functions
Date-Time Functions
Date-time functions are functions that you can use in expressions that involve columns
defined with the date-time data types (DATETIME, DATE, TIME, and TIMESTAMP).
You can use the date-time functions anywhere an arithmetic expression is allowed.

NonStop SQL/MP provides these date-time functions:

For information, see the descriptions of specific functions.

Date-Time Literals
A date-time literal is a DATETIME, DATE, TIME, or TIMESTAMP constant that you can
use in an expression, in a statement, or as a parameter value. Date-time literals have
the same range of valid values as the corresponding date-time data types.

CONVERTTIMESTAMP
Function

Converts a Julian timestamp to a DATETIME value

CURRENT Function Returns the current date, current time, or current date and
time

DATEFORMAT
Function

Formats a date-time value

DAYOFWEEK Function Returns an integer representing a day of the week

EXTEND Function Adjusts the range of fields for a date-time value

JULIANTIMESTAMP
Function

Converts a date-time value to a Julian timestamp
HP NonStop SQL/MP Reference Manual—523352-013
D-10

Date-Time Literals
A date-time literal value can be enclosed in double quotation marks (as shown in the
diagram below) or in single quotation marks, and can appear in default, USA or
European format.

{ DATETIME "dt" [start-field TO] end-field }
{ DATE "date" }
{ TIME "time" }
{ TIMESTAMP "ts" }

dt is:

 {default-date-time } <--DEFAULT format
 {usa-date-time } <--USA forma
 {european-date-time} <--EUROPEAN format
 {default-date }
 {usa-date }
 {european-date }
 {default-time }
 {usa-time }
 {european-time }

default-date-time is:

 [[yyyy-]mm-]dd:hh[:mm[:ss[.msssss]]]

 yyyy Year, from 0001 to 9999
 mm Month, from 1 or 01 to 12
 dd Day, from 1 or 01 to 31
 hh Hour, from 0 or 00 to 23
 mm Minute, from 0 or 00 to 59
 ss Second, from 0 or 00 to 59
 msssss Microsecond, from 0 to 999999

usa-date-time is:

 {mm/dd[/yyyy]}bhh[:mm[:ss[.msssss]]] [am|pm]
 {[mm/]dd }

 b Required blank character
 am AM or am, indicating time from midnight to
 before noon
 pm PM or pm, indicating time from noon to before
 midnight
 hh 0 or 00 to 23 (or to 12 with am or pm),
 indicating an hour

european-date-time is:

 dd[.mm[.yyyy]]bhh[.mm[.ss[.msssss]]]
HP NonStop SQL/MP Reference Manual—523352-013
D-11

Date-Time Literals
default-date is:

 { yyyy[-mm[-dd] } <--DEFAULT format
 { mm[-dd] }
 { dd }

usa-date is:

 { [mm/[dd/]]yyyy } <--USA format
 { mm[/dd] }
 { dd }

european-date is:

 { [[dd.]mm.]yyyy } <--EUROPEAN format
 { [[dd.]mm }
 { dd }

default-time is:

 { hh[:mm[:ss[.msssss]]] } <--DEFAULT format
 { mm[:ss[.msssss]] }
 { ss[.msssss] }
 { msssss }
usa-time is:

 { hh[:mm[:ss[.msssss]]] } [am|pm]<--USA format
 { mm[:ss[.msssss]] }
 { ss[.msssss] }
 { msssss }

european-time is:

 { hh[.mm[.ss[.msssss]]] } <--EUROPEAN format
 { mm[.ss[.msssss]] }
 { ss[.msssss] }
 { msssss }

start-field and end-field are:

 { YEAR }
 { MONTH }
 { DAY }
 { HOUR }
 { MINUTE }
 { SECOND }
 { FRACTION [(precision)] }

start-field must precede end-field and only end-field can use
the precision option.
HP NonStop SQL/MP Reference Manual—523352-013
D-12

Examples—Date-Time Literals
DATETIME "dt" [start-field TO] end-field

specifies a constant of data type DATETIME. The start-field to end-field
clause specifies the range and precision of DATETIME fields included in the
constant dt.

Examples—Date-Time Literals

 These examples are DATETIME literals in default, USA, and European format,
respectively:

DATETIME "2004-01-22:13:40:05.55" YEAR TO FRACTION (2)
DATETIME "01/22/2004 01:40:05.55 PM" YEAR TO FRACTION (2)
DATETIME "22.01.2004 13.40.05.55" YEAR TO FRACTION (2)

 These examples are DATE literals in default, USA, and European format,
respectively:

DATE "2004-01-22"
DATE "01/22/2004"
DATE "22.01.2004"

 These examples are TIME literals in default, USA, and European format,
respectively:

TIME "13:40:05"
TIME "1:40:05 PM"
TIME "13.40.05"

date is:

 { yyyy-mm-dd }
 { mm/dd/yyyy }
 { dd.mm.yyyy }

time is:

 { hh:mm:ss }
 { hh:mm:ss [am | pm] }
 { hh.mm.ss }

timestamp is:

 { yyyy-mm-dd:hh:mm:ss.msssss }
 { mm/dd/yyyy:hh:mm:ss.msssss [am | pm] }
 { dd.mm.yyyy:hh.mm.ss.msssss }

DATE “date” specifies a constant of data type DATE

TIME “time” specifies a constant of data type TIME

TIMESTAMP “ts” specifies a constant of data type TIMESTAMP
HP NonStop SQL/MP Reference Manual—523352-013
D-13

DATEFORMAT Function
DATEFORMAT Function
DATEFORMAT is a function that formats a date-time value in DEFAULT, USA, or
EUROPEAN format. DATEFORMAT returns a value of type CHAR.

You can use DATEFORMAT wherever an arithmetic expression is allowed.

date-time-expression

is an expression that evaluates to a value of type DATETIME, DATE, TIME, or
TIMESTAMP.

{ DEFAULT }
{ USA }
{ EUROPEAN }

specifies a display format for a date-time value. For a description of the formats,
see Date-Time Literals on page D-10.

The default is DEFAULT.

Example—DATEFORMAT

This function call converts a date-time literal in DEFAULT format to USA format:

DATEFORMAT(DATETIME "1989-06-20:10:20" YEAR TO MINUTE, USA)

It returns:

06/20/1989 10:20 AM

 { DEFAULT }
DATEFORMAT (date-time-expression, { USA })
 { EUROPEAN }
HP NonStop SQL/MP Reference Manual—523352-013
D-14

DATETIME Data Type
DATETIME Data Type
An item of data type DATETIME represents a point in time. It can include a date, a
time, or a date and time.

start-field

specifies the first field for a range of DATETIME fields.

end-field

specifies the last field for a range of DATETIME fields, or the only field for a
single-field DATETIME item.

precision

is an unsigned integer in the range 1 through 6 that specifies the number of
significant digits with which to express the fraction of a second for end-field.

Considerations—DATETIME DATA TYPE

 A specific DATETIME data type is compatible only with another DATETIME data
type that has the same range of DATETIME fields, or with the equivalent DATE,
TIME, or TIMESTAMP data type.

For example, these pairs are compatible data types:

DATETIME YEAR TO DAY and DATE
DATETIME HOUR TO SECOND and TIME
DATETIME YEAR TO FRACTION(6) and TIMESTAMP

These three data types are NOT compatible, although they are all DATETIME data
types:

DATETIME YEAR TO DAY
DATETIME YEAR TO FRACTION(6)
DATETIME HOUR

DATETIME [start-field TO] end-field

start-field and end-field are:

 { YEAR }
 { MONTH }
 { DAY }
 { HOUR }
 { MINUTE }
 { SECOND }
 { FRACTION precision }

start-field must precede end-field and only end-field can
include the precision option.
HP NonStop SQL/MP Reference Manual—523352-013
D-15

Example—DATETIME
 Range and meaning of fields within DATETIME values

 A DATETIME value represents a point in time according to the Gregorian calendar
and a 24-hour clock in local civil time (LCT). The range of times that you can
represent is:

January 1, 1 A.D., 00:00:00.000000 (low value)
December 31, 9999, 23:59:59.999999 (high value)

(The supported range includes some dates and times that are not defined in the
Gregorian calendar, such as eleven days in 1583.)

Example—DATETIME

This example creates a table with several columns that have a DATETIME data type.

CREATE TABLE SCHEDULE (EMPLOYEE_ID CHAR(30),
 LAST_SCHEDULE_CHG DATETIME YEAR TO
DAY,
 START_WORKDAY DATETIME HOUR,
 END_WORKDAY DATETIME HOUR,
 PRIMARY KEY EMPLOYEE-ID
)

Field Range Bytes* Meaning

YEAR 0001 to 9999 2 Year

MONTH 1 or 01 to 12 1 Month in year

DAY 1 or 01 to 31** 1 Day in month

HOUR 0 or 00 to 23 1 Hour in day

MINUTE 0 or 00 to 59 1 Minute in hour

SECOND 0 or 00 to 59 1 Second in minute

FRACTION 0 to 999999 4 Microsecond in
seconds

* Bytes is the number of bytes used to store the field in a column that includes the field.
Data-time columns that allow null values are two-bytes larger than the total of the
included fields.

** The DAY field is also constrained by the month and year, so the number of days in a
month can never exceed the number of days in that specific calendar month.
HP NonStop SQL/MP Reference Manual—523352-013
D-16

DAYOFWEEK Function
DAYOFWEEK Function
DAYOFWEEK is a function that reads a date-time expression and returns a type
INTEGER value in the range 1 through 7 that represents the day of the week
expressed by the date-time value. The value 1 represents Sunday, 2 represents
Monday, and so forth.

date-time-expression

is an expression that evaluates to a value of type DATETIME, DATE, TIME, or
TIMESTAMP.

Example—DAYOFWEEK

This function call returns an integer that represents the day of the week from a date-
time value in the START_DATE column of a table named PROJECTS:

SELECT DAYOFWEEK(START_DATE) FROM PROJECTS
 WHERE PROJECT_NAME = "920";
If the row selected looks like :
PROJECT_NAME START_DATE END_DATE WAIT_TIME
------------ ---------------- ---------------- ---------
920 1993-02-24:20:30 1995-03-21:20:30 20

the value returned is 1, representing Sunday.

DAYOFWEEK (date-time-expression)
HP NonStop SQL/MP Reference Manual—523352-013
D-17

DCL (Data Control Language) Statements
DCL (Data Control Language) Statements
DCL (Data Control Language) is the set of SQL statements and directives that control
parallel processing, name resolution, and performance-related considerations such as
access paths, join methods, and locks and cursors. This table summarizes the DCL
statements and directives.

For information, see the specific statement or directive.

DCOMPRESS File Attribute
DCOMPRESS is a Guardian file attribute that controls key compression in data blocks.
DCOMPRESS applies only to key-sequenced tables and to indexes.

The table default is NO DCOMPRESS. The index default is the table value at index
creation. The default compression method is 1, the former compression method.

Considerations—DCOMPRESS

 Use DCOMPRESS when you need to save disk space but do not require
maximum performance. Because a given amount of disk space holds more keys if
the keys are compressed, key compression reduces the use of disk space;
however, it also increases overhead for accessing records.

 DCOMPRESS 2 extends the compression technique to cover non-key columns,
which is not possible with DCOMPRESS 1. This strategy results in significant disk
space saving at a relatively lower performance price.

 For compression method 1, the former method, a file cannot use key compression
in data blocks unless its primary key meets these requirements:

DCL Statements and Directives

CONTROL EXECUTOR
Directive

Enables or disables parallel processing of queries

CONTROL QUERY
Directive

Specifies whether to resolve names at execution or SQL
startup, whether to consider use of hash joins, and whether to
optimize queries for few or many rows returned

CONTROL TABLE
Directive

Controls locks, opens, buffers, access paths, join methods, and
join sequences

FREE RESOURCES
Statement

Closes cursors and releases locks held by a process

LOCK TABLE Statement Locks a table (or the underlying tables of a view) and
associated indexes

UNLOCK TABLE
Statement

Releases locks held on nonaudited tables or views

{ DCOMPRESS { 1 | 2 } | NO DCOMPRESS }
HP NonStop SQL/MP Reference Manual—523352-013
D-18

Considerations—DCOMPRESS
 The key must begin with the first column in the table.

 The key columns must be contiguous.

 The key columns must be in ascending order.

 The key columns have only these data types:

 Fixed-length character: CHARACTER or PIC X

 Unsigned integer: INTEGER or SMALLINT (not LARGEINT)

 Unsigned exact numeric: NUMERIC (1 to 9) or PIC 9V9 COMP (not
NUMERIC (10) or larger or PIC S9)

 Unsigned decimal: includes PIC 9V9 DISPLAY

 For compression method 2, the new method, these data types are supported:

 Fixed-length character: CHARACTER or PIC X

 Unsigned integer: INTEGER or SMALLINT (not LARGEINT)

 Unsigned exact numeric: NUMERIC (1 to 9) or PIC 9V9 COMP (not NUMERIC
(10) or larger or PIC S9)

 Unsigned decimal: DECIMAL UNSIGNED, includes PIC 9V9 DISPLAY

 Date and time data types: DATE, DATETIME, TIMESTAMP, and TIME

 Multibyte character types: NATIONAL CHARACTER, NCHAR

 When a key-sequenced SQL/MP table is created with DCOMPRESS 2, an
alternate method of compression is used for each data row (but the key must be a
simple key). Similar to DCOMPRESS 1, the key is compressed with the leading
compression. The rest of the data in each row is compressed using the SOBMAP
compression, which compresses repeated data, blanks, and binary zeros.

 DCOMPRESS 2 does not support these data types:

 CHAR VARYING

 VARCHAR

 NUMERIC SIGNED

 SMALLINT | INTEGER signed

 LARGEINT signed

 FLOAT | REAL | DOUBLE PRECISION

 DECIMAL signed

 INTERVAL

Note. DCOMPRESS 2 is not advised when updates are routine because the cost of
compression and decompression can be relatively high.
HP NonStop SQL/MP Reference Manual—523352-013
D-19

DDL (Data Definition Language) Statements
You cannot use DCOMPRESS on a file with a clustering key. You cannot use the
COLLATE option on a key column if you will be using DCOMPRESS.

 The file system compresses keys by eliminating the leading characters duplicated
from one key to the next and replacing them with a one-byte count of the duplicate
characters:

Key compression can actually require an additional byte per record. It saves the
most space when many key values have similar beginnings.

 Relative and entry-sequenced files always have the NO DCOMPRESS attribute,
although key compression has no effect on them.

DDL (Data Definition Language) Statements
DDL (Data Definition Language) is the set of SQL statements that define, delete, or
modify the SQL definition of an object or catalog. They can also change the
authorization to use an object or catalog.

DDL Statements

Series of Uncompressed
Keys

Same Keys,
Compressed

JONES, JANE 0JONES, JANE

JONES, JOHN 8OHN

JONES, SAM 7SAM

Statement Description (page 1 of 2)

ALTER CATALOG
Statement

Alters security for a catalog

ALTER COLLATION
Statement

Renames or alters security for a collation

ALTER INDEX
Statement

Renames, adds, drops, or moves partitions, or alters security or
other attributes of an index

ALTER PROGRAM
Statement

Renames or alters security of an SQL program in a Guardian file

ALTER TABLE
Statement

Renames, alters security of file attributes, or enables or disables
similarity checks for a table; also adds columns to a table and
adds, drops, or moves partitions of a table

ALTER VIEW
Statement

Renames, alters security, or enables or disables similarity checks
for a view; also adds column headings to a view

COMMENT Statement Writes a comment about an SQL object to a catalog

CONTINUE Statement Specifies a COMMIT option for a DDL operation ready to enter its
final phase

CREATE CATALOG
Statement

Creates a catalog
HP NonStop SQL/MP Reference Manual—523352-013
D-20

DDL Statements
For information about a specific DDL statement, see the entry for that statement.

Only one DDL statement can operate on a given SQL object (or partition of an SQL
object) at a time. An error occurs if you attempt to execute a DDL statement while
another process is executing a DDL statement on the same object. The specific error
depends on the statement involved and the phase of the operation at which the conflict
occurs.

The most common errors that occur when you attempt to execute a DDL statement on
an SQL object while another DDL operation is in progress on the same object:

CREATE COLLATION
Statement

Creates a collation

CREATE
CONSTRAINT
Statement

Creates a constraint

CREATE INDEX
Statement

Creates an index

CREATE TABLE
Statement

Creates a table

CREATE VIEW
Statement

Creates a view

DROP Statement Drops a catalog, collation, constraint, index, SQL program in a
Guardian file, table, or view

HELP TEXT Statement Specifies help text for a column of a table or view

UPDATE STATISTICS
Statement

Updates statistics about the contents of a table and its indexes

File-system Errors

12 File in use

40 The operation timed out

73 The table is locked

1057 Unable to access table that is being altered

SQL/MP Errors

1203 Data could not be retrieved from catalog table name

1222 The label of name could not be altered

Statement Description (page 2 of 2)
HP NonStop SQL/MP Reference Manual—523352-013
D-21

Deadlocks
Deadlocks
Deadlock is a block to data flow caused by processes contending for the same locked
data. For example, deadlock occurs when process A locks one row and waits for
another row locked by process B, while process B waits for the row locked by process
A.

When deadlock causes a process to fail to acquire a requested lock within the timeout
period, one of two errors occurs:

 Error 73 indicates the request was canceled successfully, and the transaction
continues.

 Error 40 indicates the statement timed out after being partially executed. SQL
aborts the transaction if the error occurred during an INSERT, UPDATE, or
DELETE against a table with an index affected by the change; otherwise, the
transaction continues. (Error 40 also occurs if a statement fails to acquire a
requested lock for other reasons.)

You can control the timeout period for a table or view with CONTROL TABLE. You can
also disable the waiting for locked data and request that immediate control be returned
to SQLCI or the host program. For information, see the discussion of TIMEOUT and
RETURN IF LOCKED under CONTROL TABLE Directive on page C-77.

DECIMAL_POINT Option
DECIMAL_POINT is an option of the SQLCI report writer SET STYLE command that
specifies either a period or a comma as the decimal point character in numeric print
items.

Considerations—DECIMAL_POINT

 The DECIMAL_POINT character must be a single-byte period or comma,
regardless of the character set used.

 The DECIMAL_POINT option does not change the decimal point character used in
numeric literals or in mask display descriptors. That character (which is input to
SQLCI) is always a period. The DECIMAL_POINT option does change the decimal
point character that SQLCI prints in reports when you apply the mask to a value.

DECIMAL_POINT { "." | "," }

The default is ".".
HP NonStop SQL/MP Reference Manual—523352-013
D-22

Examples—DECIMAL_POINT
Examples—DECIMAL_POINT

 This example prints a price in European format, using an F9.2 display descriptor
and a comma as the decimal character:

S> SET STYLE DECIMAL_POINT ",";
S> DETAIL PRICE;
S> LIST NEXT 1;

PRICE

 1300,95

 This example uses a period in a mask format to print a price, again using a comma
as the decimal character:

S> SET STYLE DECIMAL_POINT ",";
S> DETAIL PRICE AS M"9999.99";
S> LIST NEXT 1;

PRICE

 1300,95

DECLARE CURSOR Statement
DECLARE CURSOR is a DML statement used in host programs to define a cursor and
associate the cursor with a SELECT statement. The program uses the cursor to fetch
rows retrieved by the SELECT statement one-by-one.

cursor CURSOR FOR select-stmt

specifies the cursor and the SELECT statement to associate.

cursor is an SQL identifier that is the name of the cursor and that is unique
among cursor names in the program.

In static SQL, select-stmt is the SELECT statement itself, optionally enclosed
in quotation marks. In dynamic SQL, select-stmt is the name of the prepared
SELECT as defined in the PREPARE statement.

FOR UPDATE OF col [, col]

(static SQL only) specifies that rows selected by the cursor can be updated or
deleted and identifies columns to be updated. (The columns to be updated do not
need to be columns in the select list of the SELECT.)

 { cursor CURSOR FOR select-stmt }
 { [FOR UPDATE OF col [, col] ...] }
DECLARE { }
 { :cursor-var CURSOR FOR :select-stmt-var }
HP NonStop SQL/MP Reference Manual—523352-013
D-23

Considerations—DECLARE CURSOR
You must use this clause if you update rows (if stmt includes UPDATE WHERE
CURRENT OF), but it is optional if you delete rows (if stmt includes DELETE
WHERE CURRENT OF). You cannot repeat or qualify column names, or specify
SYSKEY or a user-defined primary key for a key-sequenced table.

:cursor-var CURSOR FOR :select-stmt-var

(dynamic SQL only) specifies host variables that contain the names of the cursor
and the SELECT statement to associate.

If you use this clause, the DECLARE CURSOR statement must be in executable
code (not variable declarations) and must be executed before your program
references the cursor. In this case (and in no other), SQL returns information to the
SQLCA and SQLSA when the DECLARE CURSOR executes.

:cursor-var is a host variable that contains the name of the cursor. The cursor
name must be unique among cursor names in the program. cursor-var must be
a fixed or variable-length string in the host language.

:select-stmt-var is a host variable that contains the name of a SELECT
statement or the name of a host variable that is defined in a PREPARE statement
in the current program. select-stmt-var must be a fixed or variable-length
string in the host language.

Considerations—DECLARE CURSOR

 In static SQL, a cursor declaration must compile before other statements that
reference the cursor. In dynamic SQL, a cursor declaration must execute before
other statements that reference the cursor.

 A SELECT statement in a DECLARE CURSOR statement cannot include an INTO
clause.

If a SELECT includes an ORDER BY clause, the ORDER BY sort specification can
contain a column name or integer followed by the order-designating keyword ASC
or DESC. The integer designates a position in the select list, starting from 1. The
column name is not required in the sort specification.

You can also use expressions in the select list.

If a SELECT in a DECLARE CURSOR updates or deletes rows:

 The FROM clause can include only one table or protection view and cannot
include a JOIN operator.

 The table referred to in the SELECT must not appear in any subquery in the
WHERE clause.

 The SELECT cannot include aggregate functions, the keyword DISTINCT, a
shorthand view, a union operator, or a GROUP BY, HAVING, ORDER BY, or
BROWSE access clause. The only exception to this rule is: if you use a cursor
to locate rows to delete without specifying the FOR UPDATE OF clause in the
HP NonStop SQL/MP Reference Manual—523352-013
D-24

Examples—DECLARE CURSOR
cursor declaration, you can include an ORDER BY clause if you are sure that
SQL will choose a plan that satisfies the specified order without sorting the
rows.

 DECLARE CURSOR does not acquire locks. Locks are acquired when you
execute a FETCH on the cursor or—if the SELECT requires a sort—when you
open the cursor. The access option you specify in the SELECT applies to rows you
access with the cursor.

If the cursor deletes rows, you must ensure that your program requests locks for
the deletions by including the FOR UPDATE clause, using a LOCK TABLE
statement preceding the FETCH on the cursor, or using STABLE or REPEATABLE
access in the SELECT. In the latter case, the row usually is held with a shared lock
that is escalated to an exclusive lock for the DELETE. If the SQL cannot obtain the
exclusive lock before timeout occurs, the DELETE operation can fail.

Examples—DECLARE CURSOR

 This static SQL statement defines a cursor for a read:

EXEC SQL DECLARE CURSOR1 CURSOR FOR
 SELECT COL1, COL2, COL3, COL4 FROM =PARTS
 WHERE COL2 >= :HOSTVAR2 ORDER BY COL2 BROWSE ACCESS;

 This static SQL statement defines a cursor for an update. The FOR UPDATE
clause lists the columns to be updated.

EXEC SQL DECLARE CURSOR1 CURSOR FOR
 SELECT COL1, COL2, COL3, COL4 FROM =PARTS
 WHERE (COL2 = :HOSTVAR2) STABLE ACCESS
 FOR UPDATE OF COL2, COL3, COL4;

 This dynamic SQL example defines a cursor for a SELECT stored in a C host
variable. (The SELECT is not shown.)

Variable declarations:

EXEC SQL BEGIN DECLARE SECTION;
 intext char[50];
 ...
EXEC SQL END DECLARE SECTION;

Executable code:

EXEC SQL PREPARE SELECTIT FROM :intext;
...
EXEC SQL DECLARE GETPARTS CURSOR FOR SELECTIT;
HP NonStop SQL/MP Reference Manual—523352-013
D-25

DEFAULT Clause
DEFAULT Clause
The DEFAULT clause specifies a default value for a column (a value to use as the
value of the column when a row is inserted without one). You can specify a default
value for any column you define with CREATE TABLE or ALTER TABLE.

The default is NULL.

literal

is a literal of a data type compatible with the data type defined for the associated
column.

For a character column, literal must be a string literal of no more than eight
bytes or the length of the column, whichever is less. If the character column is
associated with a double-byte character set, literal must contain an even
number of bytes. SQL pads literal with spaces (HEX 20) when inserting the
value into longer character fields. (SQL always uses HEX 20 for padding, whether
a single-byte or double-byte character set is associated with the expression.)

For a numeric column, literal must be a numeric literal that does not exceed
the defined length of the column. The number of digits to the right of the decimal
point must not exceed the scale of the column and the number of digits to the left
of the decimal point must not exceed the number in the length (or length minus
scale, if you specified scale for the column).

For a date-time column, literal must be a date-time literal with a precision that
matches the precision of the column.

For an INTERVAL column, literal must be an INTERVAL literal that has the
range of INTERVAL fields defined for the column.

CURRENT

(date-time columns only) specifies that the default value for the column is the
appropriate portion of the Guardian timestamp at the time of the operation that
assigns a value to the column.

If more than one date-time column is assigned a CURRENT default value in the
same operation, SQL uses the same timestamp as the basis of all CURRENT
values assigned in the operation, regardless of how long the operation takes.

 { literal }
DEFAULT { CURRENT }
 { SYSTEM }
 { NULL }
HP NonStop SQL/MP Reference Manual—523352-013
D-26

Example—DEFAULT
SYSTEM

specifies that the default value depends on the data type of the column:

NULL

specifies the null value as the default. Specifying NULL as the default adds two
bytes to the size of the column.

You cannot specify NULL if you also specify the NOT NULL clause in the
command that creates the column.

Example—DEFAULT

This example shows a CREATE TABLE statement that uses DEFAULT clauses to
specify default values for three of the columns in the table:

CREATE TABLE ITEMS
 (ITEM_ID CHAR(12) NO DEFAULT,
 DESCRIPTION CHAR(50) DEFAULT NULL,
 NUM_ON_HAND INTEGER DEFAULT 0 NOT NULL,
 DATE_ADDED DATE DEFAULT CURRENT NOT NULL,
PRIMARY KEY ITEM_ID);

DEFINEs
A DEFINE is a named set of attribute-value pairs associated with a process. You can
use DEFINEs to pass information to a process when you start the process. DEFINEs
are often used to pass information about Guardian names.

NonStop SQL/MP allows you to use DEFINE names as logical names for tables, views,
indexes, partitions, catalogs, collations, or Guardian files in SQL/MP statements. When
SQL compiles such statements, it replaces the DEFINE name in the statement with the
Guardian name currently associated with the DEFINE.

A DEFINE name begins with an equal sign (=) followed by a letter and can contain 2 to
24 characters, including alphanumeric characters, hyphens (-), underscores (_), and
circumflexes (^). Uppercase and lowercase characters are considered equivalent in
DEFINE names.

These are reasons for using DEFINE names in SQL statements:

Data Type Default Value

Character

 Fixed-length A string of blanks

 Variable-length A zero-length string

Date-time Same as CURRENT option

Interval 0

Numeric 0
HP NonStop SQL/MP Reference Manual—523352-013
D-27

Using DEFINEs
 DEFINE names are easier to understand than Guardian names.

For example, the name =CUSTOMERS is simpler than an actual file name such as
\SYS1.$VOL2.SALES.CSTMERS.

 DEFINE names provide location independence.

For example, if you code with DEFINE names, you can rename database objects,
move database objects, or change the database that a program accesses without
changing source code.

NonStop SQL/MP includes a set of DEFINEs that specify values for SQL operations.
These DEFINEs start with the characters “=_” and includes:

 =_AUDSERV_XSWAP_node
 =_DEFAULTS
 =_SORT_DEFAULTS
 =_SQL_CAT_HEAP_LIMIT
 =_SQL_CMP_EQ_LIMIT
 =_SQL_CMP_EVENT
 =_SQL_CMP_EVENT_NO0
 =_SQL_CMP_NO_KS_MJOIN
 =_SQL_cmp_node
 =_SQL_EXE_USE_SQAPVOL
 =_SQL_MSG_node
 =_SQL_RECGEN_node
 =_SQL_TM_node_vol

Each of the preceding DEFINES has an entry describing it. If using SQLCI HELP to
access the text, be sure to include the “=_” characters in the DEFINE name.

Use DEFINEs carefully. DEFINEs that identify the wrong objects can cause
unexpected results. Check that the DEFINEs in effect identify the objects that you want
to use. Create Guardian command files or OSS shell scripts for sets of frequently used
DEFINEs.

Using DEFINEs

DEFMODE is an attribute of a process that controls whether you can create DEFINEs
from the process and whether DEFINEs are propagated when the process starts
another process. The process can be a TACL process, an OSS shell process, an
SQLCI process, or a process of your own creation. The DEFMODE attribute can be set
to ON or OFF.

If DEFMODE is ON, you can create, modify, delete, propagate, and display information
about DEFINEs. For example, if you start an SQLCI process from a TACL process with
DEFMODE ON, DEFINEs set in the TACL process are propagated to the SQLCI
process. Similarly, you can set DEFINEs in an OSS shell process and the DEFINEs
are propagated to a process you start from an OSS program with embedded SQL
statements. DEFMODE ON is the default. Note that for OSS processes, DEFMODE
ON becomes the default after the first add_define command is issued.
HP NonStop SQL/MP Reference Manual—523352-013
D-28

Using DEFINEs
If DEFMODE is OFF, DEFINEs are ignored and you cannot create new DEFINEs. You
can still modify, delete, and display information about existing DEFINEs, but such
DEFINEs have no effect because they are not propagated to other programs. (The
=_DEFAULTS system DEFINE is a special DEFINE that is an exception to this rule
and that is always propagated. For information, see =_DEFAULTS DEFINE on
page Z-3.)

Use these commands to work with DEFINEs from SQLCI. Each command is described
in more detail in a separate entry.

TACL has similar commands with the same names as the SQLCI commands just
listed. The OSS shell has similar commands, add_define, del_define, info_define,
set_define, and show_define. For information about DEFINE-related commands in
TACL or the OSS shell, see the TACL Reference Manual or the Open System Services
Shell and Utilities Reference Manual, respectively.

Use these system procedures to work with DEFINEs from within an SQL program. For
information about the procedures, see the Guardian Procedure Calls Reference
Manual or the Open System Services System Calls Reference Manual.

ADD DEFINE Adds a DEFINE

ALTER DEFINE Changes attributes of DEFINEs

DELETE DEFINE Deletes DEFINEs

INFO DEFINE Displays DEFINE attribute values

RESET DEFINE Restores DEFINE attributes in the working set to their initial
values

SET DEFINE Establishes values for DEFINE attributes in the working set

SET DEFMODE Enables or disables the use of all DEFINEs in the current
session and enables or disables the propagation of DEFINEs
from the current session

SHOW DEFINE Displays DEFINE attribute values for the working attribute set

SHOW
DEFMODE

Displays the current DEFMODE setting

DEFINEADD Adds a DEFINE

CHECKDEFINE Checkpoints a DEFINE to a backup process

DEFINEDELETE Deletes DEFINEs

DEFINEDELETEALL Deletes all DEFINEs except =_DEFAULTS from the
context of the current process

DEFINEINFO Returns DEFINE attribute values

DEFINEMODE Enables or disables the use of DEFINEs

DEFINENEXTNAME Returns the next DEFINE name (DEFINEs are stored in
ascending order by name)
HP NonStop SQL/MP Reference Manual—523352-013
D-29

Using DEFINEs From SQLCI
Using DEFINEs From SQLCI

These rules apply to the use of DEFINEs in SQLCI:

 Make sure DEFMODE is set. To inherit DEFINEs from the process that starts
SQLCI, such as TACL or the OSS shell, set DEFMODE ON before you start
SQLCI. To avoid inheriting DEFINEs, set DEFMODE OFF before you start SQLCI,
then set it ON within SQLCI.

DEFINEs that you create during an SQLCI session remain in effect until you alter
them, delete them, or end the SQLCI session. DEFINEs you inherit from another
process and then modify with SQLCI commands revert to their previous attribute
values (that is, the values they had when you started SQLCI) when you end the
SQLCI session. Any changes you make to inherited attributes within the SQLCI
session apply only until you exit SQLCI.

 Except for statements compiled with PREPARE, SQLCI resolves DEFINE names
in a statement at the time you enter the statement.

If you use PREPARE to compile an SQLCI statement when a CONTROL QUERY
BIND NAMES AT EXECUTION directive is not in effect, SQLCI resolves DEFINE
names in the statement when you enter the PREPARE, using the DEFINE values
at that time. Subsequent executions of the statement use the PREPARE-time
DEFINE values.

If you use PREPARE to compile an SQLCI statement when a CONTROL QUERY
BIND NAMES AT EXECUTION directive is in effect, SQLCI resolves DEFINE
names in the statement when you execute the statement, using the DEFINE values
at that time. (Note that CONTROL QUERY BIND NAMES AT EXECUTION TIME
must be in effect at PREPARE-time to cause execution-time DEFINE resolution;
whether it is in effect at execution-time makes no difference.)

DEFINEREADATTR Returns an attribute value for a DEFINE or for the
working attribute set

DEFINERESTOREWORK Restores the working attribute set from the background
set

DEFINESAVEWORK Saves the working attribute set in the background set

DEFINESETATTR Alters the value of an attribute in the working set, or
resets the attribute

DEFINESETLIKE Sets all attributes of the working set to match those of
an existing DEFINE

DEFINEVALIDATEWORK Checks the working set for consistency and
completeness
HP NonStop SQL/MP Reference Manual—523352-013
D-30

Using DEFINEs With SQL Programs
Using DEFINEs With SQL Programs

These rules apply to the use of DEFINEs in SQL statements within programs:

 You use TACL or OSS shell commands to supply DEFINEs at compilation for
DEFINE names used in preprocessor or host language statements and in the
SQLCOMP or c89 command. For example, if you use DEFINE names in INVOKE
statements for an SQL program that is executable from Guardian, you use TACL
commands to supply corresponding DEFINEs at preprocessor or host language
compilation.

You normally supply DEFINEs at explicit SQL compilation for any DEFINE names
you use in static SQL statements. SQL attempts to resolve such DEFINE names
during explicit compilation, if possible (although the names might be reresolved at
load or execution time according to the rules that follow).

If corresponding DEFINEs do not exist, the SQL compiler issues a warning and
produces a program that, although valid, requires recompilation with appropriate
DEFINE values. (SQL can automatically recompile programs at run time, as
discussed in the SQL/MP programming manual for your host language. If you
prohibit recompilation, however—or if appropriate DEFINEs are still missing by the
time the statement executes—an error occurs.)

Dynamic SQL statements are not affected by explicit compilation, so there is no
reason to supply DEFINEs for those statements before execution.

For SQL programs executable from Guardian, you can use the EXPLAIN
DEFINES option on the SQLCOMP command to automatically generate an OBEY
command file that contains ADD DEFINE commands for the DEFINEs used in your
program. To generate the OBEY command file in TACL OBEY format, use the
OBEY FORM option.

You can use the command file to add the same DEFINEs again at run time. For
information, see the SQL/MP programming manual for your host language.

 To use DEFINEs in programs, you can inherit DEFINEs from your TACL or OSS
shell process or use system procedure calls to create DEFINEs within your
program. If a DEFINE does not exist at execution time, SQL uses the stored define
that existed at compilation time.

You can direct your program to access a different set of objects than the ones you
specified at compilation by supplying different DEFINE values at run time than at
compile time. Depending on the compilation options you specified, the similarity
between the objects, and the SIMILARITY CHECK attribute of the objects,
changing DEFINE values at run time causes successful similarity checks,
recompilation, or errors.

To inherit DEFINEs in a program, set DEFMODE ON before you start the program;
to avoid inheriting DEFINEs, set DEFMODE OFF before you start the program,
then set it ON within the program.
HP NonStop SQL/MP Reference Manual—523352-013
D-31

DEFINE Attributes
DEFINEs you create from an executing program remain in effect until you alter
them, delete them, or terminate the program. DEFINEs you inherit from another
process and then modify within an executing program revert to their previous
attribute values (that is, the values they had when you started the program) when
the program terminates. Any changes you make to inherited attributes within the
program apply only within the program.

 DEFINE names in a static SQL statement that was compiled WITHOUT a
CONTROL QUERY BIND NAMES AT EXECUTION directive in effect are resolved
at SQL-load time (just before the first SQL statement in the program executes) by
using the DEFINEs in effect at that time. Changing DEFINE values during program
execution has no effect on such a statement.

DEFINE names in a static SQL statement that was compiled with a CONTROL
QUERY BIND NAMES AT EXECUTION directive in effect are resolved just before
each execution of the statement. Changing DEFINE values during program
execution affects such a statement.

 DEFINE names in a dynamic SQL statement that is compiled by a PREPARE
operation when a dynamic CONTROL QUERY BIND NAMES AT EXECUTION
directive is not in effect are resolved during the PREPARE operation. Changing
DEFINE values after the PREPARE but before a corresponding EXECUTE does
not affect such a statement.

DEFINE names in a dynamic SQL statement that is compiled by a PREPARE
operation when a dynamic CONTROL QUERY BIND NAMES AT EXECUTION
directive is in effect are resolved each time a corresponding EXECUTE occurs.
Changing DEFINE values after the PREPARE but before a corresponding
EXECUTE affects such a statement.

DEFINE names in a dynamic SQL statement compiled by an EXECUTE
IMMEDIATE statement are resolved when the EXECUTE IMMEDIATE statement
executes.

DEFINE Attributes

Each DEFINE has a set of attributes associated with it. The CLASS attribute
determines the function of the DEFINE:

CATALOG Specifies catalog redirection or substitution

DEFAULTS Specifies process defaults such as default volume and subvolume

MAP Specifies redirection or substitution for a table, view, index, collation,
partition, or program name

SEARCH Specifies subvolumes for resolving file names in a search list

SORT Specifies parameters for FastSort processes
HP NonStop SQL/MP Reference Manual—523352-013
D-32

DEFINEs of Class CATALOG
MAP is the default.

The CATALOG, DEFAULTS, and MAP classes are particularly useful with SQL and are
discussed in more detail in this section.

DEFINEs of Class CATALOG

DEFINEs of class CATALOG specify a logical name for a particular SQL catalog. For
example, this SQLCI statement assigns the logical name =PCAT to the catalog that
resides on subvolume \D.$E.F:

ADD DEFINE =PCAT, CLASS CATALOG, SUBVOL \D.$E.F;

This statement, executed while the preceding DEFINE is in effect, creates a table on
\D.$E.F:

CREATE TABLE T ... CATALOG =PCAT;

A DEFINE of class CATALOG does not change the current default catalog. (You can
change the current default catalog by using the SQLCI CATALOG command or by
altering the =_DEFAULTS DEFINE.)

DEFINEs of Class DEFAULT

The only DEFINE of class DEFAULT of interest to a NonStop SQL/MP user is the
=_DEFAULTS DEFINE, which is a system DEFINE.

The file system uses the =_DEFAULTS DEFINE to save the names of the current
default node, volume, subvolume, and catalog, so that processes can share these
names. When you change your current default node, volume, subvolume, or catalog,
the =_DEFAULTS DEFINE is automatically modified. The values in the =_DEFAULTS
DEFINE determine how to expand partially qualified Guardian names.

You cannot delete or rename the =_DEFAULTS DEFINE, but you can display and alter
the values of its attributes. For example, this ALTER DEFINE command changes the
current default catalog:

ALTER DEFINE =_DEFAULTS, CATALOG \A.$B.C;

For information, see =_DEFAULTS DEFINE on page Z-3 or System DEFINEs on
page S-94.

DEFINEs of Class MAP

A DEFINE of class MAP associates a DEFINE name with the name of a table, view,
index, collation, partition, or program. You can use the DEFINE name in SQL

SUBSORT Specifies parameters for parallel sort processes

SPOOL Sets parameters for the spooler

TAPE Specifies the attributes of a file on a labeled tape, such as block size
and density
HP NonStop SQL/MP Reference Manual—523352-013
D-33

Summary of DEFINE Attributes
statements as the logical name of a table, view, index, collation, partition, or program,
altering the DEFINE (but not the SQL statement) when you want to point to a different
physical entity.

For example, this command adds a DEFINE that assigns the logical name =ORDERS
to the table whose name is \SYS1.$VOL2.SALES.ORDERS:

ADD DEFINE =ORDERS, CLASS MAP, FILE \SYS1.$VOL2.SALES.ORDERS;

While this DEFINE is in effect, you can refer to the table as =ORDERS in SQL
statements.

MAP is the default class unless the working attribute set specifies a different class, so
the previous command is normally equivalent to this one:

ADD DEFINE =ORDERS, FILE \SYS1.$VOL2.SALES.ORDERS;

The working attribute set is a set of default attribute values used when you create a
new DEFINE and do not explicitly specify its attributes. For information about the
working attribute set, see SET DEFINE Command on page S-32, RESET DEFINE
Command on page R-12, and SHOW DEFINE Command on page S-48.

Summary of DEFINE Attributes

The other attributes of a DEFINE vary according to its class. Table D-1 lists the
DEFINE classes and the attributes of each class. It also supplies a brief definition of
attributes commonly used with SQL. For information about attributes of other classes,
see the TACL Reference Manual.

Table D-1. Attributes of DEFINEs (by Class) (page 1 of 3)

Class Attributes
Required/
Optional

CATALOG SUBVOL subvol
specifies an actual subvolume name that identifies a
catalog; subvol is a Guardian subvolume name.

Required

DEFAULTS CATALOG[\node.][$vol.]subvol
specifies the current default catalog. If you omit \node or
$vol, the current value of the corresponding element in
the =_DEFAULTS DEFINE VOLUME attribute is used.

Optional

VOLUME[\node.]$vol.subvol
specifies the current default volume and subvolume. If you
omit \node, the system on which you are running the
process is used.

Required

MAP FILE file-name
specifies an actual file to use when you refer to the
associated DEFINE name in a command.

Required

SEARCH SUBVOL0 subvol-name Optional

RELSUBVOL0 subvol-name Optional
HP NonStop SQL/MP Reference Manual—523352-013
D-34

Summary of DEFINE Attributes
SUBVOL1 subvol-name Optional

RELSUBVOL1 subvol-name Optional

...

SUBVOL20 subvol-name Optional

RELSUBVOL20 subvol-name Optional

SORT BLOCK block-size Optional

CPU cpu-number Optional

CPUS subsort-cpu-list Optional

MODE mode-type Optional

NOTCPUS cpu-list-not-subsort Optional

NOSCRATCHON (volume-name Optional

[, volume-name]...)

PRI process-priority Optional

PROGRAM file-name Optional

SCRATCH file-name Optional

SCRATCHON (volume-name Optional

[, volume-name]...)

SEGMENT extended-segment-size Optional

SUBSORTS define-list Optional

SWAP file-name Optional

VLM {ON | OFF} Optional

SPOOL BATCHID job-id Optional

BATCHNAME batch-name Optional

COPIES number Optional

FORM form-name Optional

HOLD {ON | OFF} Optional

HOLDAFTER {ON | OFF} Optional

LOC destination Required

MAXPRINTLINES number Optional

MAXPRINTPAGES number Optional

OWNER owner-id Optional

PAGESIZE number Optional

REPORT report-name Optional

SELPRI priority-number Optional

Table D-1. Attributes of DEFINEs (by Class) (page 2 of 3)

Class Attributes
Required/
Optional
HP NonStop SQL/MP Reference Manual—523352-013
D-35

Summary of DEFINE Attributes
SUBSORT BLOCK size Optional

CPU cpu-number Optional

NOSCRATCHON (volume-name[, volume-name]...) Optional

PRI process-priority Optional

PROGRAM file-name Optional

SCRATCH file-name Optional

SCRATCHON (volume-name[, volume-name]...) Optional

SEGMENT extended-segment-size Optional

SWAP file-name Optional

TAPE BLOCKLEN block-length Optional

DENSITY {800 | 1600 | 6250} Optional

DEVICE $device-name Optional

EBCDIC {IN | OUT | ON | OFF} Optional

EXPIRATION date Optional

FILEID file-name Optional

FILESECT volume-order Optional

FILESEQ file-order Optional

GEN generation-number Optional

LABELS Optional

{ANSI | IBM | OMITTED | BYPASS | BACKUP}

OWNER owner-id Optional

MOUNTMSG “text” Optional

RECFORM {F | U} Optional

RECLEN record-length Optional

REELS num-of-volumes Optional

RETENTION days Optional

SYSTEM \system-name Optional

TAPEMODE {STARTSTOP | STREAM} Optional

USE {IN | OUT | EXTEND | OPENFLAG} Optional

VERSION number Optional

VOLUME {volume-id | SCRATCH} Optional

Table D-1. Attributes of DEFINEs (by Class) (page 3 of 3)

Class Attributes
Required/
Optional
HP NonStop SQL/MP Reference Manual—523352-013
D-36

Examples—DEFINEs Used With SQL Programs
Examples—DEFINEs Used With SQL Programs

 This example uses the DEFINE name =PARTS to identify a table in an INVOKE
statement in a COBOL program. The DEFINE for =PARTS must exist when you
run the preprocessor before the COBOL compilation.

EXEC SQL
 INVOKE =PARTS AS PARTS-REC LEVEL (01,04)
END-EXEC.

 This example uses the DEFINE name =PARTS to identify a table in an INSERT
statement. The DEFINE for =PARTS must exist when you run the program and
should normally exist when you compile the program.

EXEC SQL
 INSERT INTO =PARTS
 VALUES (:PARTNUM OF PARTS,
 :PARTDESC OF PARTS,
 :PRICE OF PARTS,
 :QTY-AVAILABLE OF PARTS)
END-EXEC.

 This example uses the DEFINE name =SCAT in a TACL command that calls the
SQL compiler. =SCAT identifies the catalog in which to register the compiled
program. The DEFINE for =SCAT must be in effect when you issue the SQLCOMP
command.

SQLCOMP /IN object-file, OUT list-file>/ CATALOG =SCAT
HP NonStop SQL/MP Reference Manual—523352-013
D-37

DELETE DEFINE Command
DELETE DEFINE Command
DELETE DEFINE is an SQLCI command that deletes DEFINEs. (DELETE DEFINE is
similar to the TACL command DELETE DEFINE and the OSS shell command
del_define.)

define

is the name of a DEFINE to delete.

** or =*

specifies that all DEFINEs are to be deleted.

Examples—DELETE DEFINE

 These two SQLCI commands delete the DEFINE =CAT and delete the
=EMPLOYEE, =PARTLOC, and =PARTSUPP DEFINEs:

DELETE DEFINE =CAT;
DELETE DEFINE (=EMPLOYEE, =PARTLOC, =PARTSUPP);

 This SQLCI command deletes all DEFINEs except =_DEFAULTS specified within
the SQLCI session. After the command executes, DEFINEs inherited from the
TACL or the OSS shell are no longer in effect for the SQLCI session, although
inherited DEFINEs remain in effect for the TACL or OSS shell.

DELETE DEFINE =*;

 { define }
DELETE DEFINE { (define [, define] ...) } ;
 { ** }
 { =* }
HP NonStop SQL/MP Reference Manual—523352-013
D-38

DELETE Statement
DELETE Statement
DELETE is a DML statement that deletes rows from a table or protection view.

DELETE does not delete a table or protection view, even if you delete the last row in
the table or view. Use DROP to delete a table or view.

name

is the name of the table or protection view (or an equivalent DEFINE) from which to
delete rows.

The file organization of the table or underlying table must be key-sequenced or
relative. You cannot use DELETE to delete rows from an entry-sequenced table,
from a catalog table, or from a shorthand view.

WHERE search-cond

is a search condition that specifies criteria for selecting rows to delete. The search
condition cannot include a subquery that refers to name or its underlying table.

If you omit both the WHERE and WHERE CURRENT clauses, SQL deletes all
rows.

[FOR] {STABLE } ACCESS
 {REPEATABLE}

determines the locking for the rows to delete.

The default is FOR STABLE ACCESS. For information, see Access Options on
page A-1.

WHERE CURRENT OF cursor-name

(for use in programs only) specifies the name of a cursor that is positioned at the
row to delete. If cursor-name points to an audited table or view, the DELETE
must execute within a TMF transaction that also includes the FETCH for the row.

You cannot specify WHERE CURRENT OF when using parallel execution.

DELETE FROM name

 [[WHERE search-cond] [[FOR] {STABLE } ACCESS]]
 [[{REPEATABLE}]]
 []
 [WHERE CURRENT OF cursor-name]

STABLE locks all data accessed but releases locks on unmodified rows
without waiting for the end of the transaction.

REPEATABLE locks all data accessed until the end of the transaction.
HP NonStop SQL/MP Reference Manual—523352-013
D-39

Considerations—DELETE
Considerations—DELETE

 DELETE requires authority to read and write to the table or view being deleted and
to any table or view in a subquery of the search condition.

 Rows must be locked to be deleted. The locking used depends on the access
option you specify in the WHERE clause or the access option you specify in the
SELECT portion of the associated DECLARE CURSOR statement.

If the deletion occurs through a search condition, the access option you specify in
a subquery determines the duration of locks applied to data in the tables and views
referred to in the subquery.

The default access option is STABLE.

 When using an SQL cursor in a host program, a DELETE WHERE CURRENT
generally provides a performance benefit over a stand-alone DELETE. SQL uses
virtual sequential block buffering (VSBB) for updates through a cursor unless you
use another cursor or a stand-alone DELETE or UPDATE for the same table within
the same program. (Using a stand-alone DELETE or another cursor to access the
table within the same process, either directly or through a view, invalidates VSBB
and can degrade performance substantially.)

SQL returns these values to SQLCODE after a DELETE:

After a successful DELETE, the SQLCA contains the exact number of deleted
rows.

Examples—DELETE

 This example on DELETE removes the row for JOHN WALKER from the
EMPLOYEE table:

DELETE FROM PERSNL.EMPLOYEE
 WHERE FIRST_NAME = "JOHN" AND LAST_NAME = "WALKER";

 This example on DELETE removes from the table ORDERS any orders placed
with sales representative 568 by any customer except customer number 3210:

DELETE FROM SALES.ORDERS
 WHERE SALESREP = 568 AND CUSTNUM <> 3210;

 This example on DELETE removes from the table PARTSUPP all suppliers who
charge more than $1600.00 for items that have part numbers in the range 6400 to
6700. The DELETE uses REPEATABLE access (which provides maximum

0 Successful DELETE

100 No rows found for a search condition

> 0 Warning code number

< 0 Error code number
HP NonStop SQL/MP Reference Manual—523352-013
D-40

DESCRIBE INPUT Statement
consistency but reduces concurrency), so it would be best to execute it at a time
when only a few users need concurrent access to the database.

DELETE FROM INVENT.PARTSUPP
 WHERE PARTNUM BETWEEN 6400 AND 6700
 AND PARTCOST > 1600.00 REPEATABLE ACCESS;

 This example on DELETE removes all suppliers not in Texas from the table
PARTSUPP:

DELETE FROM INVENT.PARTSUPP
 WHERE SUPPNUM IN (SELECT SUPPNUM FROM INVENT.SUPPLIER
 WHERE STATE <> "TEXAS");

You can achieve the same result with this DELETE, as long as SUPPNUM does
not contain NULL characters:

DELETE FROM INVENT.PARTSUPP
 WHERE SUPPNUM NOT IN (SELECT SUPPNUM FROM INVENT.SUPPLIER
 WHERE STATE = "TEXAS");

DESCRIBE INPUT Statement
DESCRIBE INPUT is a dynamic SQL statement that returns descriptions of input
parameters for a previously prepared statement. (An input parameter is a placeholder
for a literal value to be supplied when the statement executes.)

stmt-name

is the SQL identifier of the prepared SQL statement, optionally qualified with the
name of the program.

:stmt-variable

is the name of a host variable that stores the SQL identifier of the prepared SQL
statement.

INTO :sqlda

specifies the host variable name of an SQLDA declared in an INCLUDE SQLDA
statement into which DESCRIBE returns the number of input parameters and a
description of each parameter. (For information about the contents and use of an
SQLDA, see the SQL/MP programming manual for your host language.)

DESCRIBE INPUT { stmt-name } INTO :sqlda
 { :stmt-variable }

 [NAMES INTO :names-buffer]
HP NonStop SQL/MP Reference Manual—523352-013
D-41

DESCRIBE INPUT Statement
NAMES INTO :names-buffer

specifies the host variable name of a names buffer declared in an INCLUDE
SQLDA statement or elsewhere in your program into which DESCRIBE returns the
names of the input parameters.

If you specify the NAMES INTO clause, DESCRIBE INPUT sets the VAR_PTR
field for each entry in the SQLDA to the address of the corresponding entry in the
names buffer.

Each entry in the names buffer is in VARCHAR format: the entry begins with a
2-byte numeric prefix that contains the length of the name; the SQL identifier that is
the name itself follows. (The question mark that precedes a parameter name in an
SQL statement is not included in the name.) Unnamed parameters have a length
of 0. If the name has an odd number of characters, it is followed by a blank to
make it an even length. If a SELECT column is a constant or expression, the name
entry has a length of 0. The table name could be the actual table name itself, a
user specified correlation name, or a DEFINE name for the table (without the
leading = sign). The precedence is: correlation name first, define name second,
and the actual table name the last. For example:

Example 1:

STATEMENT
 SELECT C1 FROM TABLE1 WHERE C1 > 100;

 NAMES-BUFFER (OUTPUT)
 {09}TABLE1.C1

Example 2:

STATEMENT
 SELECT C1 FROM TABLE1 T1 WHERE T1.C1 > 100;

 NAMES-BUFFER (OUTPUT)
 {05}T1.C1

Example 3:

STATEMENT
 SELECT C1 FROM =TABLE_NAME_1 WHERE C1 > 100;

 NAMES-BUFFER (OUTPUT)
 {15}TABLE_NAME_1.C1

Example 4:

STATEMENT
 SELECT C1 FROM =TABLE_NAME_1 T1 WHERE T1.C1 > 100;

 NAMES-BUFFER (OUTPUT)
 {05}T1.C1

If your program uses indicator parameters to handle null values, DESCRIBE
INPUT also returns the names of the indicator parameters to the names buffer. The
HP NonStop SQL/MP Reference Manual—523352-013
D-42

Example—DESCRIBE INPUT
IND_PTR field of each SQLVAR entry contains the address of the corresponding
indicator parameter entry.

Example—DESCRIBE INPUT

This C statement returns descriptions of input variables in the prepared statement
identified by :stmt_name to an SQLDA structure pointed to by :*input_sqlda_ptr.

EXEC SQL DESCRIBE INPUT :stmt_name INTO :*input_sqlda_ptr
 NAMES INTO :*input_namesbuf_ptr;

The NAMES INTO clause directs DESCRIBE INTO to return the names of the
input variables to the buffer pointed to by :*input_namesbuf_ptr and to set the
var_ptr field of each entry in the SQLDA to the address of the corresponding name.

For examples of related statements and a detailed discussion of dynamic SQL
programming techniques, see the SQL/MP Programming Manual for C or the
SQL/MP Programming Manual for COBOL.

DESCRIBE Statement
DESCRIBE is a dynamic SQL statement that returns descriptions of output variables
(usually SELECT columns) from a previously prepared statement.

stmt-name

is the SQL identifier of the prepared SQL statement.

:stmt-variable

is the name of a host variable that stores the SQL identifier of the prepared SQL
statement.

INTO :sqlda

specifies the host variable name of an SQLDA declared in an INCLUDE SQLDA
statement into which DESCRIBE returns:

DESCRIBE { stmt-name } INTO :sqlda
 { :stmt-variable }

 [NAMES INTO :names-buffer]

 [COLLATIONS INTO :collations-buffer]

For a
SELECT

The number of SELECT columns and a description of each
column

For an
INSERT

The data type, length, and scale for the system-defined primary
key (SYSKEY) of the last record inserted
HP NonStop SQL/MP Reference Manual—523352-013
D-43

DESCRIBE Statement
If the SQLDA is not large enough to describe all the SELECT columns, DESCRIBE
returns only the descriptions of the first n columns in the SELECT, where n is the
number of entries in the SQLDA. (In either case, DESCRIBE does not modify the
NUM_ENTRIES field in the SQLDA, which indicates the number of entries the
SQLDA can hold.)

For information about the contents and use of an SQLDA, see the SQL/MP
programming manual for your host language.

NAMES INTO :names-buffer

specifies the host variable name of a names buffer declared in an INCLUDE
SQLDA statement or elsewhere in your program into which DESCRIBE returns the
names of the SELECT columns (or the SYSKEY column) described in the SQLDA.

If you specify the NAMES INTO clause, DESCRIBE sets the VAR_PTR item for
each entry in the SQLDA to the address of the corresponding entry in the names
buffer. (If the buffer is not large enough to contain all the names, DESCRIBE sets
the VAR_PTR field for any name that does not fit to a value less than 0; if the
buffer is larger than necessary, DESCRIBE ignores the extra bytes.)

Each entry in the names buffer is in VARCHAR format: the entry begins with a
2-byte NUMERIC prefix that contains the length of the name and the name follows,
in the form:

tablename.columnname

If the name has an odd number of characters, it is followed by a blank to make
it an even length. If a SELECT column is a constant or expression, the name
entry has a length of 0.

A SYSKEY column name for a table is table-name.SYSKEY. A SYSKEY
column name for a view is view-name.derived-column-name.

The table name could be the actual table name itself, a user specified
correlation name, or a DEFINE name for the table (without the leading = sign).
The precedence is: correlation name first, define name second, and the actual
table name the last. For example:

Example 1:

STATEMENT
 SELECT C1 FROM TABLE1 WHERE C1 > 100;

 NAMES-BUFFER (OUTPUT)
 {09}TABLE1.C1

Example 2:

STATEMENT
 SELECT C1 FROM TABLE1 T1 WHERE T1.C1 > 100;

 NAMES-BUFFER (OUTPUT)
 {05}T1.C1
HP NonStop SQL/MP Reference Manual—523352-013
D-44

Example—DESCRIBE
Example 3:

STATEMENT
 SELECT C1 FROM =TABLE_NAME_1 WHERE C1 > 100;

 NAMES-BUFFER (OUTPUT)
 {15}TABLE_NAME_1.C1

Example 4:

STATEMENT
 SELECT C1 FROM =TABLE_NAME_1 T1 WHERE T1.C1 > 100;

 NAMES-BUFFER (OUTPUT)
 {05}T1.C1

For information about the contents and use of a names buffer, see the SQL/MP
programming manual for your host language.

COLLATIONS INTO :collations-buffer

specifies the name of a collations buffer declared in an INCLUDE SQLDA
statement or elsewhere in your program into which DESCRIBE returns collations
associated with the SELECT columns.

If you specify the COLLATIONS INTO clause, DESCRIBE sets the CPRL_PTR
item for each entry in the SQLDA to the address of the corresponding entry in the
collations buffer.

Each entry in the collation buffer is in VARCHAR format: the entry begins with a
2-byte numeric prefix that contains the length of the collation; the collation follows.

To compare collations associated with different objects, use the Guardian
procedures described in the SQL/MP programming manual for your host language.

Example—DESCRIBE

This COBOL statement returns descriptions of output variables in the prepared
statement identified by S1 to the SQLDA identified by :OUT-SQLDA:

EXEC SQL DESCRIBE S1 INTO :OUT-SQLDA
 NAMES INTO :OUT-NAMESBUF
 COLLATIONS INTO :OUT-COLLBUF END-EXEC.

The NAMES INTO and COLLATIONS INTO clauses direct DESCRIBE to return
the names of the output variables and any collations associated with the output
variables to buffers reserved for them. DESCRIBE sets the VAR-PTR and
CPRL-PTR fields of each entry in the SQLDA to the addresses of the
corresponding name and collation.

For examples of related statements and a detailed discussion of dynamic SQL
programming techniques, see the SQL/MP Programming Manual for C or the
SQL/MP Programming Manual for COBOL.
HP NonStop SQL/MP Reference Manual—523352-013
D-45

Detail Alias
Detail Alias
A detail alias is a name assigned to a print item using the NAME clause of the DETAIL
command. You can use a detail alias to refer to the print item in report formatting
commands such as TOTAL and SUBTOTAL, but not within the DETAIL command itself.

A detail alias is not the same as an alias, which is a name assigned to a column in the
select list of the SELECT command using the report writer NAME command. You can
use an alias (but not a detail alias) to refer to a column in any part of the report
definition.
HP NonStop SQL/MP Reference Manual—523352-013
D-46

DETAIL Command
DETAIL Command
DETAIL is an SQLCI report writer command that defines the contents and format of a
detail line. (A detail line is the output from a single row returned by a SELECT
command, although it can be printed as more than one row in a report.) You can use
DETAIL only from the select-in-progress prompt, not from the SQLCI prompt.

column-id

is a column in the select list of the SELECT command to print in the detail line.
column-id can be a column name, an alias, or COL number (which specifies the
position of the column in the select list). It cannot be a detail alias.

literal

is a string literal to print in the detail line.

DETAIL [print-list] ;

print-list is:

 print-item [, print-item] ...]

print-item is:

 { { { column-id } [AS format] }[head] [name]}
 { { { literal } } }
 { { { num-exp } } }
 { { } }
 { { CONCAT (print-list)[AS format]} }
 { { } }
 { { IF cond-expr THEN (print-list)} }
 { { [ELSE (print-list)] } }
 { }
 { NEED [number] }
 { }
 { PAGE [number] }
 { }
 { SKIP [number] }
 { }
 { SPACE [number] }
 { }
 { TAB [number] }

head is:

 HEADING "characters" [CENTER] | NOHEAD

name is:

 NAME detail-alias
HP NonStop SQL/MP Reference Manual—523352-013
D-47

DETAIL Command
num-exp

is an numeric expression to evaluate and print in the detail line. The expression
cannot include the AVG, COUNT, MIX, MAX, or SUM functions. It can specify
columns with column names, aliases, or COL number, but not with detail aliases. It
can include the report functions LINE_NUMBER, COMPUTE_TIMESTAMP,
CURRENT_TIMESTAMP, and PAGE_NUMBER (which are not allowed in numeric
expressions other than in print items).

For information about the form of numeric expressions, see Expressions on
page E-21.

AS format

specifies a format for printing the item using the syntax of the AS clause or the AS
DATE/TIME clause. For information, see AS Clause on page A-60 or AUDIT File
Attribute on page A-74.

If you use items of date-time types with AS DATE/TIME, first convert them to Julian
timestamps with JULIANTIMESTAMP. You cannot use AS with items of type
INTERVAL.

CONCAT (print-list) [AS format]

concatenates print items. For description of this clause, see CONCAT Clause on
page C-63.

IF cond-expr THEN (print-list)
 [ELSE (print-list)]

specifies a conditional expression that determines whether to print the specified
print list. For description of this clause, see IF/THEN/ELSE Clause on page I-1.

HEADING "characters" [CENTER] | NOHEAD

 characters to use as a heading for the print item. The heading can contain any
single or multibyte character.

To specify a multiline heading (up to 50 lines), include new-line characters in
characters to indicate the beginning of each new line. (The default new-line
character is slash (/). To change the default, see NEWLINE_CHAR Option on
page N-4.)

By default, the heading is left justified. If you include CENTER, the heading is
centered over the print item.

NOHEAD specifies that the print item has no heading.

If you specify neither HEADING nor NOHEAD, report writer uses the default
heading in effect for the column. For an explanation of heading defaults, see
Determining Headings later in this entry.
HP NonStop SQL/MP Reference Manual—523352-013
D-48

DETAIL Command
NAME detail-alias

specifies an SQL identifier unique among column names in the select list as the
detail alias for the print item.

You can refer to a detail alias in other report formatting commands such as TOTAL
and SUBTOTAL, but you cannot refer to a detail alias in the DETAIL command
itself.

NEED [number]

advances to the next page before printing the next print item unless at least
number (an integer in the range 1 through 32,767) more lines fit on the page. The
default is 1. (When you compute the number of lines you need, include lines for the
page footing.)

PAGE [number]

advances to the next page before printing the next print item, printing a page
footing and page title, if defined.

If you specify number (an integer in the range 1 through 32,767), report writer
uses number as the page number for the next page.

SKIP [number]

advances number (an integer in the range 1 through 32,767) lines before printing
the next print item. For example, SKIP 1 causes the print item to be printed on the
next line; SKIP 2 prints the item with one blank line. If fewer than number lines
remain on the page, the report writer advances to the top of the next page.

A line is defined in terms of the spacing specified by the current LINE_SPACING
option (see LINE_SPACING Option on page L-16). To determine the position of the
next line, the report writer multiplies the value of LINE_SPACING by the value of
SKIP.

Omitting number is equivalent to specifying SKIP 1.

SPACE [number]

prints number (an integer in the range 0 through 255) spaces between the
specified print items. A space occupies one print position on the output line (one
byte, regardless of the character set in use).

If you omit the entire clause, the default is the value of the SPACE option of the
SET LAYOUT command. If you specify SPACE but omit number, the default is 1.

TAB [number]

prints the next print item at print position number of the output line. A print position
occupies one byte, regardless of the character set in use.
HP NonStop SQL/MP Reference Manual—523352-013
D-49

Considerations—DETAIL
number is an integer that corresponds to a print position between the left and right
margins. The default is 1.

You can tab backward (specify a print position earlier in the line than the current
print position), but if you overlap print items, the most recent item you specify
overwrites older ones (or portions of older ones).

Considerations—DETAIL

 The detail line for the default report is:

DETAIL COL 1, COL 2, COL 3, ... ;

A DETAIL command with no print list (DETAIL;) produces a report that has no
detail lines. This can be useful for summary reports.

 Only one DETAIL command is in effect at a time. Use the FC command to modify
the current DETAIL command, or use the RESET REPORT command to reset the
DETAIL line to the default.

 The output of the print list you specify in a DETAIL command is a logical line,
although (depending on margin settings, device widths, and use of the SKIP
clause) it might print on more than one physical line. A logical line is limited to 4072
bytes, including the field widths of all print items and the number of spaces
between items.

 To create a report that includes only information about groups of records, use the
BREAK ON command to specify groups, use the BREAK TITLE and BREAK
FOOTING commands to specify the contents of the report lines, and use a DETAIL
command with no arguments (DETAIL;) to suppress printing of detail lines. Only
the summary lines will print.

 The report writer goes through these steps to determine the heading to use for a
print item:

1. Check the HEADINGS style option. If OFF, do not generate headings; if ON,
continue.

2. Check whether there is a DETAIL command for the current report that includes
NOHEAD or HEADING clauses. If so, generate headings accordingly; if not,
continue.

3. Check for the most recent alias or detail alias. If an alias exists, use the alias
as the heading; if not, continue.

4. Check whether the table or view column has a heading defined for it. If so, use
the heading; if not, use the column name as the heading.

5. Generate a default (EXPR) heading for each expression, function, or numeric
literal unless a heading was specified for the item in a DETAIL command.

6. Omit headings for string literals and IF/THEN/ELSE or CONCAT items unless
headings were specified for them in the DETAIL command.
HP NonStop SQL/MP Reference Manual—523352-013
D-50

Examples—DETAIL
Examples—DETAIL

 This example specifies a report in the format shown:

>> SET LIST_COUNT 0;
>> SELECT * FROM SALES.CUSTOMER ORDER BY CUSTNUM;
S> DETAIL CUSTNUM HEADING "Account",
+> CUSTNAME AS A20 HEADING "Name" CENTER,
+> CONCAT (CITY STRIP, ", ", STATE)
+> HEADING "Location" CENTER,
+> TAB 60, IF CREDIT = "A1" THEN ("***");

Some sample lines of this report are:

Account Name Location
------- -------------------- --------------------------
 21 CENTRAL UNIVERSITY PHILADELPHIA, PENNSYLVANIA ***
 123 BROWN MEDICAL CO SAN FRANCISCO, CALIFORNIA

 This example specifies a report in the format shown:

>> SELECT FIRST_NAME,LAST_NAME,DEPTNAME,MANAGER,AVG (SALARY)
+> FROM PERSNL.EMPLOYEE E, PERSNL.DEPT D
+> WHERE D.DEPTNUM = E.DEPTNUM
+> GROUP BY FIRST_NAME, LAST_NAME, DEPTNAME, MANAGER;
S> DETAIL DEPTNAME AS A20 HEADING "Dept." NAME DN,
+> CONCAT (FIRST_NAME STRIP, SPACE 1, LAST_NAME) AS A18
+> HEADING "Manager", COL 5 HEADING "Avg. Salary" NAME AVSAL;

Some sample lines of this report are:

Dept. Manager Avg. Salary
-------------------- ------------------ -------------------
ASIA SALES SHERRIE WONG 45835.00
ENGINEERING ERIC BROWN 35000.00
MARKETING JACK RAYMOND 30166.67

 This example demonstrates usage of SKIP to print a report vertically:

>> SET LIST_COUNT 0;
>> SET STYLE HEADINGS OFF,
>> SET LAYOUT PAGE_LENGTH ALL;
>> SELECT CUSTNAME, STREET, CITY, STATE, POSTCODE
+> FROM SALES.CUSTOMER
+> ORDER BY STATE, POSTCODE;
S> DETAIL PAGE,
+> CUSTNAME, SKIP 1,
+> STREET, SKIP 1,
+> CONCAT (CITY STRIP, ",", STATE STRIP,
+> " ", POSTCODE);
+> LIST NEXT 1;
HP NonStop SQL/MP Reference Manual—523352-013
D-51

DISPLAY STATISTICS Command
Some sample lines of this report are:

FRESNO STATE BANK
2300 BROWN BLVD
FRESNO, CALIFORNIA 93921

DISPLAY STATISTICS Command
DISPLAY STATISTICS is an SQLCI command that displays statistics about the last
DML or PREPARE the statement you executed.

Considerations—DISPLAY STATISTICS

 You can use DISPLAY STATISTICS at any time to see the statistics of the most
recent DML or PREPARE statement but if you set the STATISTICS option to ON,
SQLCI displays statistics automatically after each DML, DCL, DDL, or PREPARE
statement executes. For information, see SET SESSION Command on page S-39.

 SQLCI displays these statistics:

 Estimated cost

Estimated cost is a relative measure of cost derived using the same cost
functions that the SQL compiler uses to choose a query execution plan. The
estimate includes processor, disk I/O, and message costs. Higher numbers
tend to indicate that SQL expects to process larger amounts of data. Large
numbers are not typically associated with fast on-line response times. Lower
numbers imply more efficient execution, but can be affected by missing or
inaccurate statistics or by skewed data distribution.

For information about cost, see the SQL/MP Query Guide.

 Start Time, End Time, Elapsed Time, and Master Executor Execution Time

Master Executor Execution time is the amount of processor time used by the
SQL executor. Elapsed time includes the execution time, I/O time, and the time
used to display the result.

 Number of records accessed and number of records used

Records accessed is the number of rows read (including rows that do not
satisfy the selection criteria). Rows are counted for each table, underlying table
of a protection view, and temporary table. If you join a table to itself, separate
statistics are reported for each instance of the table. The number of rows
accessed in an index is not reported.

DISPLAY STATISTICS ;
HP NonStop SQL/MP Reference Manual—523352-013
D-52

Example—DISPLAY STATISTICS
Records accessed does not indicate the specific number of physical disk reads
or writes because SQL uses disk caching to reduce the number of physical
read and write operations.

Records used is the number of rows that satisfy the query.

 Number of disk reads

 Message count

Message count is usually the number of blocks passed from the disk process
to the file system. Sometimes an additional message is needed to ensure that
the last row was processed.

 Message bytes

Message bytes is the total amount of data transferred.

 Lock

Lock contains information about lock escalation.

Example—DISPLAY STATISTICS

The last DML command is:

>> DELETE FROM I.P
+> WHERE SUPPNUM NOT IN (SELECT SUPPNUM FROM I.S
+> WHERE STATE = "TEXAS");
--- 41 row(s) deleted.

Although you did not display the statistics when executed, you can display them
using the DISPLAY STATISTICS command:

>> DISPLAY STATISTICS;

Estimated Cost 39

Start Time 94/06/01 09:07:16.678185
End Time 94/06/01 09:07:56.533061
Elapsed Time 00:00:39.854876
Master Executor Execution Time 00:00:00.359826

 Records Records Disk Message Message Lock
Table Name Accessed Used Reads Count Bytes
 \S.$V.I.S 48 42 4 84 6684
 \S.$V.#2549 0 0 0 0 0
 \S.$V.I.P 49 49 2 3 542
 \S.$V.#2549 0 0 0 0 0
HP NonStop SQL/MP Reference Manual—523352-013
D-53

DISPLAY USE OF Command
DISPLAY USE OF Command
DISPLAY USE OF is an SQLCI utility command that displays a list of SQL objects and
registered SQL object programs depend on the object specified.

object

is the name (or an equivalent DEFINE) of a collation, index, table, or view for which
to specify the dependent objects.

If object is a secondary partition, you must include either its node or the node
that contains the primary partition in the nodes you specify in the AT clause.

If SMF is installed on your node, object cannot specify any object on a $*.ZYS*.
subvolume.

AT { \node }
 { (\node [, \node] ...) }

specifies nodes to search for dependent objects and programs. The default is all
nodes in the network.

{ BRIEF | STANDARD }

specifies the information and the format for display.

The default is STANDARD.

Considerations—DISPLAY USE OF

 DISPLAY USE OF requires authority to read the catalogs that describe the object
you specify and the catalogs that describe all its dependent objects and programs.

 DISPLAY USE OF searches the USAGES table in the catalog that describes
object to find the names of objects or programs that depend on object, then
searches the catalogs that describe the dependent objects and finds the names of
objects that in turn depend on the dependent objects. DISPLAY USE OF repeats
this process until it finds all objects that depend directly or indirectly on object.

DISPLAY USE OF object [AT { \node }]
 [{ (\node [,\node] ...) }]

 [, { BRIEF | STANDARD }] ;

BRIEF Display name, object type, and status of dependent objects and
programs.

STANDARD Display name, object type, status, owner, security, number of
partitions, and catalog name for the object and for dependent
objects and programs.
HP NonStop SQL/MP Reference Manual—523352-013
D-54

Considerations—DISPLAY USE OF
DISPLAY USE OF lists only registered SQL programs. Unregistered SQL
programs cannot be listed because neither such programs nor their dependency
relationships are described in catalogs.

The types of objects that can depend on each type of object are:

 The USAGES catalog table contains descriptions of the relations among primary
partitions only. The only exception to this rule is that the USAGES table describes
a relation between each partition of a protection view and the corresponding
partition of the table that the protection view depends on. If an object depends on a
protection view, however, the USAGES table describes only the relation between
the primary partitions of the dependent object and the protection view.

If object is the name of a secondary partition, DISPLAY USE OF substitutes the
name of the primary partition and reports the primary partitions of all the objects
that depend on that primary partition.

 The columns of the DISPLAY USE OF output contain these information:

 Object Name

The name of the object or one of its dependent objects or programs, preceded
by an integer level number. (The original object is at level 0, objects directly
dependent on the original object are at level 1, and so forth.)

All names of dependent objects appear as fully qualified Guardian names. For
an SQL program in an OSS file, the fully qualified Guardian name is the ZYQ
name of the program file, and a pathname for the file appears immediately
below the ZYQ name, wrapping over multiple lines if necessary. (If no
pathname for the file is accessible to the user, the message “No pathname
accessible.” appears instead.)

 Type

A two-character code that specifies the object type:

Objects Dependent Objects

Table Indexes, protection views, shorthand views,
SQL programs

Protection view Shorthand views, SQL programs

Shorthand view Shorthand views, SQL programs

Index SQL object programs

Collation Indexes, protection views, shorthand views,
SQL programs, tables

CP Collation

IN Index

PG SQL program
HP NonStop SQL/MP Reference Manual—523352-013
D-55

Examples—DISPLAY USE OF
 S

A status column that indicates whether any special condition was encountered
during the search for the initial or dependent object. A blank indicates no
special condition was encountered. The meanings of the status codes follow:

 P

The number of partitions. A blank indicates that the object is not partitioned.

 The user ID of the object's owner.

 Secure

The security string for the object.

 Catalog Name

The name of the catalog in which the object is described.

The “Number of unique dependencies” field shows the number of objects that
depend directly or indirectly on the initial object. The number does not include
duplicate occurrences of objects.

The “Number of direct dependencies” field shows the number of objects that
depend directly on the object being traced.

Examples—DISPLAY USE OF

 This example displays a BRIEF-format list of all objects and registered programs in
the network that depend on the EMPLOYEE table in the subvolume
\SYS1.$VOL1.PERSNL. (The display has been modified slightly to fit the page
width.)

PV Protection view

SV Shorthand view

TA Table

* The object was listed previously; its dependent objects will not be
repeated.

? A system error occurred.

@ The AT option did not include this node.

I The catalog for this object is marked “inconsistent.”

L The object was not found.

N The node with this object is not available.

R The primary partition of this object was not found.

T The type is unsupported.

U The node is undefined.
HP NonStop SQL/MP Reference Manual—523352-013
D-56

Examples—DISPLAY USE OF
>> DISPLAY USE OF \SYS1.$VOL.PERSNL.EMPLOYEE, BRIEF;
 Object Name Type S
 ------------------------------------- ---- -
 0 \SYS1.$VOL1.PERSNL.EMPLOYEE TA
 1 \SYS1.$VOL1.PERSNL.EMPLIST PV
 1 \SYS1.$VOL1.PERSNL.XEMPDEPT IN
 1 \SYS1.$VOL1.PERSNL.XEMPNAME IN
 1 \SYS1.$DATA.ZYQ39483.Z000002H PG

 PATH/usr/empinfo/reports/app.exe
 U = Undefined node N = Node unavailable
 @ = Node not in list * = Previously displayed
 T = Unsupported type ? = System error
 Number of unique dependencies : 4
 Number of direct dependencies : 4

 This example displays a STANDARD-format list of all objects and registered
programs in the network that depend on a table named EMP on subvolume
\SYS1.$VOL1.HR. (The display layout has been modified slightly to fit the page
width.)

>> DISPLAY USE OF \SYS.$VOL.PERSNL.EMPLOYEE;
Object Name Type S P Owner Name Secure
------------------------ ---- - --- ----------- ------
 Catalog Name

0 \SYS1.$VOL1.HR.EMP TA GROUP.NAME CUCU
 $VOL1.HR
1 \SYS1.$VOL1.HR.EMPL PV GROUP.NAME CUCU
 $VOL1.HR
1 \SYS1.$VOL1.HR.XEMP IN GROUP.NAME CUCU
 $VOL1.HR
1 \SYS1.$DATA.ZYQ39483.Z000002H PG
 PATH/usr/empinfo/reports/app.exe
 OWNER: GRP.FRED SECURITY -rwxr-x--x
 GROUP: NonStop
 $VOL1.HR
1 \SYS1.$VOL1.HR.GPROG PG GROUP.NAME CUCU
U = Undefined node N = Node unavailable
@ =Node not in list * = Previously displayed
T = Unsupported type ? = System error
Number of unique dependencies : 4
Number of direct dependencies : 4
DISTINCT Clause

DISTINCT is a clause that removes duplicate rows from a result table. It is used in
many search conditions and in the SELECT statement.

For information, see SELECT Statement on page S-18 or the entry for a specific
search condition (for example, AVG or SUM).
HP NonStop SQL/MP Reference Manual—523352-013
D-57

DML Statements
DML Statements
A DML statement is used to select, update, insert, or delete rows in one or more
tables. This table summarizes DML statements:

DOWNGRADE CATALOG Command
DOWNGRADE CATALOG is an SQLCI utility command that converts catalogs to an
older version so the catalogs can be accessed by an older version of the SQL/MP
software.

catalogs

specifies the catalogs to downgrade. catalog can be a single catalog name, a
type CATALOG DEFINE name, or a name that specifies multiple catalogs by
including these wild-card characters:

For example,

Catalogs specified by catalogs can be either local or remote but cannot include
objects with a version newer than version, or any catalog specified programs

CLOSE Statement Closes a cursor

DECLARE CURSOR Statement Defines a cursor

DELETE Statement Deletes rows from a table or view

FETCH Statement Retrieves a row from a cursor

INSERT Statement Inserts a row into a table or view

OPEN Statement Opens a cursor

SELECT Statement Retrieves data from tables and views

UPDATE Statement Updates values in columns of a table or view

DOWNGRADE CATALOG[S] [catalogs] TO version ;

? matches any single character

* matches 0 to 8 characters

MYCAT? matches MYCATA, MYCATB, and MYCAT5 (and possibly others)
but not MYCATXX.

$DATA.* matches all catalogs on volume $DATA.

=APPCAT matches the catalog specified by the =APPCAT DEFINE

(MYCAT?,
=APPCAT)

matches MYCAT1, MYCAT2, MYCATX, (and possibly others) and
the catalog specified by =APPCAT

$*.* matches all catalogs on the current default node except the system
catalog.
HP NonStop SQL/MP Reference Manual—523352-013
D-58

Considerations—DOWNGRADE CATALOG
with a PCV newer than version. (Delete any such objects or programs before
you execute DOWNGRADE CATALOG.)

In addition, no catalog specified can include objects with a version newer than the
version of the SQL/MP software executing the DOWNGRADE CATALOG
command.

Catalogs cannot be a system catalog. (Use DOWNGRADE SYSTEM CATALOG to
convert a system catalog.)

If SMF is installed on your node, catalogs cannot specify any catalog or system
catalog on a $*.ZYS*. subvolume.

The default is the current default catalog.

TO version

specifies the catalog format version for the downgraded catalog.

You can express version as either an integer (2, 300, 310, 315, 320, 325, or 330)
or a character string (A011, A300, A310, A315, A320, A325, or A330), but the
version you specify must be older than the version of each catalog you specify with
catalogs.

You cannot downgrade a catalog to version 1, but version 2 catalogs are
compatible with version 1 software.

Considerations—DOWNGRADE CATALOG

 To downgrade a catalog, you must be a generalized owner of the catalog and you
must have authority to read, write, and purge each table in the catalog. You also
must have authority to write to the CATALOGS table in the system catalog.

DOWNGRADE CATALOG requires exclusive access to the catalogs being
downgraded. Other processes cannot access the catalogs during the downgrade.
The downgrade fails if another process has one of the catalogs open when you
execute DOWNGRADE CATALOG.

If you downgrade a catalog to version 2, file labels must be available during the
downgrade for any tables or objects registered in the catalog that have a nonzero
value for the OBJECTVERSION column of the TABLES or INDEXES catalog table.
(For backward compatibility, DOWNGRADE CATALOG changes such file labels to
specify object version 0.)

 DOWNGRADE CATALOG invalidates any program that refers to a catalog table in
the downgraded catalogs, but does not invalidate a program merely because the
program is registered in a downgraded catalog or because it accesses an object
(such as a user table) described in a downgraded catalog.

DOWNGRADE CATALOG does not invalidate a program registered in a
downgraded catalog merely because the program has a PFV newer than version
because such a program can execute regardless of the catalog downgrade unless
HP NonStop SQL/MP Reference Manual—523352-013
D-59

Examples—DOWNGRADE CATALOG
the SQL/MP software that executes it is replaced with an older version. However, if
the purpose of the DOWNGRADE CATALOG is to prepare for installation of an
older version of SQL/MP software, you will need to re-SQL-compile programs with
a newer PFV after the older software is in place. (A runtime error occurs if you
attempt to execute a program with a PFV newer than the version of the installed
SQL/MP software.)

 DOWNGRADE CATALOG creates a new temporary catalog on the same volume
as each catalog being downgraded. Such volumes must have enough disk space
available to store files twice as large as the original catalog.

 You cannot use DOWNGRADE CATALOG in a user-defined transaction.

 An error that causes the downgrade of one catalog specified in catalogs to fail
does not necessarily cause the downgrades of other catalogs specified in
catalogs to fail. (Use GET VERSION to check the version of a specific catalog.)

In unusual failure situations (such as a system failure during a downgrade catalog
operation), temporary files with names that begin with the letters “ZZDN” might be
left on the same subvolume as the catalog. You can delete these with CLEANUP.

Examples—DOWNGRADE CATALOG

 This example downgrades the catalog on the subvolume $VOL1.SVOL1 to version
2:

>> DOWNGRADE CATALOG $VOL1.SVOL1 TO 2;

 This example downgrades all the catalogs on volume $VOL to version 310:

>> DOWNGRADE CATALOG $VOL.* TO 310;

 This example downgrades all the catalogs on the current default node to version 2:

>> DOWNGRADE CATALOG $*.* TO 2;

 This example downgrades all catalogs on a volume on a remote node to version 2:

>> DOWNGRADE CATALOG \DIST.$DATA.* TO A011;
HP NonStop SQL/MP Reference Manual—523352-013
D-60

DOWNGRADE SYSTEM CATALOG Command
DOWNGRADE SYSTEM CATALOG Command
DOWNGRADE SYSTEM CATALOG is an SQLCI utility command that allows a user
with super ID authority to convert a local system catalog to an older version so the
system catalog can be accessed by an older version of SQL/MP software.

version

is the catalog format version for the downgraded system catalog.

You can express version as either an integer (2, 300, 310, 315, 320, 325, or 330)
or a character string (A011, A300, A310, A315, A320, A325, or A330), but the
version you specify must be older than the current version of the system catalog.

You cannot downgrade a catalog to version 1, but version 2 catalogs are
compatible with version 1 software.

Considerations—DOWNGRADE SYSTEM CATALOG

 Only the local super ID can downgrade a system catalog.

DOWNGRADE SYSTEM CATALOG requires exclusive access to the system
catalog. Other processes cannot access the system catalog during the downgrade.
The downgrade fails if another process has one of the catalog tables in the system
catalog open when you execute DOWNGRADE SYSTEM CATALOG.

The downgrade fails, If you downgrade a system catalog to version 2, file labels
must be available during the downgrade for any tables or objects registered in the
catalog that have a nonzero value for the OBJECTVERSION column of the
TABLES or INDEXES catalog table. (For backward compatibility, DOWNGRADE
CATALOG changes such file labels to specify object version 0.)

 You cannot downgrade a system catalog that contains protection views, objects
with a version newer than version, or programs with a PCV newer than
version. (Drop any such objects or programs before you execute DOWNGRADE
SYSTEM CATALOG.) In addition, a system catalog cannot itself have a version
newer than the version of the SQL/MP software executing the DOWNGRADE
SYSTEM CATALOG command.

You can downgrade a system catalog that has higher-version user catalogs
registered in it. For example, you can downgrade a version 310 system catalog to
version 2, even if it has version 310 user catalogs registered in it.

 DOWNGRADE SYSTEM CATALOG invalidates any program that refers to a
catalog table in the downgraded system catalog, but does not invalidate a program
merely because the program is registered in a downgraded system catalog or
accesses an object (such as a user table) described in a downgraded system
catalog.

DOWNGRADE SYSTEM CATALOG TO version ;
HP NonStop SQL/MP Reference Manual—523352-013
D-61

Example—DOWNGRADE SYSTEM CATALOG
DOWNGRADE SYSTEM CATALOG does not invalidate a program registered in
the downgraded system catalog that has a PFV newer than version because
such a program can execute regardless of the catalog downgrade unless the
SQL/MP software that executes the program is replaced with an older version.
However, if the purpose of the DOWNGRADE SYSTEM CATALOG is to prepare
for installation of an older version of SQL/MP software, you will need to
re-SQL-compile programs with a newer PFV after the older software is in place. (A
runtime error occurs if you attempt to execute a program with a PFV newer than
the installed SQL/MP software.)

 DOWNGRADE SYSTEM CATALOG creates a new temporary catalog on the same
volume as the catalog being downgraded. Such volumes must have enough disk
space available to store files twice as large as the original system catalog.

 You cannot use DOWNGRADE SYSTEM CATALOG in a user-defined transaction.

 In unusual failure situations (such as a system failure during the downgrade
operation), temporary files with names that begin with the letters “ZZDN” might be
left on the same subvolume as the catalog. You can delete these with CLEANUP.

Example—DOWNGRADE SYSTEM CATALOG

This command downgrades the local system catalog to version 2:

>> DOWNGRADE SYSTEM CATALOG TO 2;
HP NonStop SQL/MP Reference Manual—523352-013
D-62

DROP Statement
DROP Statement
DROP is a DDL statement that deletes a catalog, collation, constraint, index,
SQL-program Guardian file, table, or view, and deletes comments associated with the
dropped object.

CATALOG [catalog]

specifies the name (or an equivalent DEFINE) of an empty catalog to delete. If you
omit the catalog name, SQL deletes the default catalog.

COLLATION collation

specifies the name (or an equivalent DEFINE) of a collation to delete.

CONSTRAINT constraint ON table

specifies the name of a constraint to delete, and the name (or an equivalent
DEFINE) of the table with which the constraint is associated.

INDEX index

specifies the name (or an equivalent DEFINE) of an index to delete. index cannot
be a catalog index.

PROGRAM file

specifies the name (or an equivalent DEFINE) of a Guardian file that contains an
SQL program.

TABLE table

specifies the name (or an equivalent DEFINE) of a table to delete. table cannot
be a catalog table.

VIEW view

specifies the name (or an equivalent DEFINE) of a view to delete.

Considerations—DROP

 DROP requires authority to read and write to the catalog that describes the object,
and to read and write to the catalogs of related objects that require changes

DROP { CATALOG [catalog] }
 { COLLATION collation }
 { CONSTRAINT constraint ON table }
 { INDEX index }
 { PROGRAM file }
 { TABLE table }
 { VIEW view }
HP NonStop SQL/MP Reference Manual—523352-013
D-63

Considerations—DROP
because of the drop. In addition, you cannot drop an object until after the time and
date specified for the NOPURGEUNTIL attribute of the object.

To drop a table, view, or program, you must also have authority to purge the object
being dropped. To drop a partitioned object, all partitions must be accessible.
Additional requirements for dropping other types of objects are described later in
this entry.

Only one DDL statement can operate on a given SQL object (or partition of an SQL
object) at a time. An error occurs if you attempt to execute a DROP statement
while another process is executing a DDL operation on the same object. The
specific error depends on the DDL operation involved and the phase of the
operation at which the conflict occurs. For information, see DDL (Data Definition
Language) Statements on page D-20.

 You cannot drop a catalog unless you first drop all user tables, views (except for
views defined on catalog tables), indexes, collations, and program files from the
catalog. To drop a catalog, you must have authority to read and purge the catalog
tables, and authority to read and write to SQL.CATALOGS.

 You cannot drop a collation that has dependent objects. To learn how to determine
dependencies, see DISPLAY USE OF Command on page D-54.

 Dropping a constraint invalidates all SQL object program files that use the
underlying table and can change the version of the associated table and any views
defined on that table.

To drop a constraint, you must be the local or remote owner of the underlying table,
with purge authority, or the local super ID. You cannot drop a constraint unless the
underlying table (including all partitions) and the catalogs of all SQL object program
files that use the underlying table are accessible.

 Dropping an index purges the physical file for the index, including all its partitions.
It also invalidates all SQL object program files that use the table underlying the
index and it can change the version of the table and any views defined on the
table.

To drop an index, you must be the local or remote owner of the underlying table,
with purge authority, or the local super ID. You cannot drop an index unless the

Caution. Using the DROP statement to delete a table is permitted if you have PURGE
authority, there are no locks outstanding on the table, and if you are beyond the
NOPURGEUNTIL date.
To adequately protect important tables, use the NOPURGEUNTIL attribute, specifying a date
well into the future, or change PURGE authority to “-” (SUPER only). Either method requires an
ALTER TABLE before the DROP TABLE.
HP NonStop SQL/MP Reference Manual—523352-013
D-64

Considerations—DROP
table (including all partitions) and the catalogs of all SQL object program files that
use the table are accessible.

 You cannot drop a table or view unless all related indexes and views (including all
partitions) are accessible, and unless the catalogs of all SQL object program files
that use the table or view are accessible. You cannot drop a protection view unless
the underlying table (including all partitions and associated indexes) is accessible.
To make sure the object is accessible, perform a LOCK TABLE operation before
issuing the DROP TABLE request.

Dropping a table purges the physical file for the table and drops all dependent
indexes, constraints, partitions, and views. It also invalidates all SQL object
program files that refer to the table. If the dropping process does not have authority
to purge a shorthand view, SQL invalidates the shorthand view.

Dropping a view automatically drops all dependent views, and invalidates all SQL
object program files that refer to the views. If the dropping process does not have
authority to purge a shorthand view, SQL invalidates the shorthand view.

Invalidated shorthand views are unusable and should be dropped by a user with
appropriate security.

Invalidated program files might be usable, but you should ensure that they are
explicitly SQL-compiled to avoid automatic recompilation each time the program
runs.

 You cannot drop a nonaudited object within a user-defined TMF transaction.

 Dropping a program purges the physical program file.

To drop a program, you must have authority to read and write to the USAGES table
of each catalog that contains objects referenced by the program.

You cannot use DROP to delete an SQL-program OSS file. Use the OSS rm
command or the OSS unlink() function instead. (These commands remove the use
of one pathname for a file. OSS removes the physical SQL object program file
when the last pathname is removed; SQL deletes any references to the program in
the SQL catalog at that time.)

Caution. Using the DROP statement to delete a table is permitted if you have PURGE
authority, there are no locks outstanding on the table, and if you are beyond the
NOPURGEUNTIL date.
To adequately protect important tables, use the NOPURGEUNTIL attribute, specifying a date
well into the future, or change PURGE authority to “-” (SUPER only). Either method requires an
ALTER TABLE before the DROP TABLE.

Caution. Using the DROP statement to delete a table is permitted if you have PURGE
authority, there are no locks outstanding on the table, and if you are beyond the
NOPURGEUNTIL date.
To adequately protect important tables, use the NOPURGEUNTIL attribute, specifying a date
well into the future, or change PURGE authority to “-” (SUPER only). Either method requires an
ALTER TABLE before the DROP TABLE.
HP NonStop SQL/MP Reference Manual—523352-013
D-65

Example—DROP
You cannot drop an SQL-program Guardian file within a user-defined transaction.
(You can use the OSS unlink command to delete an SQL-program OSS file within
a user-defined transaction, but the operation is not performed as part of the
transaction.)

 If SMF is installed on your node, the object to drop must have either a virtual or
direct name.

This restriction does not apply to DROP CONSTRAINT.

Example—DROP

This example drops an index on the PARTS table and then drops the table and a
related program:

DROP INDEX $VOL1.SALES.XPARTDES;
DROP TABLE $VOL1.SALES.PARTS;
DROP PROGRAM $VOL3.SUBVOL3.PROGA;

DROP SYSTEM CATALOG Command
DROP SYSTEM CATALOG is an SQLCI command that allows the local super ID to
delete the system catalog, including the CATALOGS table and information about the
SQLCI2 program.

catalog-name

identifies the system catalog to be dropped; catalog-name is the name of the
volume and subvolume that contain the system catalog (or an equivalent DEFINE).

If SMF is installed on your node, the system catalog must have either a virtual or
direct name.

Considerations—DROP SYSTEM CATALOG

 To drop the system catalog, you must use the local super ID.

 The system catalog must be empty except for the system catalog entry in the
CATALOGS table and entries for the catalog tables and the SQLCI2 program. The
system catalog must be the only catalog registered in the CATALOGS table. You
must drop all other objects, programs, and catalogs before executing this
command.

 If you are running SQLCI and have not entered any SQLCI commands during the
current session, you can drop the system catalog by entering this command at the
SQLCI prompt:

>> DROP SYSTEM CATALOG catalog-name;

DROP SYSTEM CATALOG catalog-name ;
HP NonStop SQL/MP Reference Manual—523352-013
D-66

Examples—DROP SYSTEM CATALOG
You cannot enter the DROP SYSTEM CATALOG command, however, while the
SQLCI2 program is running, as it normally is after you enter a command during the
current SQLCI session. If you attempt to enter the DROP SYSTEM CATALOG
command while SQLCI2 is running, the command terminates abnormally and an
error message appears.

To enter the command correctly, you can use either of two methods:

 Exit from SQLCI. Then restart SQLCI and enter the DROP SYSTEM
CATALOG command at the first SQLCI prompt:

30> SQLCI
>> DROP SYSTEM CATALOG catalog-name;

 Enter the DROP SYSTEM CATALOG command at the TACL prompt:

31> SQLCI DROP SYSTEM CATALOG catalog-name;

Examples—DROP SYSTEM CATALOG

 This example drops a system catalog that resides on the default location
$SYSTEM.SQL:

16> SQLCI DROP SYSTEM CATALOG $SYSTEM.SQL;

 This example drops a system catalog that resides on the volume $VOL1 and
subvolume SVOL1:

18> SQLCI DROP SYSTEM CATALOG $VOL1.SVOL1;

DSL Statements
A DSL statement retrieves status information about the version of the database. This
table summarizes DSL statements:

For detail, refer to the specific statement.

GET CATALOG OF SYSTEM
Statement

Retrieves the name of a local or remote system
catalog

GET VERSION Statement Retrieves the version of a specific SQL object,
catalog, or system

GET VERSION OF
PROGRAM Statement

Retrieves the PCV, PFV, or HOSV of an SQL
program
HP NonStop SQL/MP Reference Manual—523352-013
D-67

DSLACK File Attribute
DSLACK File Attribute
DSLACK is a Guardian file attribute that specifies the minimum percentage of space to
leave for future insertions when loading data blocks. DSLACK applies only to
key-sequenced tables and to indexes.

percent

is an integer from 0 to 99 that specifies the percent of empty space to leave in
each data block when loading the file.

Considerations—DSLACK

 DSLACK specifications are usually between 15 and 25 percent.

 Specifying a larger-than-normal DSLACK value when a file is initially loaded and
many more inserts are expected can improve performance by reducing the number
of block splits required when inserts occur.

 For a file expected to have little write activity, you can save disk space by
specifying a smaller-than-normal DSLACK value.

DSLACK percent

The default is the value of the SLACK file attribute.
The default for SLACK is 15 percent.
HP NonStop SQL/MP Reference Manual—523352-013
D-68

DUP Command
DUP Command
DUP is an SQLCI utility command that copies tables (optionally with the associated
views and indexes), views, collations, SQL programs in Guardian files, and Enscribe
files. DUP cannot copy a catalog table.

DUP is useful for moving tables to different nodes or volumes and for duplicating tables
for testing.

DUP resembles the FUP DUP command in function and syntax, but you cannot use
FUP DUP on SQL objects.

source-fileset-list

is a qualified fileset list that specifies the objects or files to duplicate. For
information, see Filesets on page F-29.

If source-fileset-list includes a primary partition, DUP duplicates all
partitions of the table or file, deriving names for new secondary partitions from the
values you specify for target-fileset or the MAP NAME option. If
source-file-list explicitly specifies a secondary partition, DUP reports an

DUP source-fileset-list,
 { target-fileset }
 { MAP NAME[S] { map-spec } }
 { { (map-spec [, map-spec] ...) } }
 [[,] dup-option] ... ;

dup-option is:
{ CATALOG[S] { catalog-spec } }
{ { (catalog-spec [, catalog-spec]...) } }
{ COLLATION[S] (collation-spec[,collation-spec]...) }
{ ALLOWERRORS [ON | OFF | num] }
{ [NO] LISTALL }
{ SAVEALL [ON | OFF] }
{ SAVEID [ON | OFF] }
{ SOURCEDATE [ON | OFF] }
{ [TARGET] { NEW | KEEP | PURGE } }
{ INDEX[ES] [IMPLICIT | OFF] }
{ VIEW[S] [IMPLICIT | EXPLICIT | OFF] }

map-spec is:
 simple-fileset-list TO fileset

catalog-spec is:
 catalog-name [FOR simple-fileset-list]

collation-spec is:
{ collation-name }
{ (collation-name [, collation-name] ...) }

 FOR simple-fileset-list
HP NonStop SQL/MP Reference Manual—523352-013
D-69

DUP Command
error. If source-file-list implicitly specifies secondary partitions, DUP ignores
the secondary partitions.

If SMF is installed on your node, source-fileset-list must not specify an
object or file on a $*.ZYS*. subvolume.

Duplication of views and indexes depends on the INDEXES and VIEWS options
described later in this entry.

target-fileset

is a fileset that specifies names and locations for the new objects and files.

An asterisk (*) in the fileset specification indicates that the portion of the name in
which the asterisk appears should be the same as the corresponding portion of the
name of the object or file being duplicated. (The meaning of the asterisk differs
from the usual meaning of an asterisk in a fileset specification. The ? (question
mark) normally allowed in a fileset specification is not allowed.)

DUP $VOL1.SALES.*, $VOL2.*.*

duplicates each table and its dependent objects on $VOL1.SALES, creating the
duplicates on $VOL2.SALES with the same names as the original tables and
dependent objects.

For information, see the target-fileset specification Considerations item on
page D-76.

MAP NAME[S] { map-spec }
 { (map-spec [, map-spec] ...) }

is a clause that specifies names and locations for the new objects or files.
map-spec is:

simple-fileset-list TO fileset

simple-fileset-list

is a simple fileset list that specifies the objects or files being duplicated for
which names and locations are being specified.

A fileset in the list that does not specify a node matches any node. Specifying
the local node for a fileset is equivalent to not specifying any node for the
fileset. For example, if \LOCAL is the local node name, both the node
specifications *.*.* and \LOCAL.*.*.* match all files on all nodes, both local and
remote.

fileset

is a fileset that specifies names and locations for the new objects and files.
HP NonStop SQL/MP Reference Manual—523352-013
D-70

DUP Command
An asterisk (*) in the fileset specification indicates that the portion of the name
in which the asterisk appears should be the same as the corresponding portion
of the name of the object or file being duplicated. For example,

MAP NAMES $WHS2.INVENT.PARTLOC TO $TEST.*.*

specifies that the new table that duplicates $WHS2.INVENT.PARTLOC is to be
$TEST.INVENT.PARTLOC.

(The meaning of the asterisk differs from the usual meaning of an asterisk in a
fileset specification. The ? normally allowed in a fileset specification is not
allowed.)

If you specify a list of map-specs and one conflicts with another, DUP uses the
first in the list.

For information about using MAP NAME, see the target-fileset specification
Considerations item on page D-76.

CATALOG[S] { catalog-spec }
 { (catalog-spec> [, catalog-spec]...) }

specifies existing catalogs in which the target objects are to be described;
catalog-spec is

catalog-name [FOR simple-fileset-list]

catalog-name identifies a catalog on the same node as the objects to hold
the descriptions of the objects.

FOR simple-fileset-list specifies the names and location of the target
objects to be described in the catalog. A fileset within simple-fileset-
list that does not specify a node matches any node. Specifying the local
node for a fileset is equivalent to not specifying any node for the fileset. For
example, if \LOCAL is the local node name, both the node specifications *.*.*
and \LOCAL.*.*.* match all files on all nodes, both local and remote.

If you omit the FOR clause, SQL uses catalog-name as the catalog for all
duplicated objects.

If you omit the CATALOGS option, SQL uses the current default catalog.

COLLATION[S] (collation-spec [, collation-spec] ...)

specifies collations to be used by new objects:
HP NonStop SQL/MP Reference Manual—523352-013
D-71

DUP Command
{ collation-name }
{ }

{ (collation-name [, collation-name] ...)}

 FOR simple-fileset-list

collation-name identifies a collation and FOR simple-fileset-list
specifies a simple fileset list that includes the names of any new objects that
reference the collation.

The first collation specified whose simple name matches the simple name of a
collation referenced in the new object being created is mapped to the new
object. If the new object is referenced in more than one specified fileset, the
first fileset specified is used. If no collation names match, or if no specified
fileset contains the new object, no mapping occurs.

If you omit the COLLATION option, a new object that uses a collation references
the same collation referenced by the original object.

ALLOWERRORS [ON | OFF | num]

specifies error handling:

If you omit the ALLOWERRORS clause completely, the default is
ALLOWERRORS OFF. If you specify ALLOWERRORS but do not specify an
option, the default is ALLOWERRORS ON.

[NO] LISTALL

specifies whether to display the name of each duplicated file or object in this
format:

DUPLICATED object-type source-name TO target-name
 PARTS (part-num,src-$volume TO tgt-$volume,
 ...
)

object-type is TABLE, INDEX, COLLATION, PVIEW, SVIEW, or FILE.

Dependent objects that are duplicated automatically when the underlying object is
duplicated are listed below the underlying object. The PARTS clause appears only
for partitioned files, tables, and indexes.

ON attempts to duplicate all specified files, regardless how many errors are
encountered

OFF stops the DUP operation after the first error is encountered

num duplicates all specified objects and files until the number of errors
encountered exceeds the value of num
HP NonStop SQL/MP Reference Manual—523352-013
D-72

DUP Command
If you omit the LISTALL option, LISTALL is the default. If you specify NO LISTALL,
DUP suppresses the display of confirmations.

SAVEALL [ON | OFF]

specifies a setting for both the SAVEID and the SOURCEDATE options.

If you specify SAVEALL and specify either SAVEID or SOURCEDATE separately,
the settings must match.

The default is SAVEALL OFF.

SAVEID [ON | OFF]

specifies the security and owner for new objects and files:

The default is SAVEID OFF.

SOURCEDATE [ON | OFF]

controls the timestamps of targets:

The default is SOURCEDATE OFF.

[TARGET] { NEW | KEEP | PURGE }

specifies what to do if a new item created by the DUP operation has the same
name as an existing object or file in the target location:

An error occurs if you specify TARGET PURGE and the one of the two items that
would have duplicate names is an SQL object and the other is an Enscribe file. An
error also occurs if you specify TARGET PURGE and the existing item is a
collation that has dependent objects.

ON Set SAVEID and SOURCEDATE to ON

OFF Set SAVEID and SOURCEDATE to OFF

ON Set security and owner of each new item to that of the corresponding
original item

OFF Set the security of each new item to the default security of the user who
executes DUP; make that user the owner

ON Assign each item the timestamps of the corresponding original item (for
tables: last modified, last opened, and most recently redefined; for
Enscribe files, only last modified timestamps)

OFF Assign each item timestamps for the date and time of the DUP operation

NEW Do not copy the item; report an error

KEEP Do not copy the item; do not report an error

PURGE Purge the object or file that has the same name as the new item, then
create the new item as specified in the DUP command
HP NonStop SQL/MP Reference Manual—523352-013
D-73

Considerations—DUP
The default is TARGET NEW.

INDEX[ES] [IMPLICIT | OFF]

specifies whether to duplicate indexes of duplicated tables:

The default is INDEXES IMPLICIT.

VIEW[S] [IMPLICIT | EXPLICIT | OFF]

specifies whether to duplicate views of duplicated tables:

The default is VIEWS IMPLICIT.

An error occurs if you specify VIEWS IMPLICIT, either explicitly or by default, and
the source-fileset-list includes only some of the tables underlying a
shorthand view.

Considerations—DUP

 DUP requires authority to read the objects and files being duplicated, authority to
read catalogs in which the objects are described, authority to write to the catalogs
in which new objects are to be described, authority to write to any files created,
and authority to purge any objects or files that must be purged.

 DUP creates objects and files that have the same physical attributes as the original
objects and files. In addition, DUP enforces these rules for various types of objects
and files:

 Rules for all SQL objects

 If the catalog you specify to hold the description of a new object does not
exist, DUP does not duplicate the object. Depending on the setting of
ALLOWERRORS, this condition might cause the DUP operation to fail.

 Any comments on a source object recorded in the COMMENTS table of
the original catalog are applied to the new object and recorded in the
COMMENTS table of the new catalog.

 Rules for tables

 target-fileset or the MAP NAME option you specify must include
sufficient information to allow DUP to map names of any partitions, views,

IMPLICIT Duplicate indexes of duplicated tables

OFF Do not duplicate indexes of duplicated tables

IMPLICIT Duplicate a view only if one of its underlying tables is duplicated

EXPLICIT Duplicate views only if the view names are in source-
fileset-list, not merely because one of the underlying
tables is duplicated.

OFF Do not duplicate views.
HP NonStop SQL/MP Reference Manual—523352-013
D-74

Considerations—DUP
or indexes being duplicated as part of duplicating a table. For an example,
see the target-fileset specification Considerations item on page
D-76.

 If constraints or statistics exist for a table that is duplicated, DUP applies
the constraints and statistics to the new table and records them in the
appropriate catalog tables of the catalog for the new table.

 Rules for views

 target-fileset or the MAP NAME option you specify determines how
DUP translates table and view names (in the FROM clause of the SELECT
command in the view definition) to the new view definition.

 You can explicitly specify the name of a protection or shorthand view in
source-fileset-list if you also specify VIEWS EXPLICIT.

 The new copy of a protection view that you duplicate explicitly must reside
on the same volume and be defined in the same catalog as the new table
on which it is defined.

 DUP does not duplicate shorthand views built on top of protection views
unless you specify VIEWS EXPLICIT.

 Because a shorthand view definition might reference tables and views that
have not yet been duplicated, such a definition is invalid when DUP initially
creates it. After duplicating all objects involved in the DUP operation, DUP
attempts to validate the shorthand view definition. If the DUP operation
does not complete for any reason, or if you specify an invalid mapping
scheme, a view definition might be left in an invalid state.

 Rules for SQL program files

 DUP does not register duplicated programs in an SQL catalog. Unless a
duplicated SQL program was compiled with the NO REGISTER option, you
must execute SQLCOMP to register the program in an SQL catalog before
you can execute the program.

 If the original program was compiled with the CHECK INOPERABLE plans
option and referenced tables and views have the SIMILARITY CHECK
option enabled, you can use the REGISTER ONLY option of the
SQLCOMP command to register the program through SQLCOMP without
recompiling it. If not, you must SQL-compile the program again. For
information, see the SQL/MP programming manual for your host language.

 DUP cannot duplicate an SQL program in an OSS file. An error occurs if
you specify an OSS program in source-fileset-list.

 Rules for collations

 When you specify both collations and other SQL objects in
source-fileset-list and any of the other SQL objects references one
or more of the collations, DUP copies the collations before the SQL
HP NonStop SQL/MP Reference Manual—523352-013
D-75

Considerations—DUP
objects. If collations are the only objects in source-fileset-list, DUP
copies the collations and then updates the CPRULES and CPRLSRCE
catalog tables.

 Rules for Enscribe files

 If an Enscribe file references its alternate-key files, DUP modifies such
references in the new file based on the MAP NAME option you specify. If
you omit the MAP NAME option, DUP does not modify the references.

 To duplicate an alternate-key file, you must specify it explicitly or implicitly
(through wild-card characters) in source-fileset-list.

 DUP does not duplicate the DDL record definition of an Enscribe file.

 With some minor exceptions, a target-fileset specification is equivalent to
this MAP NAME option:

MAP NAME *.*.* TO target-fileset

These are some of the guidelines for specifying target-fileset or MAP NAME
options:

 If you want new objects to have the same unqualified object names as the
original objects, specify target-fileset with an asterisk for the object part
of the Guardian name, using specific names only for the parts of the name that
are to be different, for example:

 If you want to give new unqualified names to the new objects or to map more
than one name at the same level (node, volume, or subvolume) to a different
name, you must use MAP NAME. For example, this command duplicates the
PERSNL and SALES subvolumes to the same volume, but different
subvolumes:

DUP ($VOL1.PERSNL.* FROM CATALOG $VOL1.PERSNL,
 $VOL1.SALES.* FROM CATALOG $VOL1.SALES),
 MAP NAME ($VOL1.PERSNL.* TO $VOL1.NWPERS.*,
 $VOL1.SALES.* TO $VOL1.NWSALES.*);

 Do not map a table to a specific table name if you want its dependent objects
(protection views and indexes) duplicated. This syntax is incorrect:

DUP PERSNL.EMPLOYEE, TESTSUBV.EMPLOYEE

This is the correct syntax:

DUP PERSNL.EMPLOYEE, TESTSUBV.*

DUP $VOL1.*.*, $NWVOL.*.*; To new volume

DUP $VOL1.SUBV1.*, *.NWSUBV.*; To new subvolume

DUP $VOL1.SUBV1.*, $NWVOL.NWSUBV.*; To new volume and new
subvolume
HP NonStop SQL/MP Reference Manual—523352-013
D-76

Considerations—DUP
 Be careful that you define the MAP NAMES and CATALOGS parameters
correctly for dependent tables, indexes, views, and programs. An incorrect
mapping scheme can leave the objects invalid or cause the RESTORE
process to fail.

For example, suppose that base table $A.A.TABLE has two dependent objects:
a protection view located on $A.XX.PVIEW and an index located on
$A.ZZ.IXTAB. To copy the base table and all dependent objects, you must use
a MAP NAMES option that includes all the dependent objects. This MAP
NAMES clause includes all three objects:

MAP NAMES ($A.A.* TO $D.A.*,
 $A.XX.* TO $D.XX.*,
 $A.ZZ.* TO $D.ZZ.*)

When changing the catalog of the base table, you must also use a complete
CATALOG mapping for all objects.

 Duplicating shorthand views might produce unexpected results. For example,
this command produces a view that is identical to the source, but because the
command does not specify naming patterns with wild-card characters, DUP
cannot map the named objects in the view definition:

DUP MGRLIST, MGRLIST2, VIEW EXPLICIT;

This command does not work because DUP cannot map all the objects in the
definition of the view MGRLIST to MGRLIST2:

DUP MGRLIST, MAP NAMES *.*.* TO MGRLIST2

This command duplicates the view as intended (assuming that MGRLIST
references only EMP and DEPT, and that neither EMP nor DEPT is partitioned
or has indexes):

DUP (MGRLIST, EMP, DEPT),
 MAP NAMES (MGRLIST TO MGRLIST2,
 EMP TO EMP2,
 DEPT TO DEPT2),
 VIEW EXPLICIT;

 To duplicate a table partitioned over multiple nodes, you must use the MAP
NAMES and CATALOGS clauses, and you must specify the remote nodes first
within each clause. (You must not specify the local node first because DUP
ignores a local node specification in these clauses and the resulting fileset
expression matches all nodes.)

For example, this command duplicates the PARTS table, which is partitioned
over two nodes. \LOCAL is the node where the DUP command executes and
\REMOTE is the remote node. The PARTS table partitions are duplicated to the
same volumes and subvolumes as the original table, but with different names.

DUP $VOL1.TESTSUBV.PARTS,
MAP NAMES (
 \REMOTE.*.*.* TO \REMOTE.*.*.OLDPARTS,
HP NonStop SQL/MP Reference Manual—523352-013
D-77

Examples—DUP
 ..* TO *.*.OLDPARTS)
CATALOGS (
 \REMOTE.$VOL1.CAT FOR \REMOTE.*.*.*,
 $VOL1.CAT FOR *.*.*);

This command does not work as expected because DUP changes the
\LOCAL.*.*.* part of the MAP NAMES specification to *.*.*. Then, because the
local specification is given first, both local and remote partition names map to
\LOCAL.*.*.OLDPARTS.

DUP $VOL1.TESTSUBV.PARTS,
MAP NAMES (
 \LOCAL.*.*.* TO \LOCAL.*.*.OLDPARTS,
 \REMOTE1.*.*.* TO \REMOTE1.*.*.OLDPARTS
)
CATALOGS (
 \LOCAL.$VOL1.CAT FOR \LOCAL.*.*.*,
 \REMOTE1.$VOL1.CAT FOR \REMOTE1.*.*.*
);

 You cannot execute the DUP command within a user-defined TMF transaction.
Because it is not possible to duplicate data to an audited table, DUP creates
nonaudited tables. If the original table is audited, DUP sets the new table's AUDIT
attribute to ON after the DUP operation finishes.

If you want to be able to perform a TMF file recovery operation, make online
dumps of new audited objects and files after the DUP. For information about
performing dumps, see the TMF Operations and Recovery Guide.

You can press the Break key to interrupt a DUP operation. If you press the Break
key, the operation stops. Items already duplicated remain, but the item being
duplicated when you pressed Break can be left in an invalid state.

If DUP fails or if you press the Break key, the corrupt flag is set for the last object
operated on before the failure. Run FILEINFO on all the target objects to find the
corrupt objects, then delete the objects before restarting DUP.

If a DUP operation fails after correctly duplicating some objects and files, restarting
the operation from the beginning causes errors unless the original operation used
the TARGET PURGE option. Determine the objects and files that were duplicated
and consider the appropriate setting for the TARGET option before you restart a
partially successful DUP operation.

If an unusual situation occurs while a collation is being duplicated, two temporary
files (ZZCLnnnn and ZZCSnnnn, where nnnn is a number) might be left in the
same subvolume as the source collation. You can purge both of these files with the
PURGE command.

Examples—DUP

 This example copies table $VOL1.PERSNL.JOB to subvolume
$NEWVOL.PERSNL and gives it the same name as the original table. The new
HP NonStop SQL/MP Reference Manual—523352-013
D-78

Examples—DUP
table will be described in the current default catalog because the CATALOG option
is not specified. The JOB table has no dependent objects.

>> DUP $VOL1.PERSNL.JOB, $NEWVOL.PERSNL.JOB LISTALL;

This command does the same thing:

>> DUP $VOL1.PERSNL.JOB, $NEWVOL.*.* LISTALL;

 This example copies table $VOL1.PERSNL.JOB to the remote volume
\SYS2.$NEWVOL, using the same table name as the original. The CATALOG
option specifies a catalog on the remote node in which to describe the new table.

>> DUP $VOL1.PERSNL.JOB,\SYS2.$NEWVOL.PERSNL.JOB,
+> CATALOG \SYS2.$NEWVOL.CAT FOR \SYS2.$NEWVOL.PERSNL.JOB;

 This example copies a partitioned table, PARTLOC, that has a primary partition on
$VOL1 and secondary partitions and indexes on $WHS2 and $WHS3. PARTLOC
has an index, PARTIX, and a dependent protection view, PARTVW. The example
copies PARTLOC to subvolumes of the same name on three different volumes,
copying PARTIX and PARTVW also, because the default options INDEXES
IMPLICIT and VIEWS IMPLICIT apply.

>> DUP $VOL1.INVENT.PARTLOC, *.TESTINV.*;
DUPLICATED TABLE $VOL1.INVENT.PARTLOC TO
$VOL1.TESTINV.PARTLOC
 PARTS (1, $WHS2 TO $WHS2,
 2, $WHS3 TO $WHS3)
 INDEX $VOL1.INVENT.PARTIX TO $VOL1.TESTINV.PARTIX
 PVIEW $VOL1.INVENT.PARTVW TO $VOL1.TESTINV.PARTVW

 This example copies the partitioned table from the previous example to a different
node, \NEWSYS, by using the MAP NAMES option. Objects on $VOL1 are placed
on $NVOL1, objects on $WHS2 are placed on $NVOL2, and objects on $WHS3
are placed on $NVOL3. Subvolume and table names remain the same. The
CATALOG clause specifies a catalog on \NEWSYS in which to describe the new
objects.

>> DUP $VOL1.INVENT.PARTLOC,
+> MAP NAME ($VOL1.*.* TO \NEWSYS.$NVOL1.*.*,
+> $WHS2.*.* TO \NEWSYS.$NVOL2.*.*,
+> $WHS3.*.* TO \NEWSYS.$NVOL3.*.*)
+> CATALOG \NEWSYS.$NVOL.DB FOR \NEWSYS.*.*.* NO LISTALL;

 This example duplicates all tables, collations, and files, but no indexes or views,
that reside on subvolume $VOL1.PERSNL to subvolume $VOL1.NWPERS:

>> DUP $VOL1.PERSNL.*, *.NWPERS.*, INDEXES OFF, VIEWS OFF
+> NO LISTALL;
HP NonStop SQL/MP Reference Manual—523352-013
D-79

Dynamic SQL
 The PERSNL subvolume contains the EMPLOYEE, DEPT, and JOB tables and the
EMPLIST and MGRLIST views. This commands duplicate all tables and their
indexes, but only the MGRLIST view:

>> DUP $VOL1.PERSNL.*, *.NWPERS.*, VIEWS OFF NO LISTALL;
>> DUP $VOL1.PERSNL.M*, $VOL1.NWPERS.*, VIEWS EXPLICIT
+> NO LISTALL;

If other files or tables on the PERSNL subvolume have names that also begin with
the letter M, you must provide a more specific source fileset list in the second
command: for example, $VOL1.PERSNL.MGRL* or $VOL1.PERSNL.MGRLIST.

Dynamic SQL
Dynamic SQL is a form of embedded SQL that allows you to build, compile, and
execute SQL DCL, DDL, and DML statements during program execution. You can use
dynamic SQL in programs that build SQL statements at execution time or that process
SQL statements entered by users or generated by applications on personal computers.

Two dynamic SQL statements, PREPARE and EXECUTE, can also be used outside
embedded SQL programs to eliminate the need to recompile SQL statements that you
execute multiple times in a single SQLCI session.

The below table summarizes dynamic SQL statements:

Summary of Dynamic SQL Statements

Determining When to Use Dynamic SQL

Dynamic SQL can be less efficient than static SQL because more work is deferred until
run time. If you do not know the whole text of an SQL statement at development time,
but there are only a few alternatives, you might want to program the alternatives into
your application.

If your application requires greater flexibility, dynamic SQL can be useful. For example,
you could use dynamic SQL if your application requires:

DESCRIBE Returns information about output variables of prepared
statements

DESCRIBE INPUT Returns information about input parameters of prepared
statements

EXECUTE Executes a compiled statement

EXECUTE
IMMEDIATE

Executes an SQL statement contained in a host variable

PREPARE Compiles a DDL, DML, or DCL statement for later execution by
EXECUTE

RELEASE Deallocates memory for a dynamic SQL statement referred to
through a host variable
HP NonStop SQL/MP Reference Manual—523352-013
D-80

Features of Dynamic SQL
 Flexibility to construct SQL statements at run time: for example, an interactive
interface that is similar to SQLCI, but is designed for an inexperienced user.

 Restriction of access to data in a table: for example, the program might code an
UPDATE statement for certain columns in a table, but allow the user to enter any
selection criteria (WHERE clause) at run time.

 Client-server support with deferral of definition of SQL statements until run time: for
example, when the user of an application on a personal computer wants to
manipulate data in a NonStop SQL/MP database on a host system. Such a
program cannot use SQLCI. The user formulates an SQL statement on the
personal computer and the application sends it to a server process on the system
over Multilan or another communications protocol.

If you plan to execute a dynamic SQL statement only once, you can use EXECUTE
IMMEDIATE to execute the statement, and save any memory that would have stored
the execution plan.

Features of Dynamic SQL

When you write a program that uses dynamic SQL, you use many of the same SQL
statements as you would in static SQL. You can perform most of the same operations
using dynamic SQL statements that you perform with static SQL statements. You can
use DDL, DML, and DCL statements in both modes.

The difference is that all or part of a dynamic SQL statement is obtained at run time
from the user, or generated by your program. You program stores the statement in a
character host variable, and then compiles and executes it. With dynamic SQL
statements, you must perform some additional operations (such as building descriptors
for host variables) that are performed for you when you use static SQL statements.

After compilation, SQL executes statements in the same way, whether they are
dynamic or static. SQL places the results of dynamic SQL statements into output
variables; you can use DESCRIBE to obtain information about those variables.

For information about dynamic SQL, see the SQL/MP programming manual for your
host languages.
HP NonStop SQL/MP Reference Manual—523352-013
D-81

Features of Dynamic SQL
HP NonStop SQL/MP Reference Manual—523352-013
D-82

E
EDIT Command

EDIT is an SQLCI command that invokes the EDIT text editor.

file

is a Guardian name that specifies the file to EDIT.

[!]

directs EDIT to create file if it does not already exist.

edit-cmd

is a text editor command. See the EDIT User's Guide and Reference Manual.

Note that you must use a form of the command that includes quotation marks if you
specify edit-cmd. If you do not, SQLCI interprets the first semicolon on the line as the
end of the SQLCI statement, not as input to the editor.

Examples—EDIT

 This example starts an EDIT session within an SQLCI session to edit the file
FINDEMP:

>> EDIT FINDEMP;
TEXT EDITOR - T9601D20 - (01JUN93)
CURRENT FILE IS $VOL1.PERSNL.FINDEMP
*

 This example passes commands to EDIT and starts an EDIT session within an
SQLCI session (EDIT output is not shown):

>> EDIT MYDATA";L/1994/;XVS";

 [[file [!]]]
EDIT [" [file [!]] [; edit-cmd] ... "] ;
 [[file [!]] " [; edit-cmd] ... "]
HP NonStop SQL/MP Reference Manual—523352-013
E-1

Embedded SQL
Embedded SQL
Embedded SQL, or programmatic SQL, is the application programming interface for
SQL. It consists of a set of SQL statements and declarations you can include in
programs written in C, COBOL, Pascal, or TAL.

The language in which you write an embedded SQL program is called the host
language or host programming language in SQL/MP documentation. A separate
SQL/MP programming manual exists for each of the four host languages supported by
NonStop SQL/MP. From each language you can also use the basic SQL statements
(but not the SQLCI commands) documented in this manual.

You can write embedded SQL programs that run as OSS processes or Guardian
processes in the host language C. Embedded SQL programs written in COBOL,
Pascal, or TAL must run as Guardian processes.

Embedded SQL programs communicate with SQL through host language variables
declared in an SQL declare section within the host language declare section and
through special SQL data structures called SQLCA, SQLDA, and SQLSA. Embedded
SQL programs declare and use cursors to process statements that return more than
one row of data; they can also use the SQL directive WHENEVER to test for exception
conditions.

An embedded SQL statement can be either static SQL (a statement coded directly into
the source code and compiled before the program execution) or dynamic SQL (a
statement built and compiled during the program execution).

For more information, see these entries:

Also, see the SQL/MP programming manual for the host programming language.

Dynamic SQL INCLUDE SQLCA
Directive

DECLARE CURSOR
Statement

Static SQL INCLUDE SQLDA
Directive

OPEN Statement

BEGIN DECLARE
SECTION Directive

INCLUDE SQLSA
Directive

FETCH Statement

END DECLARE
SECTION Directive

WHENEVER DIRECTIVE
HP NonStop SQL/MP Reference Manual—523352-013
E-2

END DECLARE SECTION Directive
END DECLARE SECTION Directive
END DECLARE SECTION is a host program directive that ends a host program
Declare Section for declaring host variables to use in SQL statements.

For more information about declaring host variables, see the SQL/MP programming
manual for your host language.

Example—END DECLARE SECTION

This statements from a C, Pascal, or TAL program declare host variables that
correspond to the columns of the table PARTS:

EXEC SQL BEGIN DECLARE SECTION;
 EXEC SQL INVOKE PARTS AS PARTSREC;
EXEC SQL END DECLARE SECTION;

ENV Command
ENV is an SQLCI command that displays attributes of the current SQLCI session. You
can use ENV at either the SQLCI prompt (>>) or the select-in-progress prompt (S>).

Considerations—ENV

 These are the fields in the ENV display:

END DECLARE SECTION

ENV ;

CATALOG The current default catalog.

LANGUAGE The language of text in the message file.

LOG The log file for the SQLCI session.

MESSAGEFILE The current SQL message file.

MESSAGEFILE VRSN The version of the SQL/MP software in use.

OUT The OUT file for the SQLCI session.

OUT_REPORT The OUT_REPORT file for the SQLCI session.

SYSTEM The current default node.

TRANSACTION ID The transaction identifier of the current TMF
transaction if a transaction is in progress.

VOLUME The current default volume.

WORK The TMF transaction status (IN PROGRESS or
NOT IN PROGRESS).
HP NonStop SQL/MP Reference Manual—523352-013
E-3

Example—ENV
 You can use the CATALOG, LOG, OUT_REPORT, SYSTEM, and VOLUME
commands to change current default values for the SQLCI session. You can
change the OUT file with the OUT command (or with the OUT run option when you
start an SQLCI session).

You can specify a different SQL message file for an SQLCI session by setting the
=_SQL_MSG_node DEFINE before you start the SQLCI session. Changing the
DEFINE after you start SQLCI, however, does not change the message file. (You
cannot change the message file version and language directly because they
depend upon the message file in use.)

Example—ENV

This example shows the output of an ENV command that is entered at a select-in-
progress prompt.

S> ENV;
--
Current Environment
--
CATALOG \SYS1.$VOL1.SALES
LANGUAGE AMERICAN ENGLISH
LOG $VOL1.SUBVOL1.LOGFILE
MESSAGEFILE \SYS.$SYSTEM.SYSTEM.SQLMSG
MESSAGEFILE VRSN 315
OUT \SYS1.$TERM1
OUT_REPORT $S.#PRINTER
SYSTEM \SYS1
TRANSACTION ID \SYS1.0.474330
VOLUME $VOL1.PERSNL
WORK IN PROGRESS
S>

ERROR Command
ERROR is an SQLCI command that displays the error text associated with an error
number and, optionally, the cause and effect of the error and suggestions for recovery.

ERROR [[type] number [, { DETAIL }]] ;
 [[{ BRIEF }]]

type is:

 { AUD }
 { DP }
 { FS }
 { OS }
 { SIO }
 { SORT }
 { SQL }
HP NonStop SQL/MP Reference Manual—523352-013
E-4

Examples—ERROR
type

specifies the type of error and can be one of these:

If you omit type, SQLCI displays the error text for all operations that generate the
specified error number.

number

is a positive or negative number that identifies the error you want described. If you
omit number, SQLCI displays information about the most recent error. The
DISPLAY_ERROR and WARNINGS session options determine which errors are
reported. For more information, see SET SESSION Command on page S-39.

DETAIL or BRIEF

specifies the error information to display.

The default is DETAIL unless you have previously set the ERROR_TEXT session
option to BRIEF. For more information, see SET SESSION Command on
page S-39.

Examples—ERROR

 This example displays the error text of file-system error number 1066:

>> ERROR FS 1066, BRIEF;
Internal error: Occurred in OPEN.
>>

 This example displays the text, cause, and effect of SQL error number 1249:

>> ERROR SQL 1249, DETAIL;
A column cannot be added to an entry-sequenced table.
Cause:
Stated in the error message.

Effect:
The statement fails.

AUD Audit-fixup process

DP Disk process

FS File system

OS Guardian operating system

SIO Sequential I/O

SQL SQL command

SORT Sort

DETAIL Display error text, cause, and effect, plus suggestions for recovery.

BRIEF Display error text only.
HP NonStop SQL/MP Reference Manual—523352-013
E-5

Error Messages
Recovery:
Create a new table with the correct number of columns that
has the same contents as the old table.
>>

Error Messages
SQL returns error and warning information through SQLCI and through programmatic
interfaces.

Each SQL error message is associated with a negative number and each SQL warning
message is associated with a positive number. Some SQL messages are associated
with both a negative (error) and a positive (warning) number because the problem can
cause an error in certain situations and a warning in others.

You can use the ERROR command in SQLCI to get information about a specific error
or warning. You can also modify the SQLCI session options DISPLAY_ERROR,
ERROR_ABORT, ERROR_TEXT, and WARNINGS to control SQLCI action when an
error or warning occurs. For more information, see ERROR Command on page E-4 or
SET SESSION Command on page S-39.

Within a program, SQL returns error information to the SQLCODE field in the SQLCA
data structure. Specific error messages are not intended to be handled
programmatically, but are intended to be passed directly to users or stored in tables.
There are cases in which an SQL statement can return a different error than it did in a
previous version of SQL.

For more information about handling errors and warnings within programs, see the
SQL/MP programming manual for your host language.

For a complete list of SQL error and warning messages, including those that are
displayed by SQLCI or sent to programs in addition to those sent to the EMS
subsystem, see the SQL/MP Messages Manual.
HP NonStop SQL/MP Reference Manual—523352-013
E-6

EXECUTE Statement
EXECUTE Statement
EXECUTE is a dynamic SQL or SQLCI statement that executes an SQL statement
previously compiled by the PREPARE statement.

{ stmt-name }

{ :stmt-variable }

specifies the compiled statement to execute by the name assigned to it in the
PREPARE statement.

stmt-name is the name. Use this form to specify the name in SQLCI or in
programs.

:stmt-variable is a host variable of SQL type CHAR or VARCHAR that contains
the name. Use this form to specify the name only in programs.

[USING [?param=] value [, [?param =] value] ...]
[USING :variable [, :variable] ...]
[USING DESCRIPTOR :in-sqlda]

specifies values for parameters in the compiled statement. Use the first form in
SQLCI, the second form in a program that has information about the parameters,
and the third form in a program that uses DESCRIBE INPUT to dynamically
retrieve information about the parameters.

Whatever form you use, these rules apply:

 You must supply a value for each parameter in the statement to be executed
that does not currently have a value, including all unnamed parameters.

 The data type of a parameter value must be compatible with the data type of
the associated parameter.

EXECUTE { stmt-name }
 { :stmt-variable }

 [USING [?param=] value [, [?param=] value]...]
 [USING :variable [, :variable] ...]
 [USING DESCRIPTOR :in-sqlda]

 [RETURNING { :variable }]
 [{ USING DESCRIPTOR :out-sqlda }]

value is:

 { literal }
 { CURRENT_TIMESTAMP }
 { COMPUTE_TIMESTAMP }
HP NonStop SQL/MP Reference Manual—523352-013
E-7

EXECUTE Statement
 Unnamed parameter values are substituted for parameters in the SQL
statement by position. The i-th value in the USING clause or in the SQLDA is
the value for the i-th formal parameter.

 Any parameter values you specify in the USING clause override values you
previously specified in SET PARAM commands, but only for this execution of
the statement.

param

(used in SQLCI) is the name of a parameter to be assigned the value that
immediately follows. If you specify the same parameter-value pair more than once,
SQL uses the last specification.

To assign values to unnamed parameters, omit ?param= and specify the values in
the same order that the unnamed parameters appear in the prepared command.

value

(used in SQLCI) is a value for a parameter. A value can be one of:

 A numeric or string literal, optionally enclosed in quotation marks

 CURRENT_TIMESTAMP—an SQLCI function that returns a Julian timestamp
for the current date and time as a value of data type NUMERIC 18 or
LARGEINT.

SQL evaluates CURRENT_TIMESTAMP when the statement in which it
appears executes. As a result, CURRENT_TIMESTAMP in an EXECUTE
statement returns the time that the EXECUTE executes; but
CURRENT_TIMESTAMP in a SET PARAM returns the time that the SET
PARAM executes, not the time that an EXECUTE that uses the parameter
executes.

 COMPUTE_TIMESTAMP (date)—an SQLCI function that returns a Julian
timestamp for the date and time you specify in date as a value of data type
NUMERIC 18 or LARGEINT.

For more information about the functions, see CURRENT_TIMESTAMP Function
on page C-174 or COMPUTE_TIMESTAMP Function on page C-62. For examples
of their use with EXECUTE, see the examples later in this entry.

:variable

(used in programs) is a host variable that contains a value for a parameter in the
statement.

:in-sqlda

(used in programs) is an SQLDA filled by DESCRIBE INPUT that points to values
for parameters in the statement.
HP NonStop SQL/MP Reference Manual—523352-013
E-8

Considerations—EXECUTE
RETURNING { :variable }
 { USING DESCRIPTOR :out-sqlda }

(used only if a dynamic INSERT RETURNING is executed) directs SQL to return
the SYSKEY for the last record inserted.

:variable is a host variable in which to return the key. It must be of an
appropriate type for the key (INTEGER UNSIGNED for tables with
entry-sequenced or relative organization; LARGEINT SIGNED for tables with
key-sequenced organization).

:out-sqlda is an SQLDA set by the DESCRIBE statement that tells where to
return the key. If you use this option, your program must have set the VAR_PTR
field in the SQLDA to point to a buffer to receive the SYSKEY value.

If you use the RETURNING clause for a table with a clustering key, SQL returns
only the appended SYSKEY. To find the record, specify the clustering key columns
and the SYSKEY column (the most efficient method), or only the SYSKEY column.

Considerations—EXECUTE

 A statement must be compiled by PREPARE before you can EXECUTE it but after
it is compiled, you can EXECUTE the statement multiple times without recompiling
it.

Host language scoping rules apply to EXECUTE in programs. For more
information, see the SQL/MP programming manual for the host language you use.

 You must supply a value for each formal parameter in the statement to be
executed, and each value must be of a type compatible with the associated formal
parameter.

You can specify parameter values for named formal parameters with the USING
clause, with the SQLCI SET PARAM command, or with the TACL PARAM
command. (A TACL PARAM named “A” is the same as a parameter named “?A” in
SQLCI.) You can specify parameter values for unnamed parameters only with the
USING clause.

 Unless a CONTROL QUERY BIND NAMES AT EXECUTION directive is in effect
when a PREPARE executes, the compiled statement uses the defaults and
DEFINEs in effect at the time it is prepared, not the time it executes. For
information, see CONTROL QUERY Directive on page C-74 or Name Resolution
on page N-2.

 You cannot execute a prepared DDL statement (except UPDATE STATISTICS)
that operates on nonaudited tables or indexes within a user-defined TMF
transaction.
HP NonStop SQL/MP Reference Manual—523352-013
E-9

Examples—EXECUTE
Examples—EXECUTE

 This example uses PREPARE and EXECUTE to compile the statement stored in
the variable :DYNSTMT and execute it using parameter values stored in the
variables :PARTNUM, :PRICE, and :PARTDESC:

EXEC SQL
 PREPARE OPERATION FROM :DYNSTMT;
EXEC SQL
 EXECUTE OPERATION USING :PARTNUM, :PRICE, :PARTDESC;

 This SQLCI example uses PREPARE to compile a statement once, then executes
the statement multiple times with different parameter values:

PREPARE FINDEMP FROM "SELECT * FROM PERSNL.EMPLOYEE"
 &"WHERE SALARY > ? AND JOBCODE = ? ";
EXECUTE FINDEMP USING 30000, 200;
EXECUTE FINDEMP USING 40000, 100;

 This SQLCI statements use CURRENT_TIMESTAMP and
COMPUTE_TIMESTAMP in EXECUTE USING clauses as values for both
LARGEINT and TIMESTAMP fields. Notice how the prepared statement uses
parameter ?T directly for the type LARGEINT field but converts it for the type
TIMESTAMP field.

CREATE TABLE DEMO (DEMOKEY NUMERIC,
 JDATE LARGEINT, DTDATE TIMESTAMP, PRIMARY KEY DEMOKEY);
PREPARE MYSTMT FROM
 "INSERT INTO DEMO VALUES (?K, ?T, CONVERTTIMESTAMP(?T))";
EXECUTE MYSTMT USING ?K=1, ?T=CURRENT_TIMESTAMP;
EXECUTE MYSTMT USING ?K=2, ?T=COMPUTE_TIMESTAMP (10/13/93);

 This SQLCI statements set parameter values with the SET PARAM command but
override one of the parameter values with a value in the USING clause of the
EXECUTE statement:

VOLUME PERSNL;
PREPARE NEWJOB FROM "INSERT INTO JOB VALUES (?CODE, ?DESC)";
SET PARAM ?CODE 950, ?DESC "TECHNICIAN";
EXECUTE NEWJOB USING ?DESC = "SR. TECHNICIAN";

 This SQLCI statements use both SET PARAM and the USING clause of the
EXECUTE statement to supply parameters for a prepared SELECT.

Notice that the first two EXECUTE statements use the part number from SET
PARAM and use positional notation to provide a supplier number (the first
parameter) on the EXECUTE. The third EXECUTE uses both positional and
named notation to supply parameter values. The fourth EXECUTE uses the
?PNUM value from the SET PARAM (which was overridden, but not changed by
the using clause in the third EXECUTE).

PREPARE FINDSUP FROM "SELECT * FROM INVENT.PARTSUPP"
 &" WHERE PARTNUM = ?PNUM AND SUPPNUM = ?";
SET PARAM ?PNUM 4103;
EXECUTE FINDSUP USING 6;
HP NonStop SQL/MP Reference Manual—523352-013
E-10

EXECUTE IMMEDIATE Statement
EXECUTE FINDSUP USING 25;
EXECUTE FINDSUP USING 6, ?PNUM = 5504;
EXECUTE FINDSUP USING 8;

EXECUTE IMMEDIATE Statement
EXECUTE IMMEDIATE is a dynamic SQL statement used in a host program to
compile and execute an SQL statement whose text is contained in a host variable.

:host-var

identifies a host variable declared as an alphabetic or alphanumeric data item;
host-var must contain the SQL statement as a string literal.

If the SQL statement is an INSERT statement, the statement cannot contain the
RETURNING clause.

The SQL statement must not contain parameters or refer to host variables.

Considerations—EXECUTE IMMEDIATE

 You can use EXECUTE IMMEDIATE for any DDL, DML, or DCL, or DSL
statement, except OPEN, CLOSE, and SELECT. (Use a cursor to process a
SELECT statement.)

 If the program declares an SQLSA, EXECUTE IMMEDIATE does not return
execution statistics as described under INCLUDE SQLSA. EXECUTE IMMEDIATE
does not return compilation statistics.

Example—EXECUTE IMMEDIATE

This SQL statement from a C program executes an SQL statement whose text is
contained in the host variable named :statement:

EXEC SQL EXECUTE IMMEDIATE :statement;

EXECUTE IMMEDIATE :host-var
HP NonStop SQL/MP Reference Manual—523352-013
E-11

EXISTS Predicate
EXISTS Predicate
EXISTS is a predicate that determines whether any rows satisfy conditions in a
subquery. The EXISTS predicate evaluates to true if the subquery finds at least one
row that satisfies the search condition.

In an EXISTS predicate, the result of subquery can be a table of more than one
column.

An EXISTS subquery is typically correlated with an outer query.

Examples—EXISTS

 This query searches for departments that have no engineers (job code 420):

SELECT DEPTNAME FROM PERSNL.DEPT D
 WHERE NOT EXISTS
 (SELECT JOBCODE
 FROM PERSNL.EMPLOYEE E
 WHERE E.DEPTNUM = D.DEPTNUM
 AND JOBCODE = 420);

 This query searches for parts with less than 20 units in the inventory:

SELECT PARTNUM, SUPPNUM
 FROM INVENT.PARTSUPP PS
 WHERE EXISTS
 (SELECT PARTNUM
 FROM INVENT.PARTLOC PL
 WHERE PS.PARTNUM = PL.PARTNUM
 AND QTY_ON_HAND < 20);

 This query finds the locations of salespersons (employees with jobcode 300).

The EXISTS predicate contains a subquery that determines which locations have
salespersons. The subquery depends on the value of DEPT.DEPTNUM from the
outer query. In this case, the subquery must be evaluated for each row of the result
table where DEPT.DEPTNUM equals EMPLOYEE.DEPTNUM. Column
DEPT.DEPTNUM is an example of using an implicit correlation name as an outer
reference.

SELECT DEPTNUM, LOCATION
 FROM DEPT
 WHERE EXISTS (SELECT JOBCODE
 FROM EMPLOYEE
 WHERE DEPT.DEPTNUM = EMPLOYEE.DEPTNUM
 AND JOBCODE = 300);

[NOT] EXISTS subquery
HP NonStop SQL/MP Reference Manual—523352-013
E-12

EXIT Command
EXIT Command
EXIT is an SQLCI command that ends an SQLCI session. Pressing Ctrl-Y is the same
as typing EXIT.

Control returns to the process from which you started SQLCI, usually the command
interpreter.

If a user-defined transaction is in progress, SQLCI prompts you to specify whether you
want to commit or roll back the transaction.

Example—EXIT

In this example, the EXIT command is abbreviated to E:

>> E

End of SQLCI session

EXPLAIN Directive
EXPLAIN is a directive or SQL utility that describes the execution plans for queries.

You can execute EXPLAIN through SQLCI (as described here) or by using an option
on the SQLCOMP command line (as described in the SQL/MP programming manual
for your host language).

PLAN FOR

is an optional clause that does not affect the EXPLAIN output.

statement

is an SQL DML statement, by itself or enclosed in single or double quotation
marks.

statement-name

is the name of a prepared SQL statement.

Considerations—EXPLAIN

 You can use the information in an EXPLAIN report to tune queries and to help
determine whether to add or drop indexes for a database. For listings of sample

E[XIT] [;]

EXPLAIN [PLAN FOR] { statement }
 { statement-name }
HP NonStop SQL/MP Reference Manual—523352-013
E-13

Considerations—EXPLAIN
EXPLAIN reports and for a detailed explanation of what to look for when you
analyze EXPLAIN output, see the SQL/7MP Query Guide.

Note that an EXPLAIN report is based on information available at the time you
generate the report. If access paths or statistics change before you execute a
query for which you obtained an EXPLAIN report, SQL might use a different
execution plan. For example, the EXPLAIN execution plan for a SELECT
statement reflects the access paths that exist at the time. If you use EXPLAIN to
generate an execution plan for the same statement after dropping an index used in
the original plan, the new plan will be different.

 EXPLAIN reports generated through the SQLCOMP command rather than through
SQLCI include an optional section that lists each DEFINE used in an SQL
statement within the program and the Guardian name associated with that DEFINE
at compilation time. This portion of the report is generated in the form of ADD
DEFINE commands or INFO DEFINE output, depending upon the option you
select.

For more information, including samples of such reports, see the SQL/MP
programming manual for the host language you use.

 The execution plan for each DML statement described in an EXPLAIN report is
divided into one or more steps: one for a scan of each table in the FROM clause
and one for each union operator in the query. Each step involves one or more of
these operations:

 Scan of a table
 Join of two or more tables
 Insert into a table
 Sort operation
 Hash operation

The plan shows different types of information for each type of operation. For joins,
for example, the plan shows the order of joining, join methods, and sorting
operations.

Predicate information in an execution plan can contain multibyte characters. If
multibyte characters are present, those characters might not be displayable on
your output device.

This example shows the format of an execution plan. Optional lines and clauses in
the report are shown in brackets or braces, as for syntax notation. This figure is an
alphabetic list of the elements of the plan with an explanation of each element.

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
Query plan <n> [: Will utilize parallel execution]
SQL request : { Delete | Update | Select | Insert |
 Insert-Select | Union of Selects }
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

 Plan step n [: Perform an [[Inner|Left] Join|Union]]
[Join strategy : [Nested | [Hybrid] Hash |]
HP NonStop SQL/MP Reference Manual—523352-013
E-14

Considerations—EXPLAIN
[[Key Sequenced] Merge] Join]
[(This section appears only for parallel]
[plans and is described under "Parallel Execution]
[Plan" in the text that follows the figure.]
[Typical lines are shown below, though the details]
[of section contents vary depending on the plan.)]
[]
[Each operation is performed in parallel for this step.]
[]
[Each ESP [from previous step] will read one of ...]
[partition partition partition ...]
[The ESPs will be started in the CPU's numbered]
[n n n ...]
[Each ESP will perform a [Hybrid] Hash Join |]
[[[Key Sequenced] Merge Join ...]
 :{Join sequence }
[Plan Forced :{Join method } forced by user ...]
 :{Join sequence
 and join method }
 Characteristic :
 :{ Insert }
 Operation n :{ Scan }
 { Union of plan step n ... n }
 Table :
 [Accessed via view :] (Appears for a protection view)
 Access type :
 Lock mode :
 Column processing :
 Access path n :
 SBB for reads :
 [Begin key pred. :]
 [End key pred. :]
 [MDAM predicate set:]
 [next set:]
 Index selectivity :
 Index pred. :
 Base table pred. :
 [Type of [Update | Delete] :]
 [SBB for [Insert | Update] :]
 [Seq Blocksplit :]
 Executor pred. :
 [Executor aggr. :]
 [Pred. selectivity :]
 [DP2 aggr. :]
 Table selectivity :
 Expected rowcount :
 Operation cost :

 Operation n : Sort (Appears for sort operations)
 Requested :
 Sort rows in the :
 Purpose :
 Sort technique :
 Sort type :
 UPS workspace :
HP NonStop SQL/MP Reference Manual—523352-013
E-15

Considerations—EXPLAIN
 Sort key columns :
 [Expected rowcount :] (Appears if sort is for GROUP BY)
 Sort cost :

 Operation n : Hash (Appears for hash operations)
 Requested :
 Hash rows in the :
 Purpose :
 Hash key columns :
 Hash cost :
 Total cost :

Table E-1. EXPLAIN Plan Header Lines (page 1 of 5)

Item Action

Access path Identifies the path used for retrieving rows from the base table. The
path can be a primary path (the base table) or an alternate path (an
index defined on the base table).

The phrase path forced indicates that the path was specified by the
user with a CONTROL TABLE directive.

Access path also states whether the table is partitioned and whether
access is sequential and pages are kept in cache as long as possible
(called sequential cache). If multiple indexes are scanned (because
of OR'ed predicates in the WHERE clause), more than one access
path can be shown.

Access type Specifies the unit of locking (record or table) and the access method
that controls lock requests (STABLE, REPEATABLE, or BROWSE).

Accessed via view Specifies the fully qualified Guardian name for a protection view
whose underlying table is specified in the report line beginning with
“Table.” For a shorthand view, the view definition becomes part of the
query so that the query plan describes operations on the underlying
tables or views.

Base table pred. Shows the predicates evaluated on the base table and indicates that
evaluation is performed by the disk process.

Begin key pred. Specifies the predicates used to position to the first row to scan,
including collations explicitly (but not implicitly) used in the
predicates.

Characteristic Describes special characteristics of the step, such as whether it
executes once before the operation or once per row retrieved. For
joins, indicates which previous step produced the rows to be joined.

Column processing Indicates the number of columns to be retrieved and the total number
of columns in the tables or views from which they are retrieved.

DP2 aggr. Indicates that aggregate functions are evaluated by DP2.

End key pred. Specifies the predicates used to position to the last row to scan,
including collations explicitly used in the predicates.
HP NonStop SQL/MP Reference Manual—523352-013
E-16

Considerations—EXPLAIN
Column processing Indicates the number of columns to be retrieved and the total number
of columns in the tables or views from which they are retrieved.

DP2 aggr. Indicates that aggregate functions are evaluated by DP2.

End key pred. Specifies the predicates used to position to the last row to scan,
including collations explicitly used in the predicates.

Executor aggr. Indicates that aggregate functions are evaluated by the executor and
shows whether they are derived from the first row returned by the
scan or computed for each group.

Executor pred. Shows predicates evaluated by the executor and describes when
they are evaluated:

 On rows retrieved by the scan

 On rows after sorting

 On null augmented rows

 From the HAVING clause

Expected rowcount For an operation other than a sort, shows the number of rows the
optimizer expects to be returned. For a join query, the rowcount is
cumulative for each join operation.

Appears for sort operations only if the purpose of the sort is to group
rows for a GROUP BY clause. In this case, shows the number of
rows expected after the GROUP BY operation finishes.

Hash cost Indicates the relative cost of the hash operation. Lower numbers
indicate more efficient and less costly execution.

Hash key columns Lists hash key columns ordered by selectivity, with the most selective
column first.

Hash rows in the Specifies whether the rows hashed are from the scan from the
previous operation (current table) or from a composite table.

Index pred. Shows the predicates evaluated on the index and indicates whether
evaluation is performed by the file system or the disk process.

Index selectivity Shows the percentage of the index that is scanned for the operation.

Join strategy Shows the type of join used: nested, (sort) merge, key-sequenced
merge, hash, or hybrid hash. For parallel or repartitioned hash joins,
additional lines list the partitions accessed by the ESPs and the
processors for the ESPs.

Lock mode Indicates whether locks are exclusive, shared, or the default. With
the default in effect, the system determines the actual lock mode
used.

MDAM predicate set Indicates the predicate set used for the first step in the query.

next set Indicates the predicate set used for a subsequent step in the query.

Operation n Indicates the type of operation and the order of the operation in the
overall plan.

Table E-1. EXPLAIN Plan Header Lines (page 2 of 5)

Item Action
HP NonStop SQL/MP Reference Manual—523352-013
E-17

Considerations—EXPLAIN
Operation cost Indicates the relative cost of performing the operation. Lower
numbers indicate more efficient and less costly operation.

Parallel Execution
Plan

Describes the parallel execution plan for the operation, including:

 The number of executor server processes (ESPs) that perform
each operation in parallel

 The name of the system and the processors in which the ESPs
are started

 The names of the volumes on which partitions of the base table
reside

 The names of the volumes on which rows are redistributed to
promote parallel access

 The number and purpose of each sort started by each ESP in
parallel.

If the query requires a sort, the plan shows the number of sorts
performed in parallel.
For a join query, describes the plan as one of these three types:

 Matching partitions (nested join only)

 Parallel access

 Repartitioned

Plan Forced Indicates that the join method, the join sequence, or both were forced
by the user with a CONTROL TABLE directive.

Plan step Indicates the number of the plan step.
Specifies whether the plan step involves a union or join operation. If
the plan step involves a join operation, specifies the type of join
(inner or left) and the join strategy: nested, (sort) merge, key-
sequenced merge, or hash.

Pred. selectivity Specifies the percentage of the table or index that is evaluated to
test the search conditions of the predicates.

Purpose Specifies why the sort or hash join is required:

 To order rows before the join phase

 To order rows for an ORDER BY

 To form groups of rows for a GROUP BY

 To compute an aggregate DISTINCT

 To discard duplicates for a DISTINCT

Plan step Indicates the number of the plan step.
Specifies whether the plan step involves a union or join operation. If
the plan step involves a join operation, specifies the type of join
(inner or left) and the join strategy: nested, (sort) merge, key-
sequenced merge, or hash.

Table E-1. EXPLAIN Plan Header Lines (page 3 of 5)

Item Action
HP NonStop SQL/MP Reference Manual—523352-013
E-18

Considerations—EXPLAIN
Query plan n Specifies the number of the query and whether the plan involves
parallel execution.

Requested Specifies whether the sort or hash operation was requested by the
optimizer or explicitly requested by the user.

SBB for [Insert]
 [Update]

Specifies whether virtual sequential block buffering (VSBB) is used
for insert or update operations.

SBB for reads Specifies whether real or virtual sequential block buffering (SBB) is
used for read operations.

Seq Blocksplit Indicates that the user requested blocks to be split as for sequential
inserts by specifying the CONTROL TABLE SEQUENTIAL
BLOCKSPLIT ON option.

Sort cost Indicates the relative cost of the sort operation. Lower numbers
indicate more efficient and less costly execution.

Sort key columns Identifies columns used in the sort by column names qualified by
correlation or table names or (if the sort column is an expression) by
position in the select list. Also lists collations associated with the sort
columns.

Sort rows in the Specifies whether the rows sorted are from the result of a SELECT
statement or a union of SELECT statements, on the current table, or
on a composite table.

Sort technique Describes the sort technique: FastSort or insertion into a
key-sequenced file.

Sort type Describes the type of sort: insertion into an entry-sequenced disk file,
parallel sorting, parallel sort/merge, Sortmerge, or User Process
Sort.

SQL request Specifies the type of statement that is the subject of the plan:
DELETE INSERT-SELECT
UPDATE UNION of SELECT
SELECT UNION of INSERT-SELECTs
INSERT

Table Specifies the fully qualified Guardian name of the table. For scan or
join operations, the name represents the table being accessed; for
an INSERT operation, the name represents the table to receive the
inserted data.

Table selectivity The percentage of the table that is reflected in the result.

Table E-1. EXPLAIN Plan Header Lines (page 4 of 5)

Item Action
HP NonStop SQL/MP Reference Manual—523352-013
E-19

Examples—EXPLAIN
Examples—EXPLAIN

 These examples shows four different ways to request an EXPLAIN report for the
same simple query:

Example 1.

>> EXPLAIN SELECT * FROM MYTABLE;

Example 2.

>> EXPLAIN "SELECT * FROM MYTABLE";

Example 3.

>> EXPLAIN 'SELECT * FROM MYTABLE';

Example 4.

>> PREPARE MYQUERY FROM SELECT * FROM MYTABLE;
 ..
 --- SQL command prepared.
 >> EXPLAIN MYQUERY;

Total cost The total cost of executing the statement. Cost is a relative measure
of the resources needed. Lower numbers indicate less costly
execution.

This measure is useful only for comparing different ways of
specifying the same query (for example, using a join instead of a
subquery). Total Cost cannot not be used to compare the efficiency
of executing different queries.

Type of [DELETE]
 [UPDATE]

Indicates the type of DELETE or UPDATE operations: cursor, subset,
or unique.

For a cursor DELETE or UPDATE, the executor opens an internal
cursor to read the qualified rows and performs the requested
operation for each such row.

 For a subset DELETE or UPDATE, the file system positions on the
first qualifying row (if the row has been determined) or on the first
row of the table. The file system sends a message to the disk
process to perform the operation on all rows that qualify. The file
system might have to send multiple requests because the disk
process performs a limited amount of work in a single request.

For a unique DELETE or UPDATE, the disk process performs the
operation on the specific row. Exactly one row is deleted or updated.

UPS workspace Indicates the size of the workspace needed for the User Process
Sort operation.

Table E-1. EXPLAIN Plan Header Lines (page 5 of 5)

Item Action
HP NonStop SQL/MP Reference Manual—523352-013
E-20

Expressions
 These examples shows three different ways to request an EXPLAIN report for a
query that uses multiple lines in SQLCI:

Example 1.

>>EXPLAIN SELECT U1,U2, MIN(U3), MAX(U3)
 +>FROM \SYS.$VOL.CAT.T
 +>GROUP BY 1 , 2;

Example 2.

>>EXPLAIN " SELECT U1,U2, MIN(U3), MAX(U3) "
 +>&" FROM \SYS.$VOL.CAT.T "
 +>&" GROUP BY 1 , 2";

Example 3.

>>PREPARE SAVQ FROM SELECT U1,U2, MIN(U3), MAX(U3)
 +>FROM \SYS.$VOL.CAT.T
 +>GROUP BY 1 , 2;
 ..
 --- SQL command prepared.
 >> EXPLAIN SAVQ;

 For examples of EXPLAIN reports, see the SQL/MP Query Guide. For an example
of a DEFINE report (an optional portion of an EXPLAIN report that describes the
DEFINEs used in SQL statements within a program), see the SQL/MP
programming manual for your host language.

Expressions
An expression specifies a value. An expression can be a simple character string, a
numeric literal, a column name, or a condition (CASE expression) that specifies the
value of the column in a row of a table. An expression can also include function calls
and arithmetic operators. All these are simple expressions:

An expression can have a character, numeric, date-time, or INTERVAL data type. The
data type of an expression is the data type of the value of the expression.

The remainder of this entry discusses numeric, date-time, and INTERVAL expressions.
For more information about character expressions, see Character Expressions on
page C-14. For more information about conditional expressions, see CASE Expression
on page C-2.

“ABILENE” A character string

-57 A numeric literal

CUSTNAME The value in column CUSTNAME

COUNT (DISTINCT
CITY)

The COUNT function applied to the values in column
CITY
HP NonStop SQL/MP Reference Manual—523352-013
E-21

Numeric, Date-Time, and Interval Expressions
Numeric, Date-Time, and Interval Expressions

A numeric, date-time, or INTERVAL expression consists or one or more numeric,
date-time, or INTERVAL operands connected by arithmetic operators, as shown in this
diagram.

numeric-operand

is a column name (possibly qualified by a correlation name), a literal, a function
invocation, a host variable, a parameter name, or an expression that evaluates to a
numeric value.

UNITS field

used after a numeric operand, converts the value of the operand to a value of type
INTERVAL field; used after a date-time or INTERVAL operand, converts the
value of the operand to a numeric value that represents the number of units of
field-type field that are contained in the value.

date-time-operand

is a column name (possibly qualified by a correlation name), a literal, a function
invocation, a host variable, a parameter name, or an expression that evaluates to a
date-time value.

operand [[arith-operator operand] ...]

operand is:

 { [+] numeric-operand [UNITS field] }
 { [-] }
 { }
 { date-time-operand }
 { [[start-field TO] end-field] }
 { [UNITS field] }
 { }
 { [+] interval-operand }
 { [-] }
 { [start-field [(digits)] [TO end-field]] }
 { [UNITS field] }

[+] is a unary operator
[-]

arith-operator is:

 { ** }
 { * }
 { / }
 { + }
 { - }
HP NonStop SQL/MP Reference Manual—523352-013
E-22

Considerations—Expressions
start-field and end-field specify the range of DATETIME fields for the
operand, as described under DATETIME Data Type on page D-15. If the range
includes fields not in value of the column, literal, function, host variable, or
parameter, SQL extends the value to include the new fields by using the same
initial values as for an extension using the EXTEND function.

If the range omits fields not in the original value, SQL truncates those fields.

interval-operand

is a column name (possibly qualified by a correlation name), a literal, a function
invocation, a host variable, a parameter name, or an expression that evaluates to
an INTERVAL value.

start-field, digits, and end-field specify the range of INTERVAL fields
for the operand and the number of digits in the starting field, as described under
INTERVAL Data Type on page I-19.

arithmetic-operator

specifies one of these arithmetic operations:

Considerations—Expressions

 Order of evaluation

The order of evaluation of an expression is:

1. Expressions within parentheses

2. Unary operators

3. Exponentiation

4. Multiplication and division

5. Addition and subtraction

Operators at the same level are evaluated from left to right for all operators
except exponentiation. Exponentiation operators at the same level are
evaluated from right to left. For example, X + Y + Z is evaluated as (X + Y) + Z,
whereas X ** Y ** Z is evaluated as X ** (Y ** Z).

 An expression with a numeric operator evaluates to null if any of the operands is
null.

** Exponentiation

* Multiplication

/ Division

+ Addition

- Subtraction
HP NonStop SQL/MP Reference Manual—523352-013
E-23

Considerations—Expressions
Dividing by 0 causes an error.

Exponentiation is allowed only with numeric data types but the operands can be of
any numeric type. If the first operand is 0, the second operand must be greater
than 0, and the result is 0. If the second operand is 0, the first operand cannot be
0, and the result is 1. If the first operand is negative, the second operand must be
an integer.

Exponentiation is subject to rounding error. Results should be considered to be
approximate. If your application requires exact values, use the exponentiation
function in your host language.

 This paragraphs describe how SQL computes the precision and scale of an
arithmetic expression. Precision is the maximum number of digits in the
expression. Magnitude is the number of digits to the left of the decimal point. Scale
is the number of digits to the right of the decimal point. Precision equals the sum of
the magnitude and the scale.

For example, a column declared as NUMERIC (18,5) has a precision of 18, a
magnitude of 13, and a scale of 5. This literal has a precision of 9, a magnitude of
5, and a scale of 4:

12345.6789

SQL computes precision, magnitude, and scale during the evaluation of an
expression. When SQL detects an operator in the expression, it applies This rules:

 If the operand is + or -, the resulting scale is the maximum of the scales of the
first and second operands. The resulting precision is the maximum of the
magnitudes of the first and second operands, plus the scale of the result, plus
1.

If the operator is *, the resulting scale is the sum of the scales of the first and
second operands. The resulting precision is the sum of the magnitude of the
first operand, the magnitude of the second operand, and the scale of the result.

 If the precision becomes greater than 18, the resulting precision is set to 18. If
the expression contained a division operator (/), the resulting scale is the
maximum of 0 and (18- (result precision - result scale)). Both
operands are truncated to the resulting scale.

 If the operator is /, the resulting precision equals 18 and the resulting scale is
the maximum of 0 and (18 - magnitude operand1 - scale operand2).

Consider this expression:

(100.00 - ((COL1 * 100.00) / COL2))

Suppose that the operands are defined:

COL1 LARGEINT precision=18, scale=0, magnitude=18
COL2 LARGEINT precision=18, scale=0, magnitude=18
100.00 constant precision=5, scale=2, magnitude=3
HP NonStop SQL/MP Reference Manual—523352-013
E-24

Considerations—Expressions
SQL evaluates the expression:

 First, perform the multiplication, (COL1 * 100.00). The resulting scale is (0 + 2)
= 2. The resulting precision is (18 + 3 + 2) = 23. The precision is greater than
18, so it is set to 18. The resulting magnitude is (18 - 2) = 16.

 Next, perform the division, (result / COL2). The resulting precision is 18, the
resulting scale is (18 - 16 - 0) = 2, and the resulting magnitude is (18-2) = 16.

 Third, perform the subtraction, (100.00 - result). The resulting scale is
MAX(2,2) = 2. The resulting precision is MAX(3,16) + 1 + 2 = 19. Result
precision is greater than 18, so it is set to 18. A divide was previously done, so
the scale becomes MAX(0, (18 - (19 - 2)) = 1. The resulting magnitude is
(18 -17) = 1.

 SQL automatically converts between floating point numeric types (REAL and
DOUBLE PRECISION) and other numeric types. All numeric values in the
expression are first converted to binary, with the maximum precision needed for
the evaluation. The maximum possible precision for exact numeric data types is 18
digits. The maximum for REAL and DOUBLE PRECISION data types is
approximately 16 digits.

 You can use date-time and INTERVAL operands with arithmetic operators only in
these combinations:

a. In a date-time or INTERVAL expression, you can specify fields for the result
with a range of fields following the expression. For example, this expression
gives the result 09-17:

(DATE "1988-09-22" - INTERVAL "5" DAY) MONTH TO DAY

b. If you subtract a date-time value from another date-time value, both values
must have the same range of date-time field.

c. Adding an INTERVAL of MONTHS to a DATE value results in a value of the
same day plus the specified number of months. Because different months have
different lengths, this is an approximate result.

d. Date-time and INTERVAL arithmetic that involves MONTH and DAY fields can
yield unexpected results, depending on how the fields are used. For example,

Operand 1 Operator Operand 2 Result Type Notes

Date-time - Date-time INTERVAL a, b

Date-time + or - INTERVAL DATETIME a, c, d

INTERVAL + Date-time DATETIME a, c, d

INTERVAL + or - INTERVAL INTERVAL a, e

INTERVAL * or / Numeric INTERVAL a, f

Numeric * INTERVAL INTERVAL a

INTERVAL / INTERVAL Numeric g
HP NonStop SQL/MP Reference Manual—523352-013
E-25

Examples—Expressions
this expression (evaluated left to right) generates an SQL error because the
calculation must use February 30:

DATETIME "1989-01-30" YEAR TO DAY
 + INTERVAL "1" MONTH + INTERVAL "7" DAY

In contrast, this expression (which adds the same values as the previous one,
but in a different order) generates the value 1989-03-06:

DATETIME "1989-01-30" YEAR TO DAY
 + INTERVAL "7" DAY + INTERVAL "1" MONTH

Addition or subtraction of a date-time value and an INTERVAL value results in
a DATETIME value that must be within the range of fields for the result. SQL
adjusts values in adjacent DATETIME fields if necessary.

The result of adding or subtracting an INTERVAL of n YEARS to or from a
date-time value is a value n YEARS after or before the original date-time value.
The other fields of the result remain the same.

e. Truncation occurs if the result of adding or subtracting two INTERVAL values
causes a result that does not fit in the receiving field's range of INTERVAL
fields. SQL issues a warning if this occurs.

f. If you multiply or divide an INTERVAL value by a numeric value, SQL converts
the INTERVAL value to its smallest subfield and then multiplies or divides it by
the numeric value. The range of fields in the result is the minimum range
required to contain the final result.

g. You can only divide an INTERVAL by another INTERVAL if the two INTERVAL
values are compatible. You cannot divide a year-month interval by a day-time
interval.

Examples—Expressions

 These examples are of arithmetic expressions:

QTY_ON_HAND * AVG (PARTCOST) Column value multiplied by
function applied to column values

QTY_ORDERED * (PRICE - PARTCOST) Column values combined by
operators

PRICE * :INCREASE Column value multiplied by value
in host variable
HP NonStop SQL/MP Reference Manual—523352-013
E-26

Examples—Expressions
 In this example and in all these examples, date-time and INTERVAL values are
from this table:

Table Definition:

CREATE TABLE PROJECTS
 (PROJECT_NAME PIC X(10) NOT NULL ,
 START_DATE DATETIME YEAR TO MINUTE NOT NULL ,
 END_DATE DATETIME YEAR TO MINUTE NOT NULL ,
 WAIT_TIME INTERVAL DAY(2) NOT NULL)
Table Data:
PROJECT_NAME START_DATE END_DATE WAIT_TIME
------------ ---------------- ---------------- ---------
920 1988-02-21:20:30 1989-03-21:20:30 20
134 1970-01-01:00:00 1978-03-21:20:30 30
922 1940-02-21:12:30 1941-03-21:20:30 13
955 1990-10-14:14:30 1991-01-20:12:30 14

 This example adds an INTERVAL value to a DATETIME value. The result is 1942-
03-21:20:30.

>> SELECT END_DATE + INTERVAL "1" YEAR
+> FROM PROJECTS WHERE PROJECT_NAME = "922";

 This example subtracts an INTERVAL value qualified by MONTH from a
DATETIME value. The result is 1990-12-20:12:30. The YEAR value is
decremented by 1 because subtracting a month from January 20 causes the date
to be in the previous year.

>> SELECT END_DATE - INTERVAL "1" MONTH
+> FROM PROJECTS WHERE PROJECT_NAME = "955";

 This example adds an INTERVAL value qualified by DAY to a DATETIME value.
SQL handles 1988 as a leap year. The result is 1988-03-12:20:30.

>> SELECT START_DATE + WAIT_TIME
+> FROM PROJECTS WHERE PROJECT_NAME = "920";

 This example subtracts an INTERVAL value from a DATETIME value and adjusts
the adjacent field. The result is 1940-02-20:21:00.

>> SELECT START_DATE - INTERVAL "15:30" HOUR TO MINUTE
+> FROM PROJECTS WHERE PROJECT_NAME = "922";

 This example adds two INTERVAL values:

>> INSERT INTO PROJECTS
+> (PROJECT_NAME, START_DATE, END_DATE, WAIT_TIME)
+> VALUES ("945", DATE "1989-10-20" ,
+> DATE "1990-10-21" ,
+> INTERVAL "30" DAY + INTERVAL "3" HOUR) ;

Because the receiving field has DAY as its range of DATETIME fields, the result of
adding 30 days and 3 hours is expressed as 30 days. For the HOUR value to
HP NonStop SQL/MP Reference Manual—523352-013
E-27

EXTEND Function
appear, the WAIT_TIME column must be defined with the range DAY TO HOUR.
The inserted row is:

945 1989-10-20:00:00 1990-10-21:00:00 30

 This example doubles an INTERVAL value. The result is 5 years, 2 months.

INTERVAL “2-7” YEAR TO MONTH * 2

 This example divides an INTERVAL value by another. The result is 36.

INTERVAL value:
INTERVAL "3" DAY / INTERVAL "2" HOUR

 This SQLCI example uses the UNITS clause to convert a date-time field to a
numeric field:

>> SELECT START_DATE UNITS MONTH FROM PROJECTS;
(EXPR)

 2
 1
 2
 10
 10
--- 5 row(s) selected.

 This programmatic example adds 10 years to the start date and stores the result in
a DATETIME variable. The statement uses the UNITS clause to convert a numeric
10 to a value of type INTERVAL YEAR.

EXEC SQL SELECT STARTDATE + 10 UNITS YEAR
 INTO :NEWDATE TYPE AS DATETIME YEAR TO MINUTE
 FROM PROJECTS WHERE PROJECTNAME = '920';

EXTEND Function
EXTEND is a function that adjusts the range of fields for a date-time value to a
specified range or to the default range of DATETIME fields.

It returns a value of type DATETIME.

date-time-expression

is an expression that evaluates to a value of type DATETIME, DATE, TIME, or
TIMESTAMP.

EXTEND (date-time-expression

 [, [start-date-time TO]end-date-time])
HP NonStop SQL/MP Reference Manual—523352-013
E-28

Considerations—EXTEND
[start-date-time TO] end-date-time

is a range of DATETIME fields (for example, YEAR TO DAY). If the range is not
specified, the system uses YEAR TO FRACTION(6).

Considerations—EXTEND

 Any fields in date-time-expression that are not in the specified range are
truncated.

 If the range contains fields to the left of the fields in date-time-expression, the
additional fields receive values based on the current date or time. If the result is not
a valid DATETIME value, an SQL error is generated.

 If the range contains fields to the right of the fields in date-time-expression, the
additional fields are initialized:

Examples—EXTEND

 In this example, the fields DAY, HOUR, MINUTE, SECOND, and FRACTION to the
right of MONTH are initialized to 01 (for DAY), 00 (for HOUR, MINUTE, and
SECOND) and 000000 (for FRACTION):

EXTEND (DATETIME "1994-11" YEAR TO MONTH , YEAR TO FRACTION)

The function returns the value:

1994-11-01:00:00:00.000000

 In this example, the field YEAR to the left of MONTH is initialized to the current
year. The HOUR and MINUTE fields to the right of MONTH are initialized to 0:

EXTEND (DATETIME "11-24" MONTH TO DAY , YEAR TO MINUTE)

In 1994, the function returns the value:

1994-11-24:00:00

Field Initial Value

MONTH 01

DAY 01

HOUR 00

MINUTE 00

SECOND 00

FRACTION 000000
HP NonStop SQL/MP Reference Manual—523352-013
E-29

EXTENT File Attribute
EXTENT File Attribute
EXTENT is a Guardian file attribute that sets the size of the extents (units of
contiguous disk space) that will be allocated for a file or a partition of a file. EXTENT
applies to key-sequenced, relative, and entry-sequenced tables and to indexes.

EXTENT is set when a file or partition is created. Each partition of a partitioned file has
its own EXTENT attribute that can differ from the EXTENT attribute for other partitions
of the file. You can specify a single extent size for each extent in the file or partition, or
you can specify one size for the primary (first) extent and another size for the
secondary extents.

The default is 16 pages for the primary extent and 64 pages for each secondary extent.

The default unit type is PAGE.

integer

is an integer that specifies the number of pages, bytes, recs, or megabytes in the
extent. The ranges allowed for Format 1 partitions are:

The ranges allowed for Format 2 partitions are:

A PAGE consists of 2048 bytes.

A MEGABYTE consists of 1,000,000 bytes. A GIGABYTE consists of
1,000,000,000 bytes.

EXTENT { ext-size }
 { (pri-ext-size [, sec-ext-size]) }

ext-size, pri-ext-size, or sec-ext-size is:

 integer [PAGE[S]]
 [BYTE[S]]
 [REC[S]]
 [MEGABYTE[S]]
 [GIGABYE[S]]

PAGES 0 to 65,535

BYTES 0 to 134,215,680

RECS 0 to 134,215,680

MEGABYTES 0 to 134

PAGES 0 to 512,000,000

BYTES 0 to 1,048,576,000,000

RECS 0 to 1,048,576,000,000

MEGABYTES 0 to 1,048,576

GIGABYTES 0 to 1,048
HP NonStop SQL/MP Reference Manual—523352-013
E-30

Considerations—EXTENT
Considerations—EXTENT

 A file's extent size must be at least as large as its block size and must be a multiple
of the block size and a multiple of page size (2048 bytes). If you specify extent
sizes that do not meet these conditions, SQL uses the next block size or the next
full page size. For example, 0 PAGE rounds up to 1 PAGE.

A file (or a partition of a partitioned file) must fit on a disk, so the size of the primary
extent plus the total size of all secondary extents must not exceed the disk size.

 A primary extent should be large enough to hold the file at the initial load, and
secondary extents should be large enough to accommodate growth. The faster the
growth, the larger the secondary extents should be.

To ensure adequate space for your file, choose extent sizes and a MAXEXTENTS
value large enough to accommodate the amount of data you expect to store in the
file.

Using large extents can improve performance by reducing the number of seeks.
The disadvantage of large extents is that an entire extent is allocated
simultaneously, leaving allocated but unused space on the disk while the extent
contains only a small amount of data. You can maximize the use of disk space by
specifying smaller extent sizes if performance is not an issue.
HP NonStop SQL/MP Reference Manual—523352-013
E-31

Considerations—EXTENT
HP NonStop SQL/MP Reference Manual—523352-013
E-32

F
FC Command

FC is an SQLCI command with which you can retrieve, edit, and reexecute a command
in the history buffer. For more information, see HISTORY Command on page H-5.

text

specifies the most recent version of a command in the history buffer. The
command must begin with the text that you specify; you need only the characters
necessary to identify the command. The text can be in uppercase or lowercase
characters.

number

is a positive integer that refers to the ordinal number of a command in the history
buffer.

-number

is a negative number that indicates the position of a command in the history buffer
relative to the current command entered.

Considerations—FC

 To retrieve the last statement or command entered, you can enter FC without
specifying text or a number.

 The IN file must be a terminal or a process. If you put more than one statement or
command on an input line, FC must be last.

 The command you specify with FC is displayed one line at a time. As each line
appears, you can modify it by entering these editing commands:

FC [text] [;]
 [number]
 [-number]

D Deletes the character immediately above the D. Repeat to
delete more characters.

I characters Inserts characters in front of the existing character that is
immediately above the I.

R characters Replaces existing characters with the specified characters
one-by-one, beginning with the character immediately
above the R.
HP NonStop SQL/MP Reference Manual—523352-013
F-1

Examples—FC
To terminate a command and to specify more than one editing command on a line,
separate the editing commands with a double slash (//).

When you have no further changes to make, press the Return key. The command
prints again to allow you to edit it again. To stop editing, press the Return key
without entering any editing commands.

After you modify the last line and accept it by pressing the Return key, the revised
command executes.

 To abnormally end the FC command and leave the original command unchanged,
press the Break key or Ctrl-Y, or enter a double slash (//) in columns 1 and 2,
followed immediately by a Return key.

Examples—FC

 To correct the last statement or command entered, use FC without text or a
number:

>> EXEUCTE SELSUPP USING ?ST = "CALIFORNIA";
 ^
*** ERROR from SQLCI [-10021] Syntax error.
>> FC
>> EXEUCTE SELSUPP USING ?ST = "CALIFORNIA";
.. CU
>> EXECUTE SELSUPP USING ?ST = "CALIFORNIA";
..

Press the Return key to execute the corrected version.

 Suppose that you want to display information about a specific supplier. You enter a
query to select supplier number 4, and learn that the supplier number does not
exist. You then decide to list all suppliers, but want only five rows displayed at a
time.

>> SELECT SUPPNAME, CITY, STATE FROM INVENT.SUPPLIER
+> WHERE SUPPNUM = 4;
-- 0 row(s) selected.
>> SET LIST_COUNT 5;

To execute the query again but save typing effort, you can use the FC command,
specifying the relative position of the SELECT command in relation to the current
command, FC:

>> FC -2
>> SELECT SUPPNAME, CITY, STATE FROM INVENT.SUPPLIER
.
+> WHERE SUPPNUM = 4;

characters (Must begin with a nonblank character) replaces existing
characters with the specified characters one-for-one,
beginning with the character immediately above the first
character specified.
HP NonStop SQL/MP Reference Manual—523352-013
F-2

FETCH Statement
. DDDDDDDDDDDDDDDDD
+>;

The first five rows of the table SUPPLIER are listed.

 Suppose that you have executed several commands since you entered the
SELECT command. You can either use the HISTORY command to determine the
SELECT command number, or you can enter:

>> FC SEL

If the history buffer contains several SELECT commands, you must be more
specific; for example, FC SELECT SUPP.

 To edit and reexecute the command numbered 14 in the history buffer, enter:

>> FC 14

FETCH Statement
FETCH is a DML and dynamic SQL statement that returns a value for each column in
the next row of the result table defined by the cursor, leaving the cursor positioned at
that row. FETCH can be used only in host programs.

cursor

is the name of an open cursor.

:cursor-var

(dynamic SQL only) is a host variable of SQL type CHAR or VARCHAR that stores
the name of an open cursor.

INTO :var [, :var] ...

identifies one or more host variables to receive values. FETCH returns one
SELECT item per host variable. The data type of each variable must be compatible
with the data type of the corresponding SELECT column.

Use this option in dynamic SQL if you know the number and data types of the
returned columns.

USING DESCRIPTOR :sqlda-desc

(dynamic SQL only) is a host variable containing an SQLDA descriptor that
describes a list of memory locations (not always declared host variables) into
which corresponding SELECT columns are copied.

FETCH { cursor } { INTO :var [, :var] ... }
 { :cursor-var } { USING DESCRIPTOR :sqlda-desc }
HP NonStop SQL/MP Reference Manual—523352-013
F-3

Considerations—FETCH
Use this option in dynamic SQL if you have no previous knowledge of the returned
columns and use DESCRIBE to retrieve their descriptions.

Considerations—FETCH

 FETCH requires read access to any tables or views associated with the cursor.
Updating fetched rows requires write access to the table or view.

 Successive executions of FETCH retrieve successive rows in the result table. To
control the order in which the rows appear, include an ORDER BY clause in the
SELECT portion of the DECLARE CURSOR statement that defines the cursor.

 If the number of host variables is different from the number of columns in the result
table, FETCH issues a warning and returns the number of values in the shorter list
(column list or host variable list).

If the column list is shorter than the host variable list, the values in the extra host
variables are indeterminate.

 Locking occurs when the FETCH executes (or, if the SELECT requires a sort,
when you open the cursor), but the SELECT statement associated with the cursor
specifies whether the access option that controls locking is BROWSE, STABLE, or
REPEATABLE.

A FETCH for a cursor on an audited table that uses STABLE or REPEATABLE
access must execute in the same TMF transaction that opened the cursor.

 FETCH returns an integer status code to SQLCODE:

Avoid using SQLCODE 100 as an end-of-file indicator. SQL resets SQLCODE to 0
when you close the associated cursor. Instead, define your own end-of-file flag.

Examples—FETCH

 In this example, suppose that you have a cursor that returns information from the
PARTS table. The host variables are declared in a Declare Section, and the cursor
declaration lists the columns to be retrieved. The FETCH statement lists a
corresponding host variable to receive the values returned for each column. (The
example uses the SQL statement terminator for COBOL programs.)

0 The FETCH was successful

100 The end of the table was encountered

> 0 A warning was issued

< 0 An error occurred
HP NonStop SQL/MP Reference Manual—523352-013
F-4

Examples—FETCH
Variable declarations:
 ...
EXEC SQL BEGIN DECLARE SECTION END-EXEC.
Declare host variables:
 01 HVAR1
 02 HVAR2
 03 HVAR3
EXEC SQL END DECLARE SECTION END-EXEC.
 ...
Main code:
EXEC SQL DECLARE CURSOR1 CURSOR FOR
 SELECT COL1,
 COL2,
 COL3
 FROM =PARTS
 WHERE COL1 >= :HOSTVAR1
 ORDER BY COL1
 BROWSE ACCESS
END-EXEC.
 ...
EXEC SQL OPEN CURSOR1 END-EXEC.
EXEC SQL FETCH CURSOR1
 INTO :HVAR1,
 :HVAR2,
 :HVAR3
END-EXEC.
EXEC SQL CLOSE CURSOR1 END-EXEC.

 These steps demonstrate a dynamic SQL FETCH. The code uses FETCH with
USING DESCRIPTOR to return information on SELECT columns of which there is
no previous knowledge. (The example uses the SQL statement terminator for C,
Pascal, and TAL programs.)

1. Declare an SQLDA to hold input parameters and name the area SDAI;
NAMESINPUT is the names buffer. The values 5 and 39 are arbitrary values
chosen for the size of the SQLDA and the names buffer. Your program can use
different values or allocate memory dynamically.

EXEC SQL INCLUDE SQLDA (SDAI, 5, NAMESINPUT, 39);

2. Declare an SQLDA to hold output variables (SELECT columns) and name it
SDAO; NAMESOUTPUT is the names buffer:

EXEC SQL INCLUDE SQLDA (SDAO, 5, NAMESOUTPUT, 39);

3. Read an SQL statement input from the terminal and store it in variable H1.

4. Prepare the input as S1:

EXEC SQL PREPARE S1 FROM :H1;
HP NonStop SQL/MP Reference Manual—523352-013
F-5

File Attributes
5. Fill in the SQLDA and names buffer with the descriptions of the parameter
values (input parameters) in the SQL statement:

EXEC SQL DESCRIBE INPUT S1 INTO :SDAI

 NAMES INTO :NAMESINPUT;

6. Fill in the SQLDA and names buffer with the descriptions of the SELECT
columns (output variables) in the SQL statement:

EXEC SQL DESCRIBE S1 INTO :SDAO NAMES INTO :NAMESOUTPUT;

7. Declare a cursor, C1, for the statement S1. Open the cursor using the
parameter values that were input and stored in :SDAI:

EXEC SQL DECLARE C1 CURSOR FOR S1;
EXEC SQL OPEN C1 USING DESCRIPTOR :SDAI;

8. Retrieve the column values stored in :SDAO:

EXEC SQL FETCH C1 USING DESCRIPTOR :SDAO;

File Attributes
File attributes describe the physical characteristics of a file or an SQL object, such as a
table or an index, that is stored in a file. The values you select for a file's attributes can
affect the storage and security for the object and the performance of applications that
use the object.

File attributes are set when a file is created. If you do not specify attribute values in the
statement that creates an SQL object (such as CREATE TABLE or CREATE INDEX),
SQL uses default values. Many attributes can be changed later (with statements such
as ALTER TABLE or ALTER INDEX), some attributes remain in effect for the life of the
object, and a few can change as a side effect of a command or a change to some
other attribute.

This table summarizes the file attributes important for SQL objects. Because SQL
objects reside in Guardian files, all the attributes listed are attributes of Guardian files.
For more information, see the descriptions of specific attributes.
HP NonStop SQL/MP Reference Manual—523352-013
F-6

File Attributes of SQL Objects
File Attributes of SQL Objects

ALLOCATE Controls amount of disk space allocated. Default is to allocate
space as needed.

AUDIT Controls TMF auditing. Default is AUDIT.

AUDITCOMPRESS Controls whether unchanged columns are included in audit
records. Default is to include only changed columns.

BLOCKSIZE Sets size of data blocks. Default is 4096.

BUFFERED Turns buffering on or off. Default is on.

CLEARONPURGE Controls disk erasure when file is dropped. Default is no
erasure.

DCOMPRESS Controls key compression in data blocks. Default is no
compression.

DSLACK Sets percent of slack in data blocks. Default is value of the
SLACK attribute.

EXTENT Sets extent sizes. Default is 16 pages for the first extent, 64 for
others.

FORMAT Controls whether a partition is Format 1 or Format 2.

ICOMPRESS Controls key compression in index blocks. Default is no
compression.

ISLACK Sets percent of slack in index blocks. Default is value of the
SLACK attribute.

LOCKLENGTH Sets number of bytes in key to use for generic locks. Default is
entire key.

MAXEXTENTS Sets maximum extents. Default is 160.

NOPURGEUNTIL Sets date after which drop is allowed. Default allows immediate
drop.

OWNER Specifies owner. Default is creator.

PROGID Determines the PAID of a process started from the file. Default
is NO PROGID.

RECLENGTH Sets bytes reserved for a relative-file row. Default is total
column lengths.

RESETBROKEN Resets BROKEN flag. No default.

SECURE Sets Guardian security string. Default is creator's default
security string.

SERIALWRITES Specifies serial or parallel writes. Default is SERIALWRITES.
HP NonStop SQL/MP Reference Manual—523352-013
F-7

File Organizations
File Organizations
SQL DDL statements create and modify tables and indexes and the physical Guardian
files that hold tables and indexes. To select parameters for your DDL statements, you
must be familiar with the three physical file organizations available for SQL tables:
key-sequenced, entry-sequenced, and relative.

 In key-sequenced files, records are stored in sequence by primary key or
clustering key. The key can be supplied by the user, generated by the system, or
built from values supplied by the user and a value generated by the system. You
cannot update columns in a primary or clustering key.

You can insert, update, or delete data in rows, shorten or lengthen values in
varying-length character columns, and alter table definitions to add columns. You
can also add, move, or drop partitions.

Tables are often stored in key-sequenced files, and indexes are always stored in
key-sequenced files.

 In entry-sequenced files, each new record is added to the logical end of the file.
The primary key is a system-generated record address. You can add or update
rows, but you cannot delete them. You cannot shorten or lengthen values in
varying-length character columns and you cannot alter table definitions to add
columns. You can add or move partitions, but you cannot drop partitions.

 In relative files, records are stored at relative record locations specified by either
the user or the file system. The primary key is the relative record number. You can
insert, update, or delete rows, and you can shorten or lengthen values of
varying-length character columns. You can alter a table definition to add columns if
the original record length defined for the table is large enough to include the added
columns.

Guardian files that do not contain SQL objects but that have key-sequenced,
entry-sequenced, or relative file organization are also called Enscribe files or structured
files.

A fourth type of Guardian file—unstructured—is also used on NonStop systems, but
never for SQL tables or indexes. SQL programs in Guardian files are stored in
unstructured files. Edit files—text files that can be read by the EDIT or TEDIT text
editors and by many other Guardian utilities—are unstructured files with file code 101.
(OSS users can convert files created with the vi text editor to EDIT files with the
CTOEDIT command described in the Open System Services Programmer's Guide.)

SLACK Sets percent of slack in blocks if not specified by DSLACK or
ISLACK. Default is 15 percent.

TABLECODE Sets tablecode. Default is 0.

VERIFIEDWRITES Controls verification of writes to disk. Default is no verification.
HP NonStop SQL/MP Reference Manual—523352-013
F-8

FILEINFO Command
For information about choosing the most effective file organizations for your tables, see
the SQL/MP Installation and Management Guide.

FILEINFO Command
FILEINFO is an SQLCI utility that displays information about the versions and physical
characteristics of tables, indexes, views, collations, Enscribe files, and OSS files.

FILEINFO is similar to FUP INFO, although its displays are slightly different.

qualified-fileset-list

is a qualified fileset list that specifies files for which to display information. For
information, see Qualified Fileset List on page Q-1.

You cannot include a pathname in a qualified fileset list; use Guardian-format ZYQ
names to specify OSS files.

USER [group.member] }
 [group-ID,member-ID] }
 ["user-name"] }
 [user-ID] }

restricts the files for which information is displayed to those from
qualified-fileset-list that are owned by the specified user.

You can specify user in one of several ways:

group.member is a valid user name.

group-id, member-ID specifies the user ID as a pair of numbers, each in the
range from 1 to 255.

“user-name” is a valid Guardian user name (in group.member format) or
Safeguard alias name, enclosed in double quotes. To add a Safeguard alias, use
the Safecom utility.

FILEINFO qualified-fileset-list

 [[,]fileinfo-option] ... ;

fileinfo-option is:}

 { USER [group.member] }
 { [group-ID,member-ID] }
 { ["user-name"] }
 { [user-ID] }
 { [BRIEF | DETAIL] }
 { EXTENTS }
 { STAT[ISTICS] [, PARTONLY] }
 { SHADOWS }
HP NonStop SQL/MP Reference Manual—523352-013
F-9

FILEINFO Command
user-ID is a user's numeric ID such as that displayed by the OSS ls -n command.
user-ID can be in the range from 1 to 65,535. For a Guardian user-ID, this
number equates to (256*group-id + member-ID).

If you specify a user, FILEINFO displays information for files owned by that user. If
you specify only the keyword USER, FILEINFO displays information only for files
that you own. If you omit the USER option, FILEINFO displays information about
all files in qualified-fileset-list.

BRIEF | DETAIL

specifies whether to display brief or detailed information about each file. BRIEF, the
default, displays only a single line of information.

EXTENTS

displays information on the allocation of extents for each file. Extent information
appears for tables, indexes, collations, and Enscribe files, but not for views or OSS
files.

STAT[ISTICS] [, PARTONLY]

provides all the DETAIL information and statistical data on blocks and records for
each file. Statistics information appears only for tables, indexes, collations, and
Enscribe structured files; it does not appear for shadow labels or OSS files.

PARTONLY limits the information to the partitions you specify explicitly in
qualified-fileset-list. For example, if you specify only a secondary
partition of a table, no statistical information about the primary partition or any other
secondary partition appears. PARTONLY affects only the output and has no effect
on how SQL reads the input file.

If you omit PARTONLY and specify the primary partition of an Enscribe file or
specify any partition of an SQL object, FILEINFO supplies information about all
partitions. For Enscribe files, PARTONLY is implied if you specify a secondary
partition, because secondary partitions do not contain information about other
partitions.

SHADOWS

specifies that you want to display information about shadow labels, temporary file
labels for objects that have been dropped.

You can specify the DETAIL, EXTENTS, and STATISTICS display together in the
same command.
HP NonStop SQL/MP Reference Manual—523352-013
F-10

Considerations—FILEINFO
Considerations—FILEINFO

 FILEINFO without the STATISTICS option has no authorization requirements. With
the STATISTICS option, FILEINFO requires read authority for the files for which
information is displayed.

 FILEINFO returns error -9132 if it encounters an SQL object (but not an SQL
program or catalog) that has a version greater than the version of the SQL/MP
software on the node from which you issued the FILEINFO command. Use a later
version of FILEINFO (that is, a later version of NonStop SQL/MP) to display
information about such an object.

FILEINFO returns error -9133 if it encounters an SQL object (but not an SQL
program or catalog) that has a version greater than the version of the SQL/MP
software on the node on which the object resides. No version of FILEINFO can
access such an object, which might exist because of a fallback situation.

BRIEF Display for SQL Objects and Guardian Files

 The BRIEF display for SQL objects and Guardian files includes three types of lines:

 A heading line, such as,

CODE EOF LAST MODIF OWNER RWEP TYPE REC BLOCK

 A line that names the node, volume, and subvolume for the files that follow in the
report, such as,

[\node.]$volume.subvol

 An information line that provides information about a specific file.

The information line begins with the unqualified name and the open state of the table,
index, collation, or file. The remainder of the line includes information that corresponds
to each of the fields in the heading line, as described in Table F-1.

:

Table F-1. FILEINFO BRIEF Display Information Line (page 1 of 3)

Open State The open state of the file is described by one or more of these codes:

B File is marked broken because of a detected inconsistency in
the file structure. (Not used for views.)

C Either the data or the definition of the object is corrupt. (DETAIL
display shows which one is corrupt.)

O File is open. (Not used for views.)

R Recovery is needed. See the TMF Operations and Recovery
Guide.
HP NonStop SQL/MP Reference Manual—523352-013
F-11

BRIEF Display for SQL Objects and Guardian Files
D An ALTER TABLE or ALTER INDEX operation using the WITH
SHARED ACCESS option did not complete successfully. To
recover, use the RECOVER INCOMPLETE SQLDDL
OPERATION option for the ALTER TABLE or ALTER INDEX
statement, followed by a FUP RELOAD operation. For more
information, see the ALTER TABLE or ALTER INDEX
command or the WITH SHARED ACCESS option.

F An ALTER TABLE or ALTER INDEX operation using
the WITH SHARED ACCESS option left unreclaimed
free space on disk. To recover the free space, issue a FUP
RELOAD command. For more information about FUP
RELOAD, see the File Utility Program (FUP)
Reference Manual.

S File is a shadow label, a temporary file label for an object that
has been dropped which exists until the transaction is
committed, aborted, or rolled back, or until a TMF file recovery
is performed. (Shadow labels are not listed if the fileset is
qualified by a catalog name.)

? File is in the crash-open or crash-label state. A file is in the
crash-label state if a file label operation was taking place at the
time of a total system crash or when the disk on which the file
is located becomes unavailable. A file is in the crash-open state
if it was open in the same circumstances. (Only the crash-label
state applies to views.)

blank File is not open, crashed, or broken.

CODE The file code, or “OSS” for an OSS file. The default Guardian file code of
0 is not displayed.
Guardian file codes 100 through 999 refer to specific types of files and are
reserved by the HP NonStop operating system. For the meanings of
reserved file codes, see the description of the FUP INFO command in the
File Utility Program (FUP) Reference Manual.
Letters that follow the file code have specific meanings:

A File is audited by the TMF subsystem.

L File is licensed by the super ID.

P PROGID security attribute of the file is on.

+ This partition is Format 2. If blank, this partition is Format 1.

EOF The number of bytes in the file. (Not used for views.)

LAST MODIF The date and time when the file was last modified. If the last modification
date is the current date, only the time of day is given. (Not used for views.)

OWNER The user ID of the file's owner.

RWEP The security string for the file.

Table F-1. FILEINFO BRIEF Display Information Line (page 2 of 3)

Open State The open state of the file is described by one or more of these codes:
HP NonStop SQL/MP Reference Manual—523352-013
F-12

BRIEF Display for SQL Objects and Guardian Files
TYPE A six-character code that identifies the file type and SQL object type in
this form:

Character positions -> 1 2 3 4 56

Codes that appear -> X P E A In
 K P Pg
 R S Ta
 Vi

Character Code
Position

Meaning

1 X Secondary Partition

2 P Partitioned Table, protection view or file

3 E
 K
 R
Blank

Entry-sequenced file structure
Key-sequenced file structure
Relative file structure
View or unstructured file

4 A
 P
 S
Blank

Enscribe file with alternate key
Protection view
Shorthand view
Tables, indexes, collations, and files without
alternate keys

5-6 In
 Pg
 Ta
 Vi
Blank

Index
SQL object program file
Table
View
Collations and Enscribe files that are not SQL
object program files. (To determine which, use
the DETAIL option.)

REC The record length in bytes. For tables and indexes, REC is the maximum
record length; for Guardian files, REC is the logical record length. (Not
displayed for views or unstructured files.)

BLOCK The number of bytes in each block of a file. (Not displayed for views or
unstructured files.)

Table F-1. FILEINFO BRIEF Display Information Line (page 3 of 3)

Open State The open state of the file is described by one or more of these codes:
HP NonStop SQL/MP Reference Manual—523352-013
F-13

DETAIL Display for Objects (Except Views) and
Guardian Files
DETAIL Display for Objects (Except Views) and Guardian Files

This listing shows all the detail that can appear if you specify the DETAIL option when
you request FILEINFO for a table, index, collation, or Guardian file. The information
that actually appears in your listing depends on the file organization of the item you
inquire about and on whether the item is a table, index, collation, or file.

The KEY descriptors, INDEX and ALTKEY, and PART information do not appear for
shadow labels. The SMF information appears only for files managed by SMF.

The name of the object or file and the date when the listing is produced appear in the
first line. The numbers in the left most column do not appear in the listing. These
numbers relate sections of the listing to the notes and explanations that follow.

file-name date-and-time

1. object-type

2. CATALOG catalog-name

3. VERSION version-number

4. PROGRAM CATALOG VERSION version-number

5. PROGRAM FORMAT VERSION version-number

6. BASE TABLE base-table-name

7. TYPE organization-type

8. FORMAT format-type

9. CODE file-code

10. EXT (pri-num PAGES, sec-num PAGES, MAXEXTENTS max-extents)

11. REC record-length
PACKED REC packed-record-length
RECLENGTH max-record-length
BLOCK block-length

12. IBLOCK block-length
KEY (key-descriptor)
SYSKEY
LOCKLENGTH lock-length
DCOMPRESS, ICOMPRESS

13. For each index or alternate key of the object or file:

14. {INDEX} (key-spec, FILE alt-fnum, file-name,
{ALTKEY} key-descriptor
{UNIQUE | NO UNIQUE},
{UPDATE | NO UPDATE}, NULL null-value)

15. For each partition of the object or file:
HP NonStop SQL/MP Reference Manual—523352-013
F-14

DETAIL Display for Objects (Except Views) and
Guardian Files
16. PART (part-num, $volume,
pri-ext PAGES, sec-ext PAGES, MAXEXTENTS
max-ext, FORMAT format-type,firstkey-value)

17. ODDUNSTR
REFRESH
AUDIT
BUFFERSIZE
BUFFERED
AUDITCOMPRESS
VERIFIEDWRITES
SERIALWRITES
INCOMPLETE SQLDDL OPERATION
UNRECLAIMED FREESPACE

18. OWNER group-id, owner-id
SECURITY (RWEP):rwep, PROGID,
CLEARONPURGE, LICENSE
NOPURGEUNTIL:expire-time

19. SECONDARY PARTITION

20. MODIF: modif, open-state
CREATION DATE: create-time
REDEFINITION DATE: redefinition-time
LAST OPEN: last-open-time

21. EOF eof (percent-used % USED)

22. EXTENTS ALLOCATED: num-ext

23. INDEX LEVELS: num-index-levels

24. PARTITION ARRAY {EXTENDED | STANDARD | FORMAT2ENABLED}

25. Files managed by SMF,

LOGICAL NAME: logical-file-name for physical files
PHYSICAL NAME: physical-file-name for logical files

This list describes the items in the DETAIL display:

1. The object-type value describes what type of object the file is:
 SQL table or view
 catalog table
 collation
 index
 catalog index
 Enscribe file
 Enscribe file containing an SQL object program
 OSS file
 OSS file containing an SQL object program
HP NonStop SQL/MP Reference Manual—523352-013
F-15

DETAIL Display for Objects (Except Views) and
Guardian Files
 INVALID indicates that an SQL program is not valid and might need to be SQL
compiled.

 SHADOW LABEL indicates that the file is a shadow label.
 SQL CHARACTER PROCESSING RULES OBJECT indicates that the object

is a collation.

2. CATALOG identifies the catalog in which the object is defined.

3. VERSION indicates a NonStop SQL/MP version number. This information is
supplied only for SQL objects.

4. PROGRAM CATALOG VERSION (PCV) indicates the oldest version catalog in
which the SQL program can be registered. The PCV of a program depends on the
program's use of SQL/MP features that require information to be recorded in the
catalog. This information is supplied only for SQL programs.

5. PROGRAM FORMAT VERSION (PFV) indicates the oldest version of SQL/MP
software that can execute the SQL program. The PFV of a program is the SQL/MP
software version of the SQL compiler that compiled the program. This information
is supplied only for SQL programs.

6. BASE TABLE is the underlying table if the file is an index.

7. TYPE indicates the file organization:
K Key-sequenced
E Entry-sequenced
R Relative
U Unstructured

8. FORMAT indicates the partition format, 1 or 2.

9. CODE is the file code. For more information, see the discussion of file code in the
preceding description of the BRIEF display.

10. EXT lists the sizes of the primary and secondary extents and the maximum number
of extents that can be allocated.

11. Items in this section do not appear for unstructured files:

 REC indicates the maximum exploded record length for objects. (A record in
“exploded format” is expanded to its maximum length; varying-length character
fields are padded with blanks to their full maximum size and filler is generated
where necessary to align numeric fields that require word alignment.)

 PACKED REC indicates the maximum packed record length for objects.
(Records on disk are stored in packed format. A record in packed format has
no fillers; varying length character fields are stored as their exact size plus the
length field and numeric items are not necessarily word aligned.)

 RECLENGTH indicates the maximum row length for relative tables. For more
information, see RECLENGTH File Attribute on page R-1.

 BLOCK indicates the number of bytes in a block.
HP NonStop SQL/MP Reference Manual—523352-013
F-16

DETAIL Display for Objects (Except Views) and
Guardian Files
12. This section describes the primary key of a key-sequenced file or other structured
file types:

 IBLOCK is the length of an index block of an Enscribe file.

 KEY key-descriptor is one or more sets of these items; the number of sets
depends on the number of columns in the key:

COLUMN col-num, OFFSET key-offset,
 LENGTH key-length, { ASC }
 { DESC }

 COLUMN number indicates the position of the key column in the row. If the
row contains a system-defined primary key, the primary key is column 0;
otherwise, the first column defined for the table is column 0.

 OFFSET indicates the zero-relative byte address of the key column in the
record.

 LENGTH indicates the length of the key column in bytes.

 ASC is ascending order and DESC is descending order.

 SYSKEY indicates a system-defined primary key.

 LOCKLENGTH is the number of bytes of the primary or clustering key used for
locking (including the SYSKEY if it exists).

 DCOMPRESS indicates keys in data blocks of the file are compressed.

 ICOMPRESS indicates keys in index blocks are compressed.

13. This section describes indexes of a table or describes alternate key files for an
Enscribe file:

 The key-spec value is the key specifier stored in every row of the index. For
more information, see CREATE INDEX Statement on page C-142.

 FILE indicates the number of an Enscribe alternate key file.

 The key-descriptor value of the index or alternate key file is displayed as
described for the KEY item in note 11.

 UNIQUE or NO UNIQUE indicates whether the indexed column or columns
can have the same value or set of values in two or more rows.

 UPDATE or NO UPDATE indicates whether key specifiers of Enscribe files are
automatically updated.

 NULL indicates the null value set for an Enscribe file key.

14. If the object or file is partitioned, the partitions are described in this section. The
partition number and volume name of each partition are followed by the number of
primary and secondary extents and the maximum extent size allowed. The
partition’s format, 1 or 2, is shown. For a key-sequenced file, the FIRST KEY value
is given.
HP NonStop SQL/MP Reference Manual—523352-013
F-17

DETAIL Display for Objects (Except Views) and
Guardian Files
If a file uses multibyte characters, the FIRST KEY value might contain characters
unsupported by your terminal, causing unpredictable results in the screen display.

15. This section describes file attributes and flags:

16. OWNER is the user ID of the file's owner. This section also displays the security
string of the file, indicates whether the PROGID and CLEARONPURGE attributes
are set, and indicates the time after which you can purge the file. LICENSE
indicates a licensed file; asterisks (*) indicate a file protected by the Safeguard
security product.

17. SECONDARY PARTITION indicates the file is a secondary partition.

ODDUNSTR Enscribe odd unstructured file.

REFRESH File label is updated when file control block
changes.

AUDIT File is audited.

BUFFERSIZE Default internal transfer size of unstructured
file.

BUFFERED Writes to file are buffered.

AUDITCOMPRESS Compressed audit-checkpoint messages are
generated for files.

VERIFIEDWRITES Writes to file are verified.

SERIALWRITES Serial mirror writes are done.

INCOMPLETE SQLDDL
OPERATION

An ALTER TABLE or ALTER INDEX operation
with the WITH SHARED ACCESS option is in
process or has failed. If the operation has
completed and the flag remains, recovery is
needed. To recover the file, use the
PARTONLY RECOVER INCOMPLETE
SQLDDL OPERATION option for the ALTER
TABLE or ALTER INDEX statement, then do a
FUP RELOAD operation. For more information
about FUP RELOAD, see the File Utility
Program (FUP) Reference Manual.

UNRECLAIMED FREESPACE A DDL operation with the WITH SHARED
ACCESS option left unreclaimed free space on
disk. To recover the free space, issue a FUP
RELOAD command. For more information
about FUP RELOAD, see the File Utility
Program (FUP) Reference Manual.
HP NonStop SQL/MP Reference Manual—523352-013
F-18

DETAIL Display for Objects (Except Views) and
Guardian Files
18. This section lists dates and times of file activity. MODIF indicates when the file was
last modified and one of more of these open states, if applicable:

For more information, see the discussion of the Open State field under BRIEF
Display for SQL Objects and Guardian Files on page F-11.

19. For unstructured files, EOF is the end-of-file pointer containing the relative
byte address of the byte after the last significant data byte.

For structured files, EOF is the relative byte address of the first byte of the next
available block.

percent-used is the percent of available file space currently used based on
available space if all extents are allocated.

20. EXTENTS ALLOCATED is the number of extents currently allocated. This
information is supplied only for Guardian files.

21. For key-sequenced files, INDEX LEVELS indicates the number of index levels
used for index blocks.

BROKEN File is marked as broken.

CORRUPT Error occurred during a utility operation such as
restoring or duplicating.

DEFINITION INVALID Data or definition of the object is invalid.

LABEL
QUESTIONABLE

File is in a crash-label state.

OPEN File is open.

QUESTIONABLE File is in a crash-open state.

RECOVERY NEEDED File cannot be opened; volume recovery is needed
(TMF2 files only).

REDO NEEDED File cannot be opened; TMF redo file recovery is
needed.

UNDO NEEDED File cannot be opened; TMF undo file recovery is
needed.

CREATION DATE Indicates the date the table or index was created.

REDEFINITION TIME Indicates when a change to the table or index caused
an SQL program to be recompiled.

LAST OPEN Indicates the last time the table or index was opened.
HP NonStop SQL/MP Reference Manual—523352-013
F-19

DETAIL Display for Views
22. For tables and indexes, PARTITION ARRAY indicates the type of array used for
the base table and any associated indexes. Possible values are:

23. For files managed by SMF, this section indicates the corresponding file name.
Possible values are:

 LOGICAL NAME, virtual-volume-name.subvolume.file-name
displayed when you execute FILEINFO, DETAIL for a physical file

 PHYSICAL NAME, physical-volume-name.subvolume.file-name
displayed when you execute FILEINFO, DETAIL for a logical file

DETAIL Display for Views

This figure shows all the information that can appear if you specify the DETAIL option
when you request FILEINFO for a view.

Fields with the same names as previously described fields for tables, indexes,
collations, and Guardian files contain similar information.

For protection views, BASE TABLE indicates the name of the underlying table. PART
and REDEFINITION DATE appear for protection views only. If the partition is on the
current system, the system name does not appear. INSERTABLE appears for views for
which you can insert and update values.

EXTENDED Longer partition array available on versions 320 and later
of NonStop SQL/MP.

STANDARD Partition array used by default by NonStop SQL/MP.

FORMAT2ENABLED Partition array that allows partitions to be any
combination of Format 1 or Format 2 partitions.
FORMAT2ENABLED implies that the partition array is
also EXTENDED.

file-name date-and-time
object-type
 CATALOG catalog-name
 VERSION version-number
 BASE TABLE base-table-name
 PART ([\system.] $volume)
 ...
 OWNER group-id,user-id
 SECURITY (RWEP): rwep
 [LABEL QUESTIONABLE]
 [DEFINITION INVALID]
 [REDO NEEDED, UNDO NEEDED]
 CREATION DATE: creation-date
 NOPURGEUNTIL: expire-time
 REDEFINITION DATE: redefinition-date
 INSERTABLE
HP NonStop SQL/MP Reference Manual—523352-013
F-20

BRIEF and DETAIL Display for OSS Files
LABEL QUESTIONABLE, DEFINITION INVALID, REDO NEEDED, and UNDO
NEEDED are open states. See the description of the MODIF field of the DETAIL format
for tables, indexes, collations, and Guardian files in the preceding list (item 17).

BRIEF and DETAIL Display for OSS Files

For OSS files, both the BRIEF and DETAIL displays include the ZYQ name, the
pathname (wrapped over multiple lines, if necessary), the code (OSS), the EOF
location, the last modification date, the owner, and the OSS security information.
FILEINFO displays the owner and security information beneath the pathname for the
file, because it occupies more space in the display than the corresponding Guardian
security information

In the BRIEF display, the display heading line is identical to the one for Guardian files,
because only one heading line appears in the display, although the display can include
both types of files. The headings match the columns for Guardian files, not OSS files.
Not all headings apply to OSS files.

The DETAIL display for OSS files also includes the creation date and the last open
date. Other fields described for the DETAIL FILEINFO display for Guardian files do not
apply to OSS files.

EXTENTS Display

This figure shows the EXTENTS display.

The first line in the EXTENTS display is the same as the first line in the DETAIL display
for tables, indexes, and Guardian files. The other fields are:

file-name date-and-time
 EXTENT # OF PAGES STARTING PAGE [PART]
 extent-num num-pages start-page [name]
 ...

extent-num The ordinal extent number of the entry. The first extent is 0. NONE
indicates no extents are allocated.

num-pages The number of disk pages (2048-byte units) in the extent.

start-page The absolute page address of the first page of the extent.

name For partitioned files, the partition name associated with the entry.
HP NonStop SQL/MP Reference Manual—523352-013
F-21

STATISTICS Display
STATISTICS Display

This figure shows the STATISTICS display.

The fields in the STATISTICS display are:

Examples—FILEINFO

For these examples, assume that the subvolume $VOL1.INVENT contains only catalog
files and these files (see if this is ok), and that all SQL objects are defined in the
catalog $VOL1.INVENT:

 TOTAL TOTAL AVG # AVG AVG %
LEVEL BLOCKS RECS RECS SLACK SLACK PART
 1 1 1 1.0 4065 99 $VOL1
 DATA 1 1 1.0 4046 99
 FREE 0
 BITMAP 1

LEVEL Indicates the tree level of the entry:

DATA Data level (this is the only level shown for relative
and entry-sequenced files)

n Number of level with 1 as lowest level (for
key-sequenced files)

The remainder of the fields in the line apply to the
indicated level.

TOTAL BLOCKS The total number of blocks in use.

TOTAL RECS The total number of records. At the DATA level, TOTAL
RECS is the total number of data records in the file.

AVG # RECS The average number of records per block.

AVG SLACK The average number of unused bytes per block.

AVG % SLACK The average percent of unused bytes for each block.

PART For partitioned files, the volume name of the partition
associated with the entry.

FREE TOTAL BLOCKS For key-sequenced files, the total number of unused
blocks from the beginning to the EOF.

FREE TOTAL RECS For relative files, the total number of empty records from
the beginning to the EOF.

BITMAP TOTAL
BLOCKS

For relative and key-sequenced files only, the number of
bitmap blocks.

ESTABLE An unpartitioned, entry-sequenced table

PARTLOC A partitioned, key-sequenced table

PARTLOCI An index defined on PARTLOC
HP NonStop SQL/MP Reference Manual—523352-013
F-22

Examples—FILEINFO
 This command displays information for all the objects on $VOL1.INVENT
(including the catalog tables) in the default BRIEF format:

>> FILEINFO $VOL1.INVENT.*;

 CODE EOF LAST MODIF OWNER RWEP TYPE REC BLOCK
$VOL1.INVENT
 BASETABS 572A 12288 3Jan93 11:53 1,205 NCNC K Ta 90 4096
 COLUMNS 575A 32768 3Jan93 11:53 1,205 CCCC K Ta 206 4096
 COMMENTS 582A 12288 3Jan93 11:53 1,205 CCCC K Ta 202 4096
 CONSTRNT 580A 0 3Jan93 11:52 1,205 CCCC K Ta 3068 4096
 ESTABLE 10 8192 1Feb93 12:30 1,74 GUUU E Ta 80 2048
 ...
 PARTLOC O A 16384 1Feb93 9:45 1,74 GUUU PK Ta 12 4096
 PARTLOCI O A 16384 1Feb93 9:45 1,74 GUUU K In 14 4096
 PROG12 100P 19386 9Jan93 14:12 1,74 NUNU Pg
 PROGRAMS 581A 12288 3Jan93 11:53 1,205 CCCC K Ta 3096 4096
 PVIEW 1,74 NNUU P PVi
 SVIEW 1,74 GUUU SVi
 ...

 This command displays DETAIL information for the file PARTLOC:

>> FILEINFO $VOL1.INVENT.PARTLOC, DETAIL;

$VOL1.INVENT.PARTLOC 13 Jun 1995, 12:32
 SQL BASE TABLE
 CATALOG $VOL1.INVENT
 VERSION 1
 TYPE K
 FORMAT 1
 EXT (16 PAGES, 64 PAGES, MAXEXTENTS 160)
 REC 10
 PACKED REC 9
 BLOCK 4096
 KEY (COLUMN 0, OFFSET 0, LENGTH 3, ASC,
 COLUMN 1, OFFSET 4, LENGTH 2, ASC)
 PART (0, $VOL1, 16 PAGES, 64 PAGES, MAXEXTENTS 160, FORMAT 1, ([0],0))
 PART (1, $WHS2, 16 PAGES, 64 PAGES, MAXEXTENTS 160, FORMAT 1, ("G00",0))
 AUDIT
 BUFFERED
 AUDITCOMPRESS
 OWNER 1,74
 SECURITY (RWEP): GUUU
 MODIF: 12 Jun 1995, 20:12
 CREATION DATE: 10 Jun 1995, 20:01
 REDEFINITION DATE: 12 Jun 1995, 20:01
 LAST OPEN: 13 Jun 1995, 18:44
 EOF 12288 (0.1% USED)
 EXTENTS ALLOCATED: 1
 INDEX LEVELS: 1
 PARTITION ARRAY EXTENDED

If you request the STATISTICS display, the additional information appears below
EXTENTS ALLOCATED instead of the INDEX LEVELS:

 TOTAL TOTAL AVG # AVG AVG %
 LEVEL BLOCKS RECS RECS SLACK SLACK PART
 1 1 1 1.0 4065 99 $VOL1
 DATA 1 15 15.0 3899 95
 FREE 0
 BITMAP 1
 1 1 1 1.0 4065 99 $WHS2
 DATA 1 31 31.0 3723 89

PVIEW A partitioned protection view that depends on PARTLOC

PROG12 An SQL object program file

SVIEW A shorthand view
HP NonStop SQL/MP Reference Manual—523352-013
F-23

Examples—FILEINFO
 FREE 0
 BITMAP 1

 This command displays EXTENTS information about PARTLOC:

>> FILEINFO $VOL1.INVENT.PARTLOC, EXTENTS;
$VOL1.INVENT.PARTLOC 30 Oct 1994, 11:00
 EXTENT # OF PAGES STARTING PAGE PART
 0 16 71199 $VOL1
 0 16 141363 $WHS2

 This command displays BRIEF information about collations by specifying the file
attribute “COLLATION” in the WHERE clause of the qualified fileset list for
FILEINFO:

>> FILEINFO \A.$A.A.* WHERE COLLATION;
 CODE EOF LAST MODIF OWNER RWEP TYPE REC BLOCK
 \A.$A.A
CASEINS 941 12288 16NOV93 11:53 175,213NONO K 3004 4096
ESPANOL 941 12288 17NOV93 9:10 175,213NONO K 3004 4096
FRANCAIS 941 12288 15NOV93 17:40 255,255NONO K 3004 4096
FRENCH 941 12288 16NOV93 8:20 175,213NONO K 3004 4096

 This FILEINFO command displays DETAIL information for a collation:

>> FILEINFO \A.$A.A.COL1, DETAIL;
 \A.$A.A.COL1 1 Jun 1995, 9:51
 SQL CHARACTER PROCESSING RULES OBJECT
 CATALOG $A.A
 VERSION 300
 TYPE K
 FORMAT 1
 CODE 941
 EXT (16 PAGES, 64 PAGES, MAXEXTENTS 160)
 REC 3004
 PACKED REC 3004
 BLOCK 4096
 KEY (COLUMN 0, OFFSET 0, LENGTH 2, ASC)
 AUDIT
 BUFFERED
 AUDITCOMPRESS
 OWNER 175,213
 SECURITY (RWEP): CCCC
 MODIF: 1 Jan 1992, 7:55
 CREATION DATE: 1 Jan 1992, 7:55
 REDEFINITION DATE: 1 Jan 1992, 7:55
 LAST OPEN: 1 Jan 1992, 7:55
 EOF 12288 (0.1% USED)
 EXTENTS ALLOCATED: 1
 INDEX LEVELS: 1
HP NonStop SQL/MP Reference Manual—523352-013
F-24

FILENAMES Command
FILENAMES Command
FILENAMES is an SQLCI utility command that displays a set of file names that match
a pattern specified with wild-card characters. You can restrict the list to objects
described in specified catalogs.

qualified-fileset-list

specifies the files for which information is to be displayed. For more information,
see Qualified Fileset List on page Q-1. If you omit qualified-fileset-list,
FILENAMES displays the files on the current default subvolume.

If SMF is installed on your node, qualified-fileset-list can include files on
$*.ZYS*. subvolumes. If you specify FROM CATALOG(S), all specified catalogs
must be either logical or direct files.

FILENAMES displays file names on the OUT file, which is typically your terminal.
For OSS files, FILENAMES displays ZYQ names.

Example—FILENAMES

This example lists all files in subvolumes that begin with the letter W, have file names
that begin with the letters SQ, have the number 2 in the fifth character position, and are
exactly five characters long:

>> FILENAMES W*.SQ??2;

To restrict the list to files created after December 31, 1994, and owned by user 12
of group 48, enter:

>> FILENAMES W*.SQ??2 WHERE CREATIONTIME AFTER DEC 31 1994
+> AND OWNER = 48,12;

FILENAMES [qualified-fileset-list] ;
HP NonStop SQL/MP Reference Manual—523352-013
F-25

FILES Command
FILES Command
FILES is an SQLCI utility command that displays the names of files that are on one or
more subvolumes.

subvol-spec

is the name of a Guardian subvolume or a name with wild-card characters that
matches the names of several Guardian subvolumes.

If you do not specify any subvol-spec, FILES displays the files on the current
default subvolume.

subvol-spec can include these wild-card characters in any part of the name
except the node name:

FILES displays file names on the OUT file, which is typically your terminal. For
OSS files, FILES displays ZYQ names.

Example—FILES

This example lists all files in volumes with names that end with the letter M and
subvolumes on those volumes that have names that are six-characters long beginning
with Z, with 00 in the fifth and sixth character positions:

>> FILES $*M.Z???00;
$SYSTEM.ZLOG00
 ZZEV0011 ZZEV0012 ZZEV0013 ZZEV0014 ZZEVCONF
>>

FILES [subvol-spec] ;
 [(subvol-spec [, subvol-spec] ...)]

* matches zero or more characters

? matches any single character
HP NonStop SQL/MP Reference Manual—523352-013
F-26

FILES Table
FILES Table
The FILES table is a catalog table that describes the attributes of files that contain
tables and indexes. Table F-2 describes the contents of the FILES table.

Table F-2. The FILES Table (page 1 of 2)

Column Name Data Type Description

1 FILENAME * CHAR(34) File name (same name as table,
index, or partition in file)

 2 FILETYPE CHAR(1) E if entry-sequenced
R if relative
K if key-sequenced

 3 BLOCKSIZE SMALLINT
SIGNED

Block size in bytes: 512, 1024, 2058,
or 4096

 4 PRIMARYEXT SMALLINT
UNSIGNED

Size of primary extent in units of 2
KB. Superceded by PRIMARYEXT2

 5 SECONDARYEXT SMALLINT
UNSIGNED

Size of secondary extent in units of 2
KB. Superceded by
SECONDARYEXT2

 6 MAXEXTS SMALLINT
SIGNED

Maximum number of extents in file
(both primary and secondary)

7 LOCKLENGTH SMALLINT
SIGNED

Locklength file attribute;
0 if same as primary key

 8 PARTITIONED CHAR(1) Y if partitioned
N if not

 9 AUDIT CHAR(1) Y if audited by TMF
N if not

10 DCOMPRESS CHAR(1) Y if data keys compressed
N if not

11 ICOMPRESS CHAR(1) Y if index keys compressed
N if not

12 CLEARONPURGE CHAR(1) Y if all data in file is physically erased
from disk when file purged
N if not

13 SERIALWRITES CHAR(1) Y if serial mirror writes
N if parallel

14 VERIFIEDWRITES CHAR(1) Y if disk read follows each disk write
N if not

15 BUFFERED CHAR(1) Y if writes to disk are buffered
N if not

16 NOPURGEUNTIL LARGEINT
SIGNED

Julian timestamp of earliest time file
can be purged; 0 if file can be purged
any time
HP NonStop SQL/MP Reference Manual—523352-013
F-27

FILES Table
The columns FILENAME through RECORDSIZE (1 through 19) were created in
version 1. The column AUDITCOMPRESS (20) was added in version 2. The column
PARTITIONARRAY (21) was added in version 320. Column DCOMPRESSTYPE was
added in version 345. Columns PRIMARYEXT2, SECONDARYEXTENT2, and EOF2
were added in version 350 and supercede PRIMARYEXT, SECONDARYEXTENT, and
EOF.

Guardian names in the FILES table are fully qualified and use uppercase characters.

17 EOF INTEGER
SIGNED

Relative byte address of first unused
byte of last block in partition or file;
updated by UPDATE STATISTICS.
Superceded by EOF2.

18 NONEMPTYBLOCKCOUNT LARGEINT
SIGNED

Number of blocks that contain at least
one row of data; updated by UPDATE
STATISTICS

19 RECORDSIZE SMALLINT
SIGNED

Maximum length of packed record

20 AUDITCOMPRESS CHAR(1) Y if AUDITCOMPRESS
N if not

21 PARTITIONARRAY CHAR (30) STANDARD if the type of partition
array is that used by default
EXTENDED if the type of partition
array is extended and supports
additional partitions
FORMAT2ENABLED if the type of
partition array supports both FORMAT
1 and FORMAT 2 partitions

22 DCOMPRESSTYPE CHAR(1) 1 if DCOMPRESS
2 if DCOMPRESS2

23 PRIMARYEXT2 INTEGER
UNSIGNED

Size of primary extent in units of 2 KB

24 SECONDARYEXT2 INTEGER
UNSIGNED

Size of secondary extent in units of 2
KB

25 EOF2 LARGEINT
SIGNED

Relative byte address of first unused
byte of last block in partition or file;
updated by UPDATE STATISTICS

26 FILEFORMAT CHAR(1) Format of partition:
1 if FORMAT 1
2 if FORMAT 2

* Indicates primary key

Table F-2. The FILES Table (page 2 of 2)

Column Name Data Type Description
HP NonStop SQL/MP Reference Manual—523352-013
F-28

Filesets
Filesets
A fileset is a set of objects and files specified as a Guardian name that optionally
includes these wild-card characters in the volume, subvolume, or file-id portions
of the name:

VOL matches NEWVOL, OLDVOL1, VOL45, and so forth.

Notice that a single Guardian name that includes wild-card characters can represent a
fileset that includes many files. You cannot use a wild-card in the node portion of a
Guardian name that specifies a fileset.

You can use a DEFINE to specify a fileset, but you cannot use wild-card characters in
the DEFINE name or in the file name you specify on the DEFINE. As a result, a fileset
you specify with a DEFINE always consists of a single object or file.

Many SQLCI commands allow you to use filesets or fileset lists to specify a set of
tables and files for the command. A fileset list can be a simple fileset list or a qualified
fileset list.

A simple fileset list is a list of one of more filesets in this form:

 { fileset }
 { (fileset [, fileset] ...) }

A qualified fileset list can include clauses that restrict the files in the set in various
ways. For information, see Qualified Fileset List on page Q-1.

Examples—Filesets

 This example on FILEINFO requests information about the fileset that includes all
files on subvolume \NY.$HDQTR.HR:

FILEINFO \NY.$HDQTR.HR.*;

 This PURGE command purges the fileset that includes all files on subvolume SV3
with names that end in X:

PURGE SV3.*X;

? matches any single character.
For example, TBL? matches TBL1 or TBLX but not TBL48.

* matches any 0 to 8 characters.
For example, * matches any 0 to 8-character name.
HP NonStop SQL/MP Reference Manual—523352-013
F-29

FORMAT File Attribute
FORMAT File Attribute
FORMAT is a file attribute that specifies the format of a partition. A Format 1 partition is
limited to one gigabyte. A Format 2 partition might grow to one terabyte, or the size of
a single disk volume.

If the table’s PARTITION ARRAY VALUE has been set to STANDARD or EXTENDED,
the default format is FORMAT 1. If the table’s PARTITION ARRAY VALUE has been
set to FORMAT2ENABLED, the default format is FORMAT 2.

Considerations—FORMAT

 FORMAT specifies the format for the base partition of the table or index. To specify
the format for secondary partitions, you must specify FORMAT in the PARTITION
clauses defining each partition.

 If you specify FORMAT 2 and do not use the PARTITION ARRAY clause, the
PARTITION ARRAY is set to FORMAT2ENABLED.

 Only key-sequenced tables can be Format 2 enabled.

 To create Format 2 partitions, a file’s PARTITION ARRAY VALUE must be
FORMAT2ENABLED.

FREE RESOURCES Statement
FREE RESOURCES is a DCL statement that releases locks, closes cursors, and
flushes insert/update buffers for audited and, optionally, nonaudited objects.

The exact effect of FREE RESOURCES depends on how the locks were acquired,
whether the affected objects are audited or nonaudited, and whether a transaction is in
progress, as explained later in this entry.

You can use FREE RESOURCES instead of explicit UNLOCK TABLE or CLOSE
CURSOR statements. COMMIT WORK and ROLLBACK WORK automatically perform
all the operations of FREE RESOURCES.

AUDITONLY

directs SQL to retain existing locks on nonaudited objects.

CLOSE TABLES

directs SQL to close tables. Otherwise, users or programs without access
privileges can open them.

{ FORMAT 1 | FORMAT 2 }

FREE RESOURCES [AUDITONLY] | [CLOSE TABLES]
HP NonStop SQL/MP Reference Manual—523352-013
F-30

Considerations—FREE RESOURCES
Considerations—FREE RESOURCES

 If CONTROL TABLE SEQUENTIAL INSERT/UPDATE is set to ENABLE or ON,
FREE RESOURCES also flushes the insert/update buffer for audited and
nonaudited tables.

 On audited tables, FREE RESOURCES releases locks acquired only within the
current TMF transaction using STABLE access. FREE RESOURCES releases
locks that apply only to data being read. Locks on data that has been inserted,
updated, or deleted by the current transaction are released automatically when the
transaction completes.

FREE RESOURCES does not affect a table lock on an audited table. The lock is
released when the transaction ends unless SQL acquired the lock under STABLE
access and no updates were performed.

 On nonaudited tables, unless you specify AUDITONLY, FREE RESOURCES
releases all locks acquired by DML statements with REPEATABLE access,
whether or not a TMF transaction is in progress.

You must use either FREE RESOURCES or UNLOCK TABLE to release locks on
nonaudited tables under these conditions:

 A DML statement with REPEATABLE access operates on nonaudited tables or
on views with underlying nonaudited tables.

 LOCK TABLE statements are in effect.

 A host program is returning control to a requester but holds locks on
nonaudited files because it used the AUDITONLY option on COMMIT WORK,
ROLLBACK WORK, or another FREE RESOURCES statement.

You must use FREE RESOURCES or COMMIT WORK to ensure the
insert/update buffer is flushed for nonaudited tables before you exit SQLCI or a
host program. (In programs, you must then check SQLCA for flush errors.)

 FREE RESOURCES closes all cursors on nonaudited tables or views unless you
specify the AUDITONLY option.

FREE RESOURCES closes all cursors with BROWSE access to audited tables or
views. FREE RESOURCES closes a cursor with STABLE or REPEATABLE access
to an audited table only if the FREE RESOURCES statement executes in the same
transaction as the most recent OPEN of the cursor.

Examples—FREE RESOURCES

 This example shows FREE RESOURCES used to release locks acquired by
SQLCI on a nonaudited file.

Suppose that JOB is a nonaudited table and AUTOWORK AUDITONLY is ON.
Because the INSERT uses REPEATABLE access, locks are not released when the
HP NonStop SQL/MP Reference Manual—523352-013
F-31

Functions
SQLCI-defined transaction ends. The FREE RESOURCES statement (without
AUDITONLY) releases the locks.

>> VOLUME $VOL1.PERSNL;
>> INSERT INTO JOB VALUES (650, "ADMIN ASSISTANT")
+> REPEATABLE ACCESS;
-- 1 row(s) inserted.
 ...
>> FREE RESOURCES;
-- SQL operation complete.

 This example shows FREE RESOURCES in a host program where it also
deallocates buffer space used for cursors:

EXEC SQL OPEN CURSOR1;
 ...
EXEC SQL FETCH CURSOR1;
 ...
EXEC SQL DELETE FROM...
 WHERE CURRENT OF CURSOR1;
 ...
EXEC SQL FREE RESOURCES;

Functions
This table summarizes the functions in NonStop SQL/MP:

AVG Function Returns the average of a set of numbers

CAST Function Associates a data type with a parameter

COMPUTE_TIMESTAMP
Function

Returns a Julian timestamp for a specified date and time

CONVERTTIMESTAMP
Function

Converts a Julian timestamp to a DATETIME value

COUNT Function Counts the rows returned from a query or the distinct
values in a column

CURRENT Function Returns the current date and time

CURRENT_TIMESTAMP
Function

Returns a Julian timestamp for the current date and time

DATEFORMAT Function Formats a date-time value

DAYOFWEEK Function Returns an integer that represents a day of the week

EXTEND Function Adjusts the range of fields for a data-time value

JULIANTIMESTAMP
Function

Converts a date-time value to a Julian timestamp

LINE_NUMBER Function Returns the line number of the current detail line in a
report

MAX Function Returns a maximum value for a column or set of values
HP NonStop SQL/MP Reference Manual—523352-013
F-32

FUP Command
For more information, see the entry for a specific function.

FUP Command
FUP is an SQLCI command that executes File Utility Program (FUP) commands. FUP
commands perform operations such as creating, purging, and displaying files. (For a
complete description of FUP commands, see the File Utility Program (FUP) Reference
Manual.)

run-option-list

is one or more run options of the TACL RUN command, described in the TACL
Reference Manual. If you do not specify IN in-file or OUT out-file, the
SQLCI IN file and OUT file are used. If the current SQLCI OUT file is a disk file,
you must close the file by entering OUT before you use the FUP command. SQLCI
cannot redirect FUP output to a disk file.

fup-command-line

is a FUP command up to 132 characters long. To continue a command on the next
line, press Return. The SQLCI command continuation prompt (+>) appears.

If you specify fup-command-line, FUP returns you to SQLCI after the command
finishes. If you omit fup-command-line, FUP prompts you for each command and
returns you to SQLCI when you enter the EXIT command.

FUP Commands and SQL Objects

FUP commands work on SQL-compiled object program files but generally do not work
on other SQL objects. Some SQLCI commands perform the same or similar operations
on SQL objects. For example, you can use FILEINFO or FUP INFO with either SQL
objects or Enscribe files, but you must use SQLCI's COPY, DUP, LOAD, PURGE, or
SECURE to operate on SQL objects.

Table F-3 on page 34 lists the FUP commands that perform operations on files and
indicates whether the commands work with objects other than SQL object programs.
For FUP commands that do not work with SQL objects, Table F-3 on page F-34 lists
the SQL command or SQL utility that performs the equivalent function if one exists.

MIN Function Returns a minimum value for a column or set of values

PAGE_NUMBER
Function

Returns the page number of the current page in a report

SETSCALE Function Specifies the scale of a host variable

SUM Function Computes the sum of a set of numbers

UPSHIFT Function Upshifts single-byte characters

FUP [/run-option-list/] [fup-command-line] ;
HP NonStop SQL/MP Reference Manual—523352-013
F-33

FUP Commands and SQL Objects
Table F-3. FUP Commands and SQL Objects

FUP Command
Works on
SQL Objects Equivalent SQL Command or Utility

FUP ALLOCATE No ALTER CATALOG, ALTER INDEX,
ALTER PROGRAM, ALTER TABLE,
ALTER VIEW

FUP ALTER No ALTER CATALOG, ALTER INDEX,
ALTER PROGRAM, ALTER TABLE,
ALTER VIEW

FUP BUILDKEYRECORDS No

FUP CHECKSUM Yes
(only nonaudited)

FUP COPY No COPY utility

FUP CREATE No CREATE TABLE, CREATE INDEX

FUP DEALLOCATE No ALTER CATALOG, ALTER INDEX,
ALTER PROGRAM, ALTER TABLE,
ALTER VIEW

FUP DUP No DUP utility

FUP FILES Yes

FUP GIVE No ALTER CATALOG, ALTER INDEX,
ALTER PROGRAM, ALTER TABLE,
ALTER VIEW, SECURE

FUP INFO Yes

FUP LICENSE Yes

FUP LISTLOCKS Yes

FUP LISTOPENS Yes
(programs only)

FUP LOAD No LOAD

FUP LOADALTFILE No LOAD

FUP PURGE Yes
(programs only)

DROP, PURGE

FUP PURGEDATA No PURGEDATA

FUP RELOAD Yes

FUP RENAME No

FUP REVOKE No

FUP SECURE No ALTER CATALOG, ALTER INDEX,
ALTER PROGRAM, ALTER TABLE,
ALTER VIEW, SECURE
HP NonStop SQL/MP Reference Manual—523352-013
F-34

Considerations—FUP
You can also use ALLOW, CTRL-Y, EXIT, FC, HELP, RESET, SET, SHOW, SYSTEM,
and VOLUME to perform operations on files. When you return to SQLCI, the default
system and volume are those that were in effect when you invoked FUP.

If a table or view is encountered during the processing of a FUP command that does
not support SQL objects, the table or view is skipped and a warning message is
issued.

Considerations—FUP

 If you use FUP DUP to duplicate an object program, the SQL SENSITIVE and SQL
VALID flags in the file label of the new file are turned off, and you receive a warning
message that the file must be compiled by SQL.

 If you apply the FUP LICENSE command to an SQL object program file, the file is
licensed. This method is the only way to license an SQL object program file.

 You can display information about Enscribe files and SQL objects by using either
the FUP INFO command or the SQL FILEINFO utility. The only significant
difference between the two utilities is that the fileset-list parameter of FUP
INFO does not support the FROM CATALOG option and does not handle wild-card
characters in the same way as the qualified-fileset-list parameter of the
SQL FILEINFO utility.

Examples—FUP

 This example displays the files on the current subvolume:

>> FUP FILES;
$VOL1.DFLT
A1 A2 A3 A4

 This example lists processes that currently have files and objects open on
subvolume ZYQ00001:

>> FUP LISTOPENS ZYQ00001.*;

$OSS000.ZYQ00001.Z00000T6
 PID MODE USERID SD MYTERM PROGRAM FILE NAME
000,00,0000 W -S 104,2 00 $ZTN.#PTY03 $VOL1.S.PROG

$OSS000.ZYQ00001.Z00005NM
 PID MODE USERID SD MYTERM PROGRAM FILE NAME
175,02,0111 R -S 104,11 01 $ST.#PTY04
$COBOL.COBOL.COBOL
>>

 This example lists detailed information about an OSS file:

>> FUP INFO $OSS001.ZYQ00002.Z00000A1,DETAIL

$OSS001.ZYQ00002.Z00000A1
 OSS
HP NonStop SQL/MP Reference Manual—523352-013
F-35

Examples—FUP
 PATH: /lt2/br/src/csrc/lex.o
 OWNER 104,2
 SECURITY: -rw-rw-rw-
 CREATION DATE: 7 Feb 1995, 13:55
 ACCESS TIME: 7 Feb 1995, 13:55
 EOF 286084
HP NonStop SQL/MP Reference Manual—523352-013
F-36

G
Generalized Owner

A generalized owner of an SQL object or Guardian file is any user ID that has
ownership privileges for the file.

On the node where the file is located, the generalized owner includes the user ID that
owns the file, the group manager of the group that includes that user ID, and the super
ID. If the owner can purge the file from another node in the network (as specified with
the fourth character of the security string), the generalized owner also includes the
same user ID on other nodes, the group manager on other nodes, and the super ID on
other nodes.

For more information, see Security on page S-11.

GET CATALOG OF SYSTEM Statement
GET CATALOG OF SYSTEM is a DSL statement that returns the name of a local or
remote system catalog.

node

is the name of a node. The default is the local node.

INTO :var

(static SQL programs only) specifies a host variable in which to return the system
catalog name.

Considerations—GET CATALOG OF SYSTEM

In host language programs, GET CATALOG OF SYSTEM returns the fully qualified
system catalog name as 25 characters, left-justified, and padded with blanks. The
variable to receive the name must be compatible with the SQL data type CHAR(25).

For static SQL, specify the variable in the INTO clause of GET CATALOG. For dynamic
SQL, specify the variable in the RETURNING clause of the EXECUTE or specify an
output SQLDA in the RETURNING USING DESCRIPTOR clause of the EXECUTE.

GET CATALOG OF SYSTEM also sets SQLCODE to indicate status and fills in the
SQLCA. GET CATALOG OF SYSTEM has no EXPLAIN output.

GET CATALOG OF SYSTEM [\node] [INTO :var]
HP NonStop SQL/MP Reference Manual—523352-013
G-1

Examples—GET CATALOG OF SYSTEM
Examples—GET CATALOG OF SYSTEM

 This SQLCI example shows how GET CATALOG OF SYSTEM returns a catalog
name in an SQLCI session:

>>GET CATALOG OF SYSTEM \SYSA;
CATALOG: \SYSA.$SYSTEM.SQL
--- SQL operation complete.

 This static SQL example from a C, Pascal, or TAL program retrieves the system
catalog name for \SYSA and stores it in hostvar1:

EXEC SQL GET CATALOG OF SYSTEM \SYSA INTO :hostvar1;

 This static SQL example from a COBOL program retrieves the system catalog
name for the local system and stores it in HOSTVAR2:

EXEC SQL GET CATALOG OF SYSTEM INTO :HOSTVAR2 END-EXEC.

 This example from a COBOL program use dynamic SQL to retrieve the system
catalog name for \SYSA and store it in a host variable, HOSTVAR3:

MOVE "GET CATALOG OF SYSTEM \SYSA " TO STRING1.
EXEC SQL PREPARE S1 FROM :STRING1 END-EXEC.
EXEC SQL EXECUTE S1 RETURNING :HOSTVAR3 END-EXEC.

 This example from a COBOL program use dynamic SQL to retrieve the system
catalog name for \SYSA and store it in MYSQLDA, an output SQLDA:

MOVE "GET CATALOG OF SYSTEM \SYSA " TO STRING2.
EXEC SQL PREPARE S2 FROM :STRING2 END-EXEC.
EXEC SQL EXECUTE S2 RETURNING USING DESCRIPTOR :MYSQLDA
 END-EXEC.

GET VERSION Statement
GET VERSION is a DSL statement that returns the version of an SQL catalog or object
or the version of the SQL/MP software on a node.

CATALOG, COLLATION, INDEX, TABLE, VIEW, or SYSTEM

specifies the type of item for which to return the version.

name

is the name of the item for which to return the version.

 { { CATALOG } s }
 { { COLLATION } }
 { { INDEX } name }
GET VERSION OF { { TABLE } } [INTO :var]
 { { VIEW } }
 { }
 { SYSTEM [name] }
HP NonStop SQL/MP Reference Manual—523352-013
G-2

Consideration—GET VERSION
For type CATALOG, name must be a catalog name or a DEFINE of class
CATALOG. For type SYSTEM, name is optional (the default is the local node) but
must be a node name with a leading “\” if specified. For all other types name must
be a Guardian name (or an equivalent DEFINE).

INTO :var

(static SQL programs only) specifies a host variable in which to return the version.

Consideration—GET VERSION

In host language programs, GET VERSION returns an integer value. The variable to
receive the value must be compatible with the SQL data type UNSIGNED SMALLINT.

For static SQL, specify the variable in the INTO clause of GET VERSION. For dynamic
SQL, specify the variable in the RETURNING clause of the EXECUTE or specify an
output SQLDA in the RETURNING USING DESCRIPTOR clause of the EXECUTE.
(You cannot use GET VERSION with EXECUTE IMMEDIATE.)

GET VERSION also sets SQLCODE to report status and fills in the SQLCA. GET
VERSION has no EXPLAIN output.

Examples—GET VERSION

 This SQLCI example retrieves the version of table mytable:

GET VERSION OF TABLE mytable;
VERSION: 1
--- SQL operation complete.

 This SQLCI example retrieves the version of catalog mycat:

GET VERSION OF CATALOG mycat;
VERSION: 300
--- SQL operation complete.

 This SQLCI statement retrieves the version of index myindx:

GET VERSION OF INDEX myindx;
VERSION: 315
---SQL operation complete.

 This static SQL statement from a C, Pascal, or TAL program retrieves the version
of table mytable and stores it in hostvar1:

EXEC SQL GET VERSION OF TABLE mytable INTO :hostvar1;

 This static SQL statement from a COBOL program retrieves the version of index
IDX2 and stores it in hostvar2:

EXEC SQL GET VERSION OF INDEX idx2 INTO :hostvar2;
HP NonStop SQL/MP Reference Manual—523352-013
G-3

GET VERSION OF PROGRAM Statement
 This COBOL example uses dynamic SQL to retrieve the version of catalog
\sysa.$vol1.mycat and store it in an SQLDA:

MOVE "GET VERSION OF CATALOG \sysa.$vol1.mycat" TO string1.
EXEC SQL PREPARE s1 FROM :string1 END-EXEC.
EXEC SQL EXECUTE s1
 RETURNING USING DESCRIPTOR :mysqlda END-EXEC.

GET VERSION OF PROGRAM Statement
GET VERSION OF PROGRAM is a DSL statement that returns the program catalog
version (PCV), program format version (PFV), or host object SQL version (HOSV) of
an SQL program that is registered in an SQL catalog.

{ CATALOG | FORMAT | HOST OBJECT }

specifies the type of program version to return: PCV (CATALOG), PFV (FORMAT),
or HOSV (HOST OBJECT).

program

is the Guardian name of the program for which to return a version. (If the program
is an SQL program in an OSS file, program must be the Guardian-format ZYQ
name of the program file, not the pathname.)

For a CATALOG or FORMAT version, program must be an existing program that
has been SQL-compiled. For a HOST OBJECT version, program must be an
existing program that has been host language-compiled (and might have been
SQL-compiled).

INTO :var

(static SQL programs only) specifies a host variable in which to return the version
number.

Consideration—GET VERSION OF PROGRAM

In host language programs, GET VERSION OF PROGRAM returns an integer value.
The variable to receive the value must be compatible with the SQL data type
UNSIGNED SMALLINT.

For static SQL, specify the variable in the INTO clause of GET VERSION OF
PROGRAM. For dynamic SQL, specify the variable in the RETURNING clause of the
EXECUTE or specify an output SQLDA in the RETURNING USING DESCRIPTOR
clause of the EXECUTE. (You cannot use GET VERSION OF PROGRAM with
EXECUTE IMMEDIATE.)

GET { CATALOG | FORMAT | HOST OBJECT }
 VERSION OF PROGRAM program [INTO :var]
HP NonStop SQL/MP Reference Manual—523352-013
G-4

Examples—GET VERSION OF PROGRAM
GET VERSION OF PROGRAM also sets SQLCODE to report status and fills in the
SQLCA. GET VERSION OF PROGRAM has no EXPLAIN output.

Examples—GET VERSION OF PROGRAM

 This SQLCI example retrieves the PCV, PFV, and HOSV of program MYPROG:

>>GET CATALOG VERSION OF PROGRAM myprog;
VERSION: 315
--- SQL operation complete.
>>GET FORMAT VERSION OF PROGRAM myprog;
VERSION: 315
--- SQL operation complete.
>>GET HOST OBJECT VERSION OF PROGRAM myprog;
VERSION: 315
--- SQL operation complete.
>>

 This static SQL statement from a C, Pascal, or TAL program retrieves the PCV of
program MYPROG and stores it in hostvar1:

EXEC SQL GET CATALOG VERSION OF PROGRAM myprog
 INTO :hostvar1;

 This static SQL statement from a COBOL program retrieves the HOSV of the
program MYPROG and stores it in HOSTVAR2:

EXEC SQL GET HOST OBJECT VERSION OF PROGRAM MYPROG
 INTO :HOSTVAR2 END-EXEC.

 This COBOL example uses dynamic SQL to retrieve the PCV of the program
MYPROG and store it in HOSTVAR3:

MOVE "GET CATALOG VERSION OF PROGRAM MYPROG " TO STRING1.
EXEC SQL PREPARE s1 FROM :STRING1 END-EXEC.
EXEC SQL EXECUTE s1 RETURNING :HOSTVAR3 END-EXEC.

 This C example uses dynamic SQL to retrieve the HOSV of the program MYPROG
and store it in an output SQLDA:

string2 = "GET HOST OBJECT VERSION OF PROGRAM MYPROG ";
EXEC SQL PREPARE s2 FROM :string2;
EXEC SQL EXECUTE s2 RETURNING USING DESCRIPTOR :mysqlda;
HP NonStop SQL/MP Reference Manual—523352-013
G-5

GOAWAY Command
GOAWAY Command
GOAWAY is a TACL utility program that allows a user with super ID authority to delete
Guardian SQL files or shadow labels that cannot be removed with other commands or
utilities.

You execute GOAWAY from TACL with this command:

/IN cmdfile/

specifies an EDIT file that lists SQL objects, programs, or shadow labels to delete.
List one item per line, using syntax described for the filename [:S] option.

filename[:S]

is the name (or equivalent DEFINE) of an SQL object or program to delete, or the
name of a shadow label to delete.

The optional :S suffix specifies a shadow label.

If SMF is installed on your node, filename [:S] must not specify an object,
program, or shadow label on a $*.ZYS*. subvolume.

Considerations—GOAWAY

 The GOAWAY utility deletes files or file labels but does not delete their
corresponding catalog entries.

 If you enter GOAWAY without options, GOAWAY prints instructions and prompts
for filename [:S] entries.

 GOAWAY must be licensed and can be used only by the super ID.

 Do not use the GOAWAY utility as a substitute for DROP, PURGE, or CLEANUP
operations. Misuse of the GOAWAY utility can corrupt files.

Examples—GOAWAY

 This example deletes the table mytable:

42> GOAWAY mytable

 This example deletes the shadow label indexb:

43> GOAWAY indexb:S

 GOAWAY [/IN cmdfile/] [filename[:S]] ;
HP NonStop SQL/MP Reference Manual—523352-013
G-6

Group Manager
Group Manager
A group manager is a Guardian user ID that has user number 255. By convention, a
group manager also has the user name MANAGER, but this is not required.

A group manager can act as the owner of any object or file on the local node owned by
a member of the Guardian security group to which the group manager belongs (group
number 32 or group name DP in the examples just listed). A group manager can also
act as the owner of an object or file owned by a member of the group on a remote
node, provided the file is secured so that the owner has purge authority on remote
nodes. The group manager is said to be a generalized owner of such objects and
files.

For more information, see Security on page S-11.

Guardian Names
A Guardian name is a form of name used for disk files and other entities on the
Guardian operating system.

NonStop SQL/MP uses Guardian names as names for SQL tables, views, indexes,
partitions, collations, and programs. NonStop SQL/MP uses a portion of a Guardian
name (the subvolume name) as an SQL catalog name.

\node

is the name of a node on a system. The name must be preceded by a backslash
and consist of a letter followed by 1 to 6 letters or digits.

$volume

is the name of a disk volume. The name must be preceded by a dollar sign and
consist of a letter followed by 1 to 7 letters or digits.

subvol

is a subvolume name that consists of a letter followed by 1 to 7 letters or digits. A
subvolume name, optionally preceded by a node and volume name but without this
file-id, can be an SQL catalog name.

file-id

is the name of a Guardian disk file or the name of a SQL/MP table, view, index,
partition, collation, or program. The name consists of a letter followed by 1 to 7

32,255 Group manager user ID number

DP.MANAGER Typical group manager user ID
name

[[\node.] [$volume.] subvol.] file-id
HP NonStop SQL/MP Reference Manual—523352-013
G-7

Considerations—Guardian Names
letters or digits. This portion of the name is sometimes called the “simple file
name.”

Considerations—Guardian Names

If you do not fully qualify a Guardian name, SQL uses the current default node,
volume, and subvolume names to expand the name as needed at name-resolution
time. You can change the current defaults in effect for a program by changing the
defaults in the process that executes the program or by setting the =_DEFAULTS
DEFINE in the program. You can change the current defaults in SQLCI with the
VOLUME or CATALOG commands or by setting the =_DEFAULTS DEFINE.

The time at which name resolution occurs depends on the statement in which a name
is used and whether a CONTROL QUERY BIND NAMES AT EXECUTION directive
was in effect at the time the statement was compiled or prepared (compiled with the
PREPARE statement). For more information, see Name Resolution on page N-2 or
CONTROL QUERY Directive on page C-74.

Example—Guardian Names

These are all Guardian names:

ORDERS

SALES.ORDERS

$VOL1.SALES.ORDERS

\SYS1.$VOL1.SALES.ORDER
HP NonStop SQL/MP Reference Manual—523352-013
G-8

H
HEADING Clause

HEADING is a clause in the ALTER TABLE, ALTER VIEW, CREATE TABLE, and
CREATE VIEW statements that specifies a default heading for a column.

HEADING string

specifies a default heading for a column, expressed as a string of single-byte or
multi-byte characters enclosed in single or double quotation marks. string can be
0 to 132 bytes long.

string cannot include the character string specifier normally allowed on a string
literal.

To indicate line breaks in a heading, use the new-line character. The default new-
line character is a slash (/). You can specify up to 50 lines in a single heading.

NO HEADING

specifies that no default heading should be printed for the column.

Consideration—HEADING

If you do not specify the HEADING clause, SQL uses the column name when printing
or displaying the column.

Example—HEADING

This ALTER TABLE statement specifies Customer as the default heading for column
CUSTOMER_NAME in table CUST. The new heading replaces any existing heading
for the column.

ALTER TABLE CUST COLUMN CUSTOMER_NAME HEADING "Customer"

HEADING string | NO HEADING
HP NonStop SQL/MP Reference Manual—523352-013
H-1

HEADINGS Option
HEADINGS Option
HEADINGS is an option of the report writer SET STYLE command. HEADINGS
activates or suppresses the printing of headings in the current report and in
subsequent reports until you reset the HEADINGS option or end the SQLCI session.

Setting HEADINGS OFF is the same as specifying NOHEAD for every print item in
your report.

For information about the way report writer determines headings, see the
Considerations subsection in DETAIL Command on page D-47.

Example—HEADINGS

To omit headings from reports, enter:

>> SET STYLE HEADINGS OFF;

HELP Command
HELP is an SQLCI command that displays information about SQL statements, SQLCI
commands, and other SQL-related topics.

help-topic

is the topic you want information about.

SYNTAX, DETAIL, or EXAMPLE

specifies the type of information you want:

HEADINGS { ON }
 { OFF }

The default is ON.

 { ALL }
 { }
 HELP { [, SYNTAX] } ;
 { help-topic [, DETAIL] }
 { [, EXAMPLE] }

SYNTAX displays the syntax of a statement, command, language element,
compiler directive, or a summary of a topic.

DETAIL displays all available information about the topic (syntax or
summary, examples, and any detailed text that is available).

EXAMPLE displays examples of using the statement, command, language
element, or compiler directive. (Available for all statements and
commands, but not for all topics.)
HP NonStop SQL/MP Reference Manual—523352-013
H-2

Considerations—HELP
The default is SYNTAX.

Considerations—HELP

 HELP topics correspond to the main words of each major entry in the SQL/MP
Reference Manual. For example, HELP is available for the topic CREATE TABLE
(not CREATE or CREATE TABLE statement).

In some cases, HELP contains additional “pointer entries” that direct you to
available topics. For example, if you enter HELP CREATE, SQLCI responds by
listing available topics that begin with the word “create”:

Enter: HELP create catalog
 create constraint
 create collation
 create index
 create system catalog
 create table
 create view

 If the entire help text for a topic fits on the screen, SQLCI displays the text and
returns you to the standard SQLCI prompt. If the help text is too long for one
screen, SQLCI displays the first part of the text followed by a continuation prompt.
SQLCI displays information at the bottom of each screen of text that tells you what
to press to display more detail or to return to the standard prompt.

Examples—HELP

 This command displays the available HELP topics:

HELP ALL;

 This commands display information about the CREATE TABLE statement. The
information displayed by the third command includes all the information displayed
by the first two commands:

HELP CREATE TABLE;
HELP CREATE TABLE, EXAMPLE;
HELP CREATE TABLE, DETAIL;
HP NonStop SQL/MP Reference Manual—523352-013
H-3

HELP TEXT Statement
HELP TEXT Statement
HELP TEXT is a DDL statement that specifies help text for a column of a table or view.

column

is the name of a column with which to associate help text.

name

is the name of a table or view that includes the column.

text-line

is a line of help text in the form of a string of single-byte or multibyte characters
enclosed in single or double quotation marks. The string can be 0 to 132 bytes
long, but SQL issues a warning if it contains more than 77 bytes.

The set of strings you specify replaces any existing help text for the column. To
delete help text, specify a null string (“”).

Consideration—HELP TEXT

Only one DDL statement can operate on a given SQL object (or partition of an SQL
object) at a time. An error occurs if you attempt to execute a HELP TEXT statement
while another process is executing a DDL operation on the same object. The specific
error depends on the DDL operation involved and the phase of the operation at which
the conflict occurs. For information, see DDL (Data Definition Language) Statements
on page D-20.

Example—HELP TEXT

This example adds help text for the EMPNAME column of the EMP table:

HELP TEXT FOR COLUMN EMPNAME ON EMP IS
 "NAME OF EMPLOYEE",
 "THE FORMAT IS LAST-NAME, FIRST-NAME, MI";

HELP TEXT FOR COLUMN column ON { name }

 IS text-line [, text-line] ...
HP NonStop SQL/MP Reference Manual—523352-013
H-4

HISTORY Command
HISTORY Command
HISTORY is an SQLCI command that displays the commands or statements most
recently entered during the SQLCI session. HISTORY identifies each command by a
number that you can use with the FC command to reexecute or edit the command.
(HISTORY is similar to the TACL command HISTORY.)

The default is 10.

number

is the number of commands to display.

The history buffer contains at the most 25 commands. You can use the FC
command to edit and reexecute a command in the history buffer, or use the
exclamation point command (!) to reexecute a command without modifying it.

Example—HISTORY

This command displays the last five commands or statements entered during the
SQLCI session:

>> HISTORY 5;
4> SHOW PREPARED *;
5> VOLUME PERSNL;
6> ENV;
7> LOG;
8> HISTORY 5;

Host Identifiers
Host identifiers are names used in host language programs to identify data items,
structures, functions, or labels declared in the programs.

In an SQL statement or directive, a host identifier is always preceded by a colon (:), but
other rules for host identifiers depend on the programming language. For information
about the rules for host identifiers in a specific language, see the SQL/MP
programming manual for the host language you use.

 HISTORY [number] ;
HP NonStop SQL/MP Reference Manual—523352-013
H-5

Host Programs
Host Programs
A host program or host language program is a program that contains both host-
language statements and embedded SQL statements.

You can write SQL/MP host programs in C, COBOL, Pascal, or TAL. For more
information, see one of these manuals:

SQL/MP Programming Manual for C

SQL/MP Programming Manual for COBOL

SQL Programming Manual for Pascal

SQL Programming Manual for TAL

C programs can run in the Guardian or OSS environments; other programs run only in
the Guardian environment.

Host Variables
Host variables are data items declared in a host program and used in both host
language statements and SQL statements. They provide for communication between
SQL and the host language.

A host variable can be any valid host -language variable that has a corresponding SQL
data type. You can include host variables in many SQL statements and in SQL
expressions. The syntax for a host variable that appears in an SQL statement follows:

host-identifier

is the name of the host variable as declared in the host program; host-
identifier must conform to the naming rules of the host language.

[INDICATOR]:indicator-host-identifier

specifies an indicator variable for handling null values returned to the host variable
or inserting null values into the database through the host variable. For more
information, see Indicator Variables and Indicator Parameters on page I-11.

:host-identifier[[INDICATOR]:indicator-host-identifier]

 [TYPE AS { DATETIME [start-dt TO] end-dt }]
 [{ }]
 [{ DATE | TIME | TIMESTAMP }]
 [{ }]
 [{ INTERVAL start-dt }]
 [{ [(start-field-precision)] }]
 [{ [TO end-dt] }]
HP NonStop SQL/MP Reference Manual—523352-013
H-6

Host Variables
TYPE AS

indicates that values in the host variable have a date-time or INTERVAL data type.
(SQL interprets such values as character values unless you specify TYPE AS.)

For more information about declaring and using host variables, see the SQL/MP
programming manual for your host language.
HP NonStop SQL/MP Reference Manual—523352-013
H-7

Host Variables
HP NonStop SQL/MP Reference Manual—523352-013
H-8

I
ICOMPRESS File Attribute

ICOMPRESS is a file attribute that controls key compression in index blocks.
ICOMPRESS applies only to key-sequenced tables and indexes.

The table default is NO ICOMPRESS.

The index default is the table value at index creation.

Considerations—ICOMPRESS

 Occasionally, the use of ICOMPRESS can reduce the number of index levels.
Reducing the number of index levels improves performance.

You can check the number of index levels by looking at the INDEXLEVELS column
of the INDEXES catalog table. (ALTER INDEX does not update the INDEXLEVELS
column but UPDATE STATISTICS does.) If ICOMPRESS does not reduce index
levels, it lowers performance but saves disk space.

 The disk process does a sequential scan of all indexes in the block, beginning at
the start of the block. This function is similar to DCOMPRESS; savings result when
the index contains many like values.

 Relative and entry-sequenced tables always have the NO ICOMPRESS attribute,
but index block compression has no meaning for them.

IF/THEN/ELSE Clause
IF/THEN/ELSE is an SQLCI report writer clause that specifies a condition for printing
one or the other of two print lists. It works in the BREAK FOOTING, BREAK TITLE,
DETAIL, PAGE FOOTING, PAGE TITLE, REPORT FOOTING, and REPORT TITLE
commands.

You can nest IF/THEN/ELSE clauses.

cond-expr

is a conditional expression that determines whether the THEN clause or the ELSE
clause contains the list to print.

The conditional expression has the same form as an SQL search condition, except
that it cannot include subqueries. It can include any form of column name (for
example, COL 3 > 5 or EMPNUM = 228). Numeric expressions within the

{ ICOMPRESS | NO ICOMPRESS }

IF cond-expr THEN (print-list) [ELSE (print-list)]
HP NonStop SQL/MP Reference Manual—523352-013
I-1

Considerations—IF/THEN/ELSE
conditional expression cannot use the AVG, COUNT, MAX, MIN, or SUM functions,
but can include column identifiers and report writer functions. (For more
information, see Search Conditions on page S-5 or Expressions on page E-21.)

THEN (print-list)

specifies what to print if the condition is true.

ELSE (print-list)

specifies what to print if the condition is false. If you omit the ELSE clause, report
writer prints blanks when the condition is false.

print-list

is a list of items to print and optional formats for the items. It is the same as
print-list for the DETAIL command, except that the HEADING, NOHEAD,
NAME, SKIP, PAGE, and NEED clauses are not allowed. For more information,
see DETAIL Command on page D-47.

Considerations—IF/THEN/ELSE

 If you want a heading for an IF/THEN/ELSE print list, you must specify one with the
HEADING clause.

 The space required to print the result of an IF/THEN/ELSE is the length of the
longest of the two print lists. The report writer pads the shorter list with blanks to
the length of the longer list.

 You cannot subtotal or total the values in an IF/THEN/ELSE column, because
these columns contain character values. For a technique you can use to print
conditional values in a column that can be totaled and subtotaled, see the SQL/MP
Report Writer Guide.

Examples—IF/THEN/ELSE

 Use IF/THEN/ELSE to flag an invalid job code:

S> DETAIL EMPNUM, LAST_NAME, IF JOBCODE > 0 THEN (JOBCODE)
+> ELSE ("***");

 Use IF/THEN/ELSE to print a default value as blanks:

S> DETAIL ORDERNUM,
+> IF DELIV_DATE <> 0 THEN (DELIV_DATE AS DATE *);

 Use IF/THEN/ELSE to convert values to text:

S> DETAIL CUSTNUM, CUSTNAME,
+> IF CREDIT = "A1" THEN ("EXCELLENT") ELSE
+> (IF CREDIT = "B1" THEN ("GOOD") ELSE
+> (IF CREDIT = "C1" THEN ("FAIR")))
+> HEADING "CREDIT RATING";
HP NonStop SQL/MP Reference Manual—523352-013
I-2

IN Predicate
IN Predicate
IN is a predicate that determines if a value is equal to any of the values in a list or
collection of values.

subquery

is a subquery that has a result table of one column. For more information, see
Subqueries on page S-82.

expression1 or expression

is an expression. For more information, see Expressions on page E-21.

The data type (including the character set for a character data type) of
expression1 must be compatible with the data type of the value returned by the
subquery or the results of all expressions in the list.

Rules for comparisons of string and numeric values are the same as for
comparison predicates. For more information, see Comparison Predicate on
page C-58.

The maximum number of expressions you can specify in expression-list is
410.

Considerations—IN

 The IN predicate is true if either of this is true:

 The first expression is equal to any expression in the list or to a value selected
by the subquery.

 The subquery returns no values.

The NOT operator reverses the value obtained from evaluating a search
condition. For example, if IN is true, NOT IN is false, and so on.

 The IN predicate evaluates to null if either of this is true:

 expression1 evaluates to null.

 The predicate is not true for any value returned by the subquery and the
subquery returns at least one null value

expression1 [NOT] IN { (subquery) }
 { (expression-list) }

expression-list is:

 expression [, expression] ...
HP NonStop SQL/MP Reference Manual—523352-013
I-3

Examples—IN
Examples—IN

 This example finds those items whose number is 39, 337, or 452:

EMPNUM IN (39, 337, 452)

 The example finds those items whose part number is not in the PARTLOC table:

PARTNUM NOT IN (SELECT PARTNUM
 FROM INVENT.PARTLOC)

INCLUDE SQLCA Directive
INCLUDE SQLCA is a host program directive that declares the SQL communication
area (SQLCA) in a host program.

The SQLCA is a status-checking area for host programs. SQL clears and reinitializes
the SQLCA before each SQL statement executes. After the statement executes, SQL
stores information about the success or failure of the statement in the SQLCA,
including error and warning codes and messages.

For more information about the contents and usage of the SQLCA, see the SQL/MP
programming manual for your host language.

Consideration—INCLUDE SQLCA

By default, INCLUDE SQLCA declares a Version 2 SQLCA. To request a different
version, use INCLUDE STRUCTURES before INCLUDE SQLCA.

Example—INCLUDE SQLCA

This directives declare a version 315 SQLCA in a program:

EXEC SQL INCLUDE STRUCTURES ALL VERSION 315;
EXEC SQL INCLUDE SQLCA;

INCLUDE SQLDA Directive
INCLUDE SQLDA is a dynamic SQL directive that declares an SQL descriptor area
(SQLDA) and optional names and collation buffers in a host program that uses
dynamic SQL.

SQL uses the SQLDA with the dynamic SQL statements DESCRIBE and FETCH (to
pass information about output columns) and DESCRIBE INPUT and EXECUTE (to
pass information about input parameters). SQL uses the names buffer and collation
buffer—which you can declare separately or with INCLUDE SQLDA—to pass column
names and collation information returned by DESCRIBE and to pass input parameter
names returned by DESCRIBE INPUT.

INCLUDE SQLCA
HP NonStop SQL/MP Reference Manual—523352-013
I-4

INCLUDE SQLDA Directive
For more information about the contents and usage of SQLDA, see the SQL/MP
programming manual for your host language.

sqlda-name

is a host identifier that is the name for the SQLDA.

sqlvar-count

is an integer that specifies the maximum number of input parameters (including
indicator parameters) or output columns to be described in the SQLDA at one time.
The default is 1.

(PREPARE returns the number of input or output parameters in a statement to the
INPUT-NUM or OUTPUT-NUM fields of the SQLSA when it compiles the
statement. You can use these values for the corresponding SQLDA
sqlvar-count.)

names-buffer, name-length

declares a names buffer.

names-buffer is the host variable name that is the name for the names buffer.

name-length is the maximum number of bytes in the longest column or
parameter name that is returned to the buffer.

{ RELEASE1 | RELEASE2 }

is an obsolete clause for specifying that the version of the SQLDA should be 1
(RELEASE1) or 2 (RELEASE2). You cannot use this clause if you also use
INCLUDE STRUCTURES. NonStop SQL/MP will not support this clause in the
future, so you should use INCLUDE STRUCTURES to specify the version instead.

CPRULES collation-buffer, collation-size

declares a collation buffer.

collation-buffer is the host variable name that is the name for the collation
buffer.

collation-size is the maximum number of bytes in the largest collation that is
returned to the buffer.

INCLUDE SQLDA (sqlda-name [, sqlvar-count]
 [, names-buffer, name-length]
 [, { RELEASE1 | RELEASE2 }]
 [, CPRULES collation-buffer, collation-size])
HP NonStop SQL/MP Reference Manual—523352-013
I-5

Consideration—INCLUDE SQLDA
Consideration—INCLUDE SQLDA

By default, INCLUDE SQLDA declares a version 2 SQLDA. To request a different
version, use INCLUDE STRUCTURES before INCLUDE SQLDA.

The CPRULES clause can be used with SQL/MP versions 300 or later.

Example—INCLUDE SQLDA

This directives declare a version 310 SQLDA in a program:

EXEC SQL INCLUDE STRUCTURES ALL VERSION 310;
EXEC SQL INCLUDE SQLDA;

INCLUDE SQLSA Directive
INCLUDE SQLSA is a host program directive that declares the SQL statistics area
(SQLSA) in a host program.

The SQLSA is an area in which SQL returns statistics about the execution or
preparation of SQL statements. SQL clears the SQLSA before executing each
statement, then returns statistics after the execution of a DELETE, FETCH, INSERT,
OPEN, PREPARE, SELECT, or UPDATE statement. For PREPARE, statistics include
information about input parameters and output columns associated with the dynamic
SQL statement that was prepared.

For more information about the contents and usage of the SQLSA, see the SQL/MP
programming manual for your host language.

Consideration—INCLUDE SQLSA

By default, INCLUDE SQLSA declares a version 2 SQLSA. To request a different
version, use INCLUDE STRUCTURES before INCLUDE SQLSA.

Example—INCLUDE SQLSA

This directives declare a version 310 SQLSA in a program:

EXEC SQL INCLUDE STRUCTURES ALL VERSION 310;
EXEC SQL INCLUDE SQLSA;

INCLUDE SQLSA
HP NonStop SQL/MP Reference Manual—523352-013
I-6

INCLUDE STRUCTURES Directive
INCLUDE STRUCTURES Directive
INCLUDE STRUCTURES is a host program or dynamic SQL directive that specifies
the version of the structures generated by the INCLUDE SQLCA, INCLUDE SQLDA,
and INCLUDE SQLSA directives.

version

is an integer that identifies a version of SQL/MP (1, 2, 300, 310, 315, 320, 325, or
330).

[ALL] VERSION version

specifies that any subsequently generated SQLCA, SQLDA, and SQLSA
structures are to have the format for the SQL/MP version identified by version.

{| SQLCA VERSION version |}
{| SQLDA VERSION version |}
{| SQLSA VERSION version | VERSION CURRENT |}

specifies that any subsequently generated SQLCA, SQLDA, or SQLSA structures
are to have the format for the NonStop SQL/MP version identified by version. For
SQLSA, you can specify either a particular version (by #) or VERSION CURRENT.

VERSION CURRENT allows C programs to use the most current SQLSA structure
that the current system supports.

When you specify the VERSION CURRENT option, you must also include this line
at the beginning of the C program source module:

#include <cextdecs (SQLGETSYSTEMVERSION)>

This line includes the prototype of the SQLGETSYSTEMVERSION procedure in
your C program. For information and examples of programs that use this option,
see the C/C++ Programmer's Guide.

If you specify version 330 of SQLSA in INCLUDE STRUCTURES, your pointers
are automatically expanded to accommodate the larger structure described under
Considerations—INCLUDE STRUCTURES on page I-8.

 { [ALL] VERSION version }
INCLUDE STRUCTURES { }
 { {| SQLCA VERSION version |} }
 { {| SQLDA VERSION version |} }
 { {| SQLSA VERSION
 {version | VERSION CURRENT} }
HP NonStop SQL/MP Reference Manual—523352-013
I-7

Considerations—INCLUDE STRUCTURES
Considerations—INCLUDE STRUCTURES

 INCLUDE STRUCTURES can appear anywhere in the host language compilation
unit where declarations are allowed, but it must precede any INCLUDE SQLCA,
INCLUDE SQLDA, or INCLUDE SQLSA directive.

You should specify INCLUDE STRUCTURES once in every SQL module that
contains an INCLUDE SQLCA, INCLUDE SQLDA, or INCLUDE SQLSA directive.
New programs should generally use the INCLUDE STRUCTURES ALL VERSION
form of the directive and specify the version of NonStop SQL/MP for which the
program is written.

(INCLUDE SQLCA, INCLUDE SQLDA, and INCLUDE SQLSA generate version 2
structures unless an INCLUDE STRUCTURES directive in the same module
specifies otherwise.)

 Version 330 of SQLSA returns more statistics information than earlier versions.
Additional information returned includes the total processor time used by all sort
processes (SORTPROGs) and all Executor Server Processes (ESPs) in a query.
The size of the SQLSA structure has increased to accommodate these additions.
In version 330, all SQLSA 16 bit counters are 32 bit. All 32 bit INT (32) counters in
earlier versions are 64 bit (FIXED).

These version considerations apply only to SQLSA.

 You cannot use INCLUDE STRUCTURES if you also use the RELEASE option in
the SQL directive or in the INCLUDE SQLDA directive. The host language
compiler returns an error if you do so. (The RELEASE option is an older option that
will be obsolete in the future. Use INCLUDE STRUCTURES instead.)

Examples—INCLUDE STRUCTURES

 This directive specifies version 330 for all structures declared later in the
compilation unit:

EXEC SQL INCLUDE STRUCTURES ALL VERSION 330;

 This directive specifies version 310 for all SQLCA structures declared later in the
compilation unit, but version 315 for all SQLDA and SQLSA structures declared
later in the compilation unit:

EXEC SQL INCLUDE STRUCTURES SQLCA VERSION 310
 SQLDA VERSION 315
 SQLSA VERSION 315;
HP NonStop SQL/MP Reference Manual—523352-013
I-8

Index Keys
Index Keys
An index is stored in a key-sequenced file. Each row in an index contains:

 A two-byte column called the “keytag” column

 The columns specified in the CREATE INDEX statement

 The primary key of the underlying table (the user-defined primary key, the
SYSKEY, or combination of the clustering key and the SYSKEY)

For a unique index, the primary key of the index is composed of the first two of these
items. The primary key of the index cannot exceed 255 bytes, but the entire row
(including the primary key of the index) can contain up to 510 bytes.

For a nonentity index, the primary key of the index is composed of all three items. The
primary key cannot exceed 255 bytes. Because the primary key includes all the
columns in the table, each row is also limited to 255 bytes.

For varying-length character columns, the length referred to in these byte limits is the
defined column length, not the stored length. (The stored length is the expanded
length, which includes two extra bytes for storing the data length of the item.)

The keytag value must be unique among indexes for the table; you can specify it when
you create the index with the CREATE INDEX statement, or you can allow the system
to generate it for you. (System-generated keytags are sequential numbers, beginning
with one. User-specified keytag values can be either two bytes of character data or a
SMALLINT UNSIGNED value in the range 1 through 65535. The keytag value for the
primary key is 0.)

There is always a one-to-one correspondence between index rows and base table
rows.

You should typically use random access to access index rows. Sequential access is
less efficient for large subsets of rows unless SQL can use index-only access. For
more information, see the SQL/MP Query Guide.
HP NonStop SQL/MP Reference Manual—523352-013
I-9

INDEXES Table
INDEXES Table
The INDEXES table is a catalog table that describes primary keys and indexes.
Table I-1 describes the contents of the INDEXES table.

The columns TABLENAME through FILENAME (1 through 12) were created in version
1. The columns SECURITYVECTOR through OBJECTVERSION (13 through 15) were
added in version 300.

Table I-1. The INDEXES Table

Column Name Data Type Description

1 TABLENAME * CHAR(34) Name of indexed table

2 INDEXNAME * CHAR(34) Name of index (name of primary key index is
same as table name)

3 TABLECODE SMALLINT
UNSIGNED

Code for type of table; codes 100-999 mean
reserved for HP use, other numbers are
values of TABLECODE file attribute

4 COLCOUNT SMALLINT
SIGNED

Number of columns in index (includes keytag
and, if table not unique, includes primary key
columns)

5 CREATETIME LARGEINT
SIGNED

Julian timestamp from index creation

6 KEYTAG SMALLINT
UNSIGNED

Keytag specifier; 0 for primary key index

7 UNIQUEVALUE CHAR(1) Y if index is unique
N if not

8 VALIDDEF CHAR(1) Y if index definition is valid (catalog tables and
disk label are correct and consistent)
N if not

9 VALIDDATA CHAR(1) Y if index has valid data
N if not

10 INDEXLEVELS SMALLINT
SIGNED

Number of levels of indexing (maintained by
UPDATE STATISTICS)

11 ROWSIZE SMALLINT
SIGNED

Length of packed index record

12 FILENAME CHAR(34) Name of file that contains index

13 SECURITYVECTOR CHAR(4) Guardian security string for the index

14 SECURITYMODE CHAR(1) Type of security in use:
S Safeguard
G Guardian

15 OBJECTVERSION SMALLINT
UNSIGNED

Version number of index

* Indicates primary key
HP NonStop SQL/MP Reference Manual—523352-013
I-10

Indicator Variables and Indicator Parameters
Guardian names in the INDEXES table are fully qualified and use uppercase
characters. The Guardian security vector (column 13) is stored as uppercase
characters.

Indicator Variables and Indicator Parameters
In a host program, a variable called an indicator variable is associated with
each SQL data item that can contain a null value. The value of the indicator variable
tells whether the corresponding data item is null (indicator is less than 0) or contains an
actual value (indicator is 0).

Each indicator variable is a two-byte integer variable declared in the program. If you
use INVOKE to generate record descriptions, INVOKE automatically includes an
indicator variable for each item in the record that allows null values.

The INSERT, UPDATE, and SELECT statements use indicator variables. To send a
null value to SQL for insertion, update, or comparison, you assign a value less than 0
to the indicator variable. To return a null value to your program, SQL sets the
appropriate indicator variable to -1; to return a nonnull value, SQL sets the indicator
variable to 0. (For INSERT or UPDATE, you can use the keyword NULL instead of an
indicator variable.)

Indicator parameters serve the same purpose as indicator variables, but you use them
to specify null input parameters in dynamic SQL or SQLCI statements. An indicator
parameter appears following the associated input variable but separated by the key
word INDICATOR. For example, this statement pass a negative indicator parameter (I)
to SQL to indicate that the parameter P contains a null value:

SET PARAM ?I -1
INSERT INTO =EMPLOYEE VALUES (1000, ?P INDICATOR ?I);

For more information about using indicator variables or indicator parameters in host
programs, see the SQL/MP programming manual for your host language.
HP NonStop SQL/MP Reference Manual—523352-013
I-11

INFO DEFINE Command
INFO DEFINE Command
INFO DEFINE is an SQLCI command that displays the attributes and values
associated with one or more existing DEFINEs. (INFO DEFINE is similar to the TACL
command INFO DEFINE and the OSS command info_define.)

define

is the name of an existing DEFINE or DEFINEs for which you want information.

You can specify define as a DEFINE template. A DEFINE template allows you to
use these special characters as part of a name:

In TACL or OSS, but not in SQLCI, you can also use these special characters:

DETAIL

requests the value of each attribute for the DEFINE that has a value. If you omit
DETAIL, INFO DEFINE displays only the CLASS attribute and one other attribute
(depending on CLASS).

Consideration—INFO DEFINE

INFO DEFINE does not display the working attribute set. (Use SHOW DEFINE to
display the working attribute set.)

Examples—INFO DEFINE

 This example displays information about a DEFINE named =ORDERS:

>> INFO DEFINE =ORDERS;
DEFINE NAME =ORDERS
CLASS MAP
FILE $VOL1.SALES.ORDERS

 This example displays information about the current =_DEFAULTS DEFINE:

>> INFO DEFINE =_DEFAULTS;
DEFINE NAME =_DEFAULTS
CLASS DEFAULTS
VOLUME $VOL1.SALES

 { define }
INFO DEFINE { (define [, define] ...) } [, DETAIL];

** Matches all DEFINE names

=* Matches all DEFINE names

* Matches 0 or more characters at the same position

? Matches one character in the same position
HP NonStop SQL/MP Reference Manual—523352-013
I-12

INITIALIZE SQL Command
INITIALIZE SQL Command
INITIALIZE SQL is an SQLCI command that allows a user with the local super ID to
ensure that SQL is using compatible components and to prepare a node to run
NonStop SQL/MP. The INITIALIZE SQL command is required whenever you install a
new NonStop SQL/MP PVU or software product revision (SPR).

Considerations—INITIALIZE SQL

 If NonStop SQL/MP has not been installed on your node previously, you must
create the system catalog before executing INITIALIZE SQL. (For more
information, see CREATE SYSTEM CATALOG Command on page C-152.)

For more information on preparing your node to run NonStop SQL/MP, see the
SQL/MP Installation and Management Guide.

 INITIALIZE SQL purges any existing SQLCI2 file, renames the file ZZSQLCI2 to
SQLCI2, SQL-compiles SQLCI2, and registers the SQLCI2 program in the system
catalog by executing these commands:

PURGE $SYSTEM.SYSTEM.SQLCI2
RENAME $SYSTEM.SYSTEM.ZZSQLCI2, $SYSTEM.SYSTEM.SQLCI2
SQLCOMP /IN $SYSTEM.SYSTEM.SQLCI2/ CATALOG $SYSTEM.SQL

Example—INITIALIZE SQL

To prepare NonStop SQL/MP on your node for the first time, enter these commands:

>> CREATE SYSTEM CATALOG;
>> INITIALIZE SQL;

INITIALIZE SQL ;
HP NonStop SQL/MP Reference Manual—523352-013
I-13

INSERT Statement
INSERT Statement
INSERT is a DML statement that inserts a row into a table or protection view.

name

is the name of a table or protection view (or an equivalent DEFINE) in which to
insert rows. name cannot be the name of a catalog table.

[* [, syskey]]
[syskey , *]
[col [, col] ...]

specifies the columns in the table or view in which to insert values (including null
values) in the same order in which the values appear later in the statement:

The default is all columns, except the SYSKEY column, in the order in which
INVOKE would list them.

You can specify a SYSKEY column only for a table with relative file organization or
for a view defined on such a table.

{ VALUES (val [, val] ...) [insert-opt] ... }
{ (select-stmt) [insert-opt] ... }
{ select-stmt }

specifies the values to insert. Include a value for each column specified
previously on the INSERT statement, specify the values in the same order as

INSERT INTO { name } [(column-list)]

 { VALUES (val [, val] ...) [insert-opt] ... }
 { (select-stmt) [insert-opt] ... }
 { select-stmt }

column-list is: [* [, syskey]]
 [syskey , *]
 [col [, col] ...]

insert-opt is: { [FOR] { STABLE } ACCESS }
 { { REPEATABLE } }
 { }
 { { :host-var } }
 { RETURNING { LASTSYSKEY} }
 { { ?param } }
 { }
 { { APPEND | ANYWHERE } }

* All columns except the SYSKEY column

syskey The name of the SYSKEY column (usually SYSKEY)

col The unqualified name of a column
HP NonStop SQL/MP Reference Manual—523352-013
I-14

INSERT Statement
the columns, and specify values of appropriate type and size for the
corresponding columns.

val

is a host variable, a literal, an expression, a parameter name, or the keyword
NULL (representing a null value) that specifies a value. val cannot include a
column reference.

select-stmt

specifies a select operation that selects values from other tables or views to insert
in name. It has the syntax of a SELECT statement (see SELECT Statement on
page S-18) with these restrictions:

 The select list must contain an element for each column specified on the
INSERT statement.

 The SELECT cannot include a subquery that refers to a table, view, or
underlying table of the view into which rows are being inserted.

 The SELECT cannot use the INTO clause.

 You must enclose the select-stmt in parentheses if it includes an access
mode. The access mode applies only to rows compared to the selection criteria
(in this case, even if the rows are in an audited table).

If select-stmt returns no rows, no rows are inserted. (Note that this contrasts
with the behavior for subqueries in comparison predicates. For subqueries, if no
values are returned, SQL returns a null value.)

[FOR] { STABLE | REPEATABLE } ACCESS

specifies STABLE or REPEATABLE access mode. STABLE is the default. (For
more information, see Access Options on page A-1.)

RETURNING { :host-var }
 { LASTSYSKEY}
 { ?param }

directs SQL to return the value of the SYSKEY for the last record inserted. (Applies
only in host programs that INSERT into tables or views with a SYSKEY column.)

For static SQL programs, :host-var specifies a host variable to receive the
SYSKEY. For dynamic SQL programs, LASTSYSKEY specifies a place holder to
store the SYSKEY.

?param is the name of a parameter that has the same function as LASTSYSKEY
and is included to maintain compatibility with existing programs. Use
LASTSYSKEY instead.
HP NonStop SQL/MP Reference Manual—523352-013
I-15

Considerations—INSERT
APPEND | ANYWHERE

specifies whether to add rows at the end of the table (APPEND) or anywhere in the
table (ANYWHERE). (Applies only to tables with relative file organization or to
protection views defined on such tables. Cannot be used if the SYSKEY column is
one of the columns for the INSERT.)

With APPEND, if you specify an ORDER clause in select-stmt, rows are added
in that order. With ANYWHERE, an ORDER clause in select-stmt has no
effect.

APPEND is the default unless the column list includes the SYSKEY.

Considerations—INSERT

 INSERT requires authority to read and write to the table or view receiving the data
and authority to read tables and views specified in any select-stmt included in
the INSERT statement.

 To insert a row, you must provide a value for each column in the table that has no
default value. (As a result, you cannot insert a row into a protection view unless the
view includes all columns of the underlying table that are defined with the NO
DEFAULT option.)

In addition to being of appropriate type and size for the corresponding columns, the
values in each row inserted must be compatible with the data types of the
corresponding columns:

 Character values

Any character string data type is compatible with all other character string data
types that have the same character set.

For character columns, inserted values shorter than the column length are
padded on the right with single-byte ASCII blanks (HEX 20); longer values are
truncated on the right. For varying-length character columns, shorter inserted
values are not padded; values longer than the maximum length are truncated
on the right.

 Numeric values

Any numeric data type is compatible with all other numeric data types.

If you insert a value into a numeric column that is not large enough, an
overflow error occurs.

If a value has more digits to the right of the decimal point than specified by the
scale for the column definition, the value is truncated.

 INTERVAL values

An INTERVAL data type is compatible only with another INTERVAL data type
with the same range of INTERVAL fields.
HP NonStop SQL/MP Reference Manual—523352-013
I-16

Considerations—INSERT
 Date and time values

A date-time data type is compatible only with another date-time data type with
the same range of DATETIME fields.

When you use a range of fields to specify only some of the DATETIME fields
for a DATETIME column, SQL uses the current date and time for any missing
fields to the left of the fields for which values are specified. For missing fields to
the right of the fields for which values are specified, SQL uses these values:

YEAR -- Current year HOUR -- 00
MONTH -- 01 MINUTE -- 00
DAY -- 01 SECOND -- 00
 FRACTION -- 000000

 SYSKEY values

For a table with relative organization, the value of a SYSKEY cannot exceed
4294963199 and cannot be greater than the maximum number of rows the
table can contain. For a table with key-sequenced organization, the value of a
SYSKEY cannot exceed 2**63 minus 1.

If you insert rows into a protection view defined with a WHERE clause that
refers to the SYSKEY column, you cannot specify APPEND or ANYWHERE
and you must include SYSKEY in the column list. If such a protection view is
also based on a key-sequenced or entry-sequenced table, you cannot insert a
row into the view.

In addition, values in each row inserted must satisfy any constraints on the
table or on the underlying table of the view. (A table constraint is satisfied if the
check condition is not false - that is, it is either true or has an unknown value.)
If the view is defined with WITH CHECK OPTION, the row must satisfy the
view selection criteria specified in the WHERE clause of the AS select-stmt
clause in the CREATE VIEW statement.

If a row does not qualify, SQL stops inserting rows and returns an error
message.

 Use the CAST function to change the data types for input values specified in an
INSERT statement. If a SELECT operation is specified in an INSERT statement,
rather than input values, the CAST function must be used on the SELECT query
output columns. For more information, see CAST Function on page C-4.

 To insert a null value, use the keyword NULL. From a program, you can also use
an indicator variable to insert a null value, as described in the SQL/MP
programming manual for your host language.

 To allow VSBB for insert operations for a nonaudited file, use the CONTROL
TABLE directive with SEQUENTIAL INSERT ON, SYNCDEPTH 0, and TABLE
LOCK ON options. Additionally, specify FOR REPEATABLE ACCESS in your
INSERT statement and specify IN EXCLUSIVE MODE in the LOCK TABLE
statement.
HP NonStop SQL/MP Reference Manual—523352-013
I-17

Examples—INSERT
For information on buffering INSERT operations, see CONTROL TABLE Directive
on page C-77.

 In host programs, status for INSERT operations is reported to the SQLCODE
variable in the SQLCA:

Some error/warning codes have both a positive and a negative version because
the problem described by the associated message causes an error in some
situations and a warning in others.

The SQLCA also records the number of rows inserted.

Examples—INSERT

 This example inserts a row into the CUSTOMER table and supplies the value “A2”
for the CREDIT column:

INSERT INTO SALES.CUSTOMER (*)
 VALUES (4777, "ZYROTECHNIKS", "11211 40TH ST.",
 "BURLINGTON", "MASS.", "01803", "A2");

 This example also inserts a row into the CUSTOMER table. Unlike the previous
example, this INSERT does not include a value for the CREDIT column, which has
a default value. As a result, this INSERT must include the column name list.

INSERT INTO SALES.CUSTOMER
 (CUSTNUM, CUSTNAME, STREET, CITY, STATE, POSTCODE)
 VALUES (1120, "EXPERT MAILERS", "5769 N. 25TH PLACE",
 "PHOENIX", "ARIZONA", "85016");

 This example inserts a DATETIME value into the TIME_SHIPPED column:

INSERT INTO SHIPMENTS (TIME_SHIPPED)
 VALUES (DATETIME "1988-10-22:08:15" YEAR TO MINUTE);

 This example inserts a DATE value into the BIRTHDATE column of the
PERSONNEL table:

INSERT INTO PERSONNEL (BIRTHDATE)
 VALUES (DATE "1940-10-09");

 This example inserts DATETIME and INTERVAL values:

INSERT INTO PROJECTS
 VALUES ("945", DATETIME "1989-10-20" YEAR TO DAY,
 DATETIME "1990-10-21" YEAR TO DAY,
 INTERVAL "30" DAY);

< 0 An error code number

0 INSERT was successful

> 0 A warning code number

100 No rows qualify for an INSERT through a SELECT
HP NonStop SQL/MP Reference Manual—523352-013
I-18

INTERVAL Data Type
 In this example, CUSTLIST is a protection view of all columns of the CUSTOMER
table except the credit rating.

Suppose that one of your suppliers has become a customer. If you can use the
same number for both the customer and supplier numbers, you can select the
supplier information from the SUPPLIER table and insert it in the CUSTOMER
table through the CUSTLIST view. This operation works because the columns of
the SUPPLIER table contain values that correspond to the columns of the
CUSTLIST view. If you want a credit rating that is different from the default, you
must update the row.

VOLUME $VOL1.SALES;
INSERT INTO CUSTLIST
 (SELECT * FROM INVENT.SUPPLIER WHERE SUPPNUM = 10);
UPDATE CUSTOMER SET CREDIT = "A4" WHERE CUSTNUM = 10;

INTERVAL Data Type
INTERVAL values represent durations of time in year-month units (years and months),
in day-time units (days, hours, minutes, seconds, and fractions of a second), or in
subsets of those units.

No INTERVAL unit exists to bridge a year-month interval or a day-time interval
because the varying number of days in a month makes conversion on a duration basis
inexact.

INTERVAL { start-ym } [(digits)] [TO end-ym]
 { start-dt } [TO end-dt]

start-ym and end-ym are:

 { YEAR }
 { MONTH }

 but the start-ym you specify must precede the end-ym you
specify in the list.

start-dt and end-dt are:

 { DAY }
 { HOUR }
 { MINUTE }
 { SECOND }
 { FRACTION [(precision)] }

 but the start-dt you specify must precede the end-dt you
specify in the list, and only end-dt can include the
precision option for FRACTION.
HP NonStop SQL/MP Reference Manual—523352-013
I-19

Considerations—INTERVAL Data Type
start-ym [(digits)] [TO end-ym]

specifies the range of fields for a year-month set of INTERVAL values, or a subset
of the year-month INTERVAL values, and the number of digits allowed for the
starting field in the set.

start-dt [(digits)] [TO end-dt]

specifies the range of fields for a day-time set of INTERVAL values, or a subset of
the day-time INTERVAL values, and the number of digits allowed for the starting
field in the set.

digits

is an unsigned integer from 1 to 18 that specifies the number of significant digits for
the first field in the set. For example, YEAR(2) allows up to 99 years; YEAR(4)
allows up to 9999 years.

The default is 2 digits. The maximum number of digits in the starting field depends
on the number and size of the remaining fields in the set; the entire INTERVAL
value can contain no more than 18 digits.

precision

is an unsigned integer in the range 1 through 6 that specifies the number of
significant digits with which to express the fraction of a second. The default is 6.

Considerations—INTERVAL Data Type

 A specific INTERVAL data type is compatible only with another INTERVAL data
type that has the same range of INTERVAL fields.

 An INTERVAL value can have a maximum of 18 digits, including the digits in all
fields.

Any INTERVAL field that is a starting field can have up to 18 digits minus the
number of other digits in the INTERVAL value (but the starting field will have only 2
digits unless you specify a larger value with the digits option). The maximum
value for the starting field is the maximum value that can be expressed in the
number of digits allowed for the field.

If an INTERVAL field is not a starting field, the maximum value of digits in the field
is:

YEAR (Always a starting field)

MONTH 1 to 11

DAY (Always a starting field)

HOUR 1 to 23
HP NonStop SQL/MP Reference Manual—523352-013
I-20

Example—INTERVAL Data Type
An INTERVAL can be negative, but individual fields within the interval are
expressed as positive values. The negative sign (-), if present, applies to the entire
value, and is not counted in the number of digits for any field.

 To compute the size of an INTERVAL column:

 Add 1 byte for the sign.

 For the starting field, add 2 bytes for 1 to 4 digits, 4 bytes for 5 to 8 digits, and
8 bytes for 9 to 18 digits.

 Add 2 bytes for each nonstarting field other than FRACTION.

 If a FRACTION field is present and is not a starting field, add 2 bytes for a
precision of 1 to 4 significant digits and 4 bytes for a precision of 5 or 6 digits.

 If the column allows null values, add 2 bytes.

You can also determine the storage size for a column by querying the
COLSIZE column of the COLUMNS catalog table. For example, this query
from SQLCI returns a column's length in bytes:

>>SELECT colsize FROM columns
+> WHERE tablename LIKE "%table-name%"
+> AND colname = "column-name";
* Version Management Consideration

The INTERVAL data type is supported on NonStop SQL/MP versions 2 and
later.

Example—INTERVAL Data Type

This statement creates a table in which three of the four columns are of data type
INTERVAL. Column AGE represents an interval of years and months (for example 27-
2, which means 27 years and 2 months), column YRS_EXPERIENCE represents an
interval of years, and column HOURS_VACATION represents an interval of hours.

CREATE TABLE EMPLOYEE (
 AGE INTERVAL YEAR TO MONTH,
 NAME PIC X(30) NO DEFAULT NOT NULL,
 YRS_EXPERIENCE INTERVAL YEAR,
 HOURS_VACATION INTERVAL HOUR(3) NOT NULL
)

YRS_EXPERIENCE can be no more than 99 (the default is two digits), but
HOURS_VACATION can be up to 999 because the CREATE TABLE statement
explicitly specifies three digits.

MINUTE 1 to 59

SECOND 1 to 59

FRACTION 1 to 999999 (less with small precision)
HP NonStop SQL/MP Reference Manual—523352-013
I-21

INTERVAL Literals
INTERVAL Literals
An INTERVAL literal is a constant of data type INTERVAL that represents a positive or
negative duration of time as a year-month or day-time interval.

An INTERVAL literal can contain a maximum of 18 digits, plus characters such as
hyphens (-) or colons (:) that separate the values of INTERVAL fields. The value can
be enclosed in either double quotation marks (shown in this diagram) or in single
quotation marks.

The start-field you specify must precede the end-field you specify in the list of
field name, and only end-field can use the precision option on FRACTION.

years

is an unsigned integer that specifies a number of years. It can have up to 18 digits,
minus the number of digits in the months field, if any. Negative values are allowed,
with the minus sign inside the quotes.

months

is an unsigned integer that specifies a number of months. Used as a starting field,
it can have up to 18 digits; as a nonstarting field, it must be in the range 0 through
11. Negative values are allowed, with the minus sign inside the quotes.

[-] INTERVAL { "y-m" } start-field [(digits)]
 { "d-t" }

 [TO end-field]
y-m is:

 { years[-months] }
 { months }

d-t is:

 { days:hours[:minutes[:seconds[.fraction]]] }
 { hours[:minutes[:seconds[.fraction]]] }
 { minutes[:seconds[.fraction]] }
 { seconds[.fraction] }
 { fraction }

start-field and end-field are:

 { YEAR }
 { MONTH }
 { DAY }
 { HOUR }
 { MINUTE }
 { SECOND }
 { FRACTION [(precision)] }
HP NonStop SQL/MP Reference Manual—523352-013
I-22

INTERVAL Literals
days

is an unsigned integer that specifies a number of days. It can have up to 18 digits,
minus the number of digits in the other fields of the INTERVAL literal. Negative
values are allowed, with the minus sign inside the quotes.

hours

is an unsigned integer that specifies a number of hours. Used as a starting field, it
can have up to 18 digits, minus the number of digits in the other fields of the
INTERVAL literal; as a nonstarting field, it must be in the range 0 through 23.
Negative values are allowed, with the minus sign inside the quotes.

minutes

is an unsigned integer that specifies a number of minutes. Used as a starting field,
it can have up to 18 digits, minus the number of digits in the other fields of the
INTERVAL literal; as a nonstarting field, it must be in the range 0 through 59.
Negative values are allowed, with the minus sign inside the quotes.

seconds

is an unsigned integer that specifies a number of seconds. Used as a starting field,
it can have up to 18 digits, minus the number of digits in the other fields of the
INTERVAL literal; as a nonstarting field, it must be in the range 0 through 59.
Negative values are allowed, with the minus sign inside the quotes.

fraction

is an unsigned integer that specifies a fraction of a second. Used as a starting field,
it can have up to 18 digits; as an ending field, it is limited to the number of digits
specified by precision.

start-field [(digits)] [TO end-field]

specifies the range of INTERVAL fields in the literal and the number of digits
allowed in the starting field. The default for digits is 2. (For more information
about INTERVAL fields, see INTERVAL Data Type on page I-19.)

precision

is an unsigned integer in the range 1 to 6 that specifies the number of significant
digits in the portion of the literal that specifies the fraction of a second. The default
is 6.
HP NonStop SQL/MP Reference Manual—523352-013
I-23

Example—Interval Literals
Example—Interval Literals

These are all INTERVAL literals:

INTERVAL “1” MONTH An interval of 1 month

INTERVAL “7” DAY An interval of 7 days

INTERVAL “2-7”
YEAR TO MONTH

An interval of 2 years, 7 months

INTERVAL “5:2:15:36.8”
DAY TO FRACTION(1)

An interval of 5 days, 2 hours, 15 minutes, and
36.8 seconds

- INTERVAL “5” DAY An interval that subtracts 5 days
HP NonStop SQL/MP Reference Manual—523352-013
I-24

INVOKE Directive and Command
INVOKE Directive and Command
INVOKE is a directive or SQLCI utility command that produces a record description
that corresponds to a row in a specified table or view.

The record description includes a data item for each column in the table or view except
the SYSKEY column and (except for SQL-format) an indicator variable for each column
that allows null values. The record description includes the SYSKEY column of a view
only if the view explicitly listed the column in its definition. Because INVOKE declares
host variables that are compatible with the SQL columns, no data conversion is
required at run time.

Used in a host program Declare Section, INVOKE creates a host program record
description directly in the program. Used from SQLCI, INVOKE writes the record
description on the OUT file and, optionally, in an EDIT file.

{ name }

is the name of an existing table or view for which to create a record description. It
can be a DEFINE name.

If SMF is installed on your node, name cannot be on any $*.ZYS*. subvolumes.

AS record

specifies the name for the record. record must be a host language identifier and
cannot be a DEFINE name.

 [| AS record |]
 [| |]
 [| { C } |]
 [| { [ANSI|TANDEM] COBOL85 } |]
 [| FORMAT { PASCAL } |]
 [| { SQL } |]
 [| { TAL } |]
 [| |]
 [| LEVEL { base } |]
INVOKE {name} [| { (base, inc) } |]
 [| |]
 [| { DEFAULT } |]
 [| DATEFORMAT { EUROPEAN } |]
 [| { USA } |]
 [| |]
 [| { {| PREFIX indicator-prefix |} } |]
 [| { {| SUFFIX indicator-suffix |} } |]
 [| { } |]
 [| { NULL STRUCTURE } |]
 [| |]
 [| TO file [(section)] [CLEAR] |]
 [| |]
 [| CHAR AS { STRING | ARRAY } |]
HP NonStop SQL/MP Reference Manual—523352-013
I-25

INVOKE Directive and Command
If you omit the AS clause, the record name depends on the FORMAT option. For
COBOL85, the record name is the unqualified name of the table or view. (For
example, if the table name is \SYS1.$VOL1.PERSNL.JOB, the record name is
JOB.) For C or PASCAL, the record name is the unqualified name of the table or
view with the suffix “_type” appended. (For example, JOB_TYPE.) For TAL, the
record name is the unqualified name of the table or view with the suffix “^type”
appended and an asterisk indicating a structure template. (For example,
JOB^TYPE(*).)

FORMAT { C | [ANSI|TANDEM] COBOL85 | PASCAL | SQL | TAL }

specifies the language format for the record definition.

The default depends on the environment. In a C program, the default is C; in a TAL
program, the default is TAL; and so forth. In SQLCI, the default is SQL.

The COBOL85 format can be ANSI or TANDEM. In ANSI format, each fixed format
line has a sequence number and contains a maximum of 80 characters; in
TANDEM format, a free format line has no sequence number and contains a
maximum of 132 characters. The default for COBOL85 is TANDEM COBOL85.

LEVEL { base }
 { (base, inc) }

(for use in COBOL programs or from SQLCI) specifies an integer in the range 1 to
49 as the base level number for a COBOL85 record definition and, optionally, an
integer in the range 1 to 24 as the increment used to assign level numbers to data
items (columns) in the record.

The base plus two times the increment must not exceed 49. If the increment is too
large, SQL issues a warning and uses 1. The default is LEVEL 01, 01.

DATEFORMAT { DEFAULT | EUROPEAN | USA }

specifies the format of host variables for date-time columns.

For a column with a date-time data type that has an HOUR field, DATEFORMAT
USA causes INVOKE to produce a host variable that is three bytes longer than an
equivalent host variable for EUROPEAN or DEFAULT format. The extra bytes
allow room for “am” or “pm” following the values.

For information on the DEFAULT, EUROPEAN, or USA formats, see Date-Time
Literals on page D-10.

The default is DATEFORMAT DEFAULT.

{| PREFIX indicator-prefix |}
{| SUFFIX indicator-suffix |}

specifies a prefix, a suffix, or both for indicator variable names. The names have
the form:

indicator-prefix column-name indicator-suffix
HP NonStop SQL/MP Reference Manual—523352-013
I-26

INVOKE Directive and Command
If you do not specify a prefix, indicator variable names have no prefix. If you
specify a prefix but do not specify a suffix, indicator names have no suffix. If you do
not specify either a prefix or a suffix, the suffix depends on the language:

A prefix or suffix must consist of legal identifier values for the host language in
which it is used. However, you can use uppercase or lowercase letters in a prefix
or suffix, regardless of the host language. For C, Pascal, or TAL, INVOKE converts
the suffix to lowercase; for COBOL, INVOKE converts the suffix to uppercase.

If you specify C, PASCAL, or TAL format and the indicator variable name with suffix
is longer than 31 characters, the name is truncated to 31 characters. If you specify
COBOL format and the indicator variable name with suffix is longer than 30
characters, the name is truncated to a length of 30 and any trailing separator
characters (-) are removed. A warning is issued for each truncated name.

For more information about indicator variables, see Indicator Variables and
Indicator Parameters on page I-11 or the SQL programming manual for your host
language.

NULL STRUCTURE

specifies that a column that allows null values should be declared as a structure
with the same name as the column and with fields for the data item and its
indicator variable. The fields are named INDICATOR (or indicator) and VALU (or
value).

TO file [(section)] [CLEAR]

(for use from SQLCI) specifies an EDIT file on which to write the record definition.
file can be a DEFINE name. If file does not exist, INVOKE creates it. If SMF is
installed on your node, file must be either a logical or direct file.

section is a host identifier that names a section in the file. If you specify
section, INVOKE writes the directive ?SECTION section immediately before
the record description in the EDIT file.

CLEAR directs INVOKE to purge any data in the file before writing the record
description. If you omit CLEAR, INVOKE adds the record description after the
existing data.

CHAR AS { STRING | ARRAY }

(for use from C programs or from SQLCI) specifies whether to create a byte for the
null terminator in C character types:

C _i Pascal _i

COBOL -I TAL ^i

STRING Generate the extra byte

ARRAY Omit the extra byte
HP NonStop SQL/MP Reference Manual—523352-013
I-27

Considerations—INVOKE
Considerations—INVOKE

 To use the INVOKE statement on a table or view, you must have authority to read
the table or view at compile time.

 Multibyte characters can be displayed only on output devices that support them. If
a record definition contains a DEFAULT clause with a multibyte character, the
output might not be displayed on your output device.

Examples—INVOKE

 This SQLCI command generates an SQL-format description of a table named
EMPLOYEE:

>> INVOKE $VOL1.PERSNL.EMPLOYEE FORMAT SQL;
-- Definition of table \SYS1.$VOL1.PERSNL.EMPLOYEE
-- Definition current at 10:43:27 - 03/01/94
 (
 EMPNUM NUMERIC(4, 0) UNSIGNED NOT NULL
 , FIRST_NAME CHAR(15) NOT NULL
 , LAST_NAME CHAR (20) NOT NULL
 , DEPTNUM NUMERIC(4, 0) UNSIGNED NOT NULL
 , JOBCODE NUMERIC(4, 0) UNSIGNED
 , SALARY NUMERIC(8, 2) UNSIGNED
)

 The next SQLCI command generates a COBOL-format record named EMP that
corresponds to a table named EMPLOYEE. SQLCI appends the record description
to an EDIT file name COBLIB in a section named EMPSEC and displays the
record description on the OUT file as well.

Compare the record description in the example to the SQL-format record
description in the last example and notice the indicator variables for JOBCODE-I
and SALARY-I that are included in the COBOL format but not in the SQL format.

>> INVOKE $VOL1.PERSNL.EMPLOYEE AS EMP FORMAT COBOL
+> TO COBLIB (EMPSEC);
?SECTION EMPSEC
* Definition of table \SYS1.$VOL1.PERSNL.EMPLOYEE
* Definition current at 10:50:32 - 03/01/94
 01 EMP.
 02 EMPNUM PIC 9(4) COMP.
 02 FIRST_NAME PIC X(15)
 02 LAST_NAME PIC X(20)
 02 DEPTNUM PIC 9(4) COMP.
 02 JOBCODE-I PIC S9(4) COMP.
 02 JOBCODE PIC 9(4) COMP.
 02 SALARY-I PIC S9(4) COMP.
 02 SALARY PIC 9(6)V9(2) COMP.
HP NonStop SQL/MP Reference Manual—523352-013
I-28

ISLACK File Attribute
ISLACK File Attribute
ISLACK is a file attribute that specifies the minimum percentage of space to leave for
future insertions when loading index blocks. ISLACK applies only to key-sequenced
tables and to indexes.

The default is the value of the SLACK file attribute.

The default for SLACK is 15 percent.

percent

is an integer from 0 to 99 that specifies the percent of empty space to leave in
each index block during loading.

Considerations—ISLACK

 ISLACK specifications are usually between 15 and 25 percent.

 Specifying a larger-than-normal ISLACK value when a file is initially loaded, and
many more inserts are expected, can improve performance by reducing the
number of block splits required when inserts occur.

 For a file expected to have little activity, you can save disk space by specifying a
smaller-than-normal ISLACK value.

ISLACK percent
HP NonStop SQL/MP Reference Manual—523352-013
I-29

Considerations—ISLACK
HP NonStop SQL/MP Reference Manual—523352-013
I-30

J
Joins

A join is an operation that combines two tables or views to form a new table. A join
query is a query that requests columns from more than one table or view.

A join query should contain predicates that compare a column from one table with a
column from another table. The join concatenates (joins together) rows (from each of
the joined tables) that satisfy the predicates. Without predicates, SQL creates a
Cartesian product with all rows of each table combined with each other.

NonStop SQL/MP supports two types of joins: inner joins and left outer joins.

An inner join discards rows that do not satisfy the predicates specified in a WHERE
clause or an ON clause. Inner joins are useful for reporting information that satisfies a
given set of requirements.

An outer join returns all rows from one or more of the tables being joined; rows that do
not satisfy the search condition have missing information in columns that correspond to
the other tables being joined. An outer join is useful for generating exception reports
(retrieving information that does NOT satisfy a stated set of requirements).

A left outer join returns all rows from the left table or view - the table or view left of the
keywords LEFT JOIN in the SELECT statement - and rows from the other table that
satisfy the search condition. A left outer join is not necessarily symmetric; A LEFT
JOIN B is not necessarily the same as B LEFT JOIN A.

NonStop SQL/MP allows you to specify the type of algorithm used for a join operation
and to specify the sequence of joins within a SELECT statement. For information, see
CONTROL QUERY Directive on page C-74 (the HASH JOIN option) and CONTROL
TABLE Directive on page C-77 (the JOIN METHOD and JOIN SEQUENCE options).

For information on joins, see the SQL/MP Query Guide.

Examples - Joins

These examples refer to a database consisting of:

EMPLOYEE TABLE

EMP_ID LAST_NAME FIRST_NAME DEPT_NUM MGR_ID SALARY

2703 Smith James 7620 2705 47500.00

2705 Simpson Travis 7600 6554 68000.00

2906 Nakagawa Etsuro 6400 6554 72000.00

3598 Nakamura Eichiro 6480 2906 50000.00

4096 Murakami Kazuo 6410 3598 36000.00

5361 Smythe Roger 7690 9069 42650.00

9069 Smith John 7690 2705 38760.00
HP NonStop SQL/MP Reference Manual—523352-013
J-1

Examples - Joins
 Examples of inner joins

In these examples, rows that do not have the same department number are not
returned in the result. So, rows with employee number 5361 and 9069 do not
appear in the result because the corresponding department number value does not
exist in the DEPT table.

This query uses an inner join of the tables EMPLOYEE and DEPT:

SELECT E.LAST_NAME, E.FIRST_NAME, E.DEPT_NUM,
 D.DEPT_NUM, D.DEPT_NAME
FROM EMPLOYEE E, DEPT D
WHERE E.DEPT_NUM = D.DEPT_NUM

This example shows an equivalent query that uses an INNER JOIN operator:

SELECT E.LAST_NAME, E.FIRST_NAME, E.DEPT_NUM,
 D.DEPT_NUM, D.DEPT_NAME
FROM EMPLOYEE E INNER JOIN DEPT D
ON E.DEPT_NUM = D.DEPT_NUM

Both queries return this result:

 Examples of left outer joins

This query retrieves all rows from the EMPLOYEE table. Employees with
employee numbers 5361 and 9069 are in department 7690. Because there is no
matching department number value in the DEPT table, columns selected from the

DEPT TABLE

DEPT_NUM DEPT_NAME DEPT_LOC

6400 Marketing - Far East 900

6410 Marketing - Korea 910

6420 Marketing - Hong Kong 920

6440 Marketing - Singapore 940

6470 Marketing - Taiwan 970

6480 Marketing - Australia 980

7600 Marketing - USA 100

7620 Marketing - USA West 120

Murakami Kazuo 6410 6410 Marketing - Korea

Nakagawa Etsuro 6400 6400 Marketing - Far East

Nakamura Eichiro 6480 6480 Marketing - Australia

Simpson Travis 7600 7600 Marketing - USA

Smith James 7620 7620 Marketing - USA West
HP NonStop SQL/MP Reference Manual—523352-013
J-2

Examples - Joins
DEPT table contain a question mark (?) to denote missing information. Each
question mark represents a null value.

SELECT E.LAST_NAME, E.FIRST_NAME, E.DEPT_NUM,
 D.DEPT_NUM, D.DEPT_NAME
FROM EMPLOYEE E LEFT JOIN DEPT D
 ON E.DEPT_NUM = D.DEPT_NUM

The query returns this data:

In an outer join, the WHERE clause restricts the result. For example, to get rows
related only to employees who are the exceptions, check for a null value in the
DEPT_NUM column of the DEPT table:

SELECT E.LAST_NAME, E.FIRST_NAME, E.DEPT_NUM,
 D.DEPT_NUM, D.DEPT_NAME
 FROM EMPLOYEE E LEFT JOIN DEPT D
 ON E.DEPT_NUM = D.DEPT_NUM
 WHERE D.DEPT_NUM IS NULL

The query returns this data:

The IS NULL predicate is applied to the DEPT_NUM column of the DEPT table
because it appears in the join predicate and belongs to the table that is not
preserved.

A null value marker (?) in the column indicates that for a given department number
in the EMPLOYEE table, there is no matching department number in the DEPT
table. You can refine the report by eliminating columns selected from the DEPT
table:

SELECT E.LAST_NAME, E.FIRST_NAME, E.DEPT_NUM
 FROM EMPLOYEE E LEFT JOIN DEPT D
 ON E.DEPT_NUM = D.DEPT_NUM
 WHERE D.DEPT_NUM IS NULL

The query returns this data:

Murakami Kazuo 6410 6410 Marketing - Korea

Nakagawa Etsuro 6400 6400 Marketing - Far East

Nakamura Eichiro 6480 6480 Marketing - Australia

Simpson Travis 7600 7600 Marketing - USA

Smith James 7620 7620 Marketing - USA West

Smythe Roger 7690 ? ?

Smith John 7690 ? ?

Smythe Roger 7690 ? ?

Smith John 7690 ? ?

Smythe Roger 7690

Smith John 7690
HP NonStop SQL/MP Reference Manual—523352-013
J-3

JULIANTIMESTAMP Function
JULIANTIMESTAMP Function
JULIANTIMESTAMP is a function that converts a date-time value into a 64-bit Julian
timestamp that represents the number of microseconds that have elapsed between
4713 B.C., January 1, 00:00 and the specified date-time value.

JULIANTIMESTAMP returns a value of type LARGEINT. You can use
JULIANTIMESTAMP anywhere SQL allows a numeric expression.

date-time-expression

is an expression that evaluates to a value of type DATETIME, DATE, TIME, or
TIMESTAMP.

If date-time-expression does not contain all the fields from YEAR through
FRACTION, SQL extends the value (using the EXTEND function rules) before
converting it to a Julian timestamp.

Example—JULIANTIMESTAMP

This example converts a date-time value into a Julian-timestamp representation of the
value. (If START_DATE is 1988-02-21:20:30, the resulting Julian timestamp would be
211439233800000000.)

SELECT JULIANTIMESTAMP (START_DATE) FROM PROJECTS
 WHERE PROJECT_NAME = "920";

JULIANTIMESTAMP (date-time-expression)
HP NonStop SQL/MP Reference Manual—523352-013
J-4

K
Keys

See one of these specific entries:

 Clustering Keys

 Index Keys

 Partitions (first keys)

 Primary Keys

 Syskeys (system-defined primary keys)

 User-Defined Keys (user-defined primary keys)

KEYS Table
The KEYS table is a catalog table that describes the columns of primary keys and
indexes. Table K-1 describes the contents of the KEYS table.

The columns INDEXNAME through ORDERING (1 through 4) were created in version
1. Column 5, CPRULESNAME, was added in version 300.

The KEYS table describes the columns of the primary key index and the columns of
indexes defined with CREATE INDEX. The primary key is handled as an index with the
same name as the table.

The first entry for an index defined with CREATE INDEX is KEYTAG, although
KEYTAG is not a column of the table being indexed. For the KEYTAG column, the
TABLECOLNUMBER column has the value 65535.

Guardian names in KEYS are fully qualified and use uppercase characters.

Table K-1. The KEYS Table

Column Name Data Type Description

1 INDEXNAME * CHAR (34) Name of index

2 KEYSEQNUMBER * SMALLINT
UNSIGNED

Number indicating position of column in index
row

3 TABLECOLNUMBER SMALLINT

UNSIGNED

Number indicating position of column in table
row

4 ORDERING CHAR (1) A if ascending order

D if descending order

5 CPRULESNAME CHAR (34) Name of the collation associated with the
primary key or index

* Indicates primary key
HP NonStop SQL/MP Reference Manual—523352-013
K-1

KEYS Table
HP NonStop SQL/MP Reference Manual—523352-013
K-2

L
LEFT_MARGIN Option

LEFT_MARGIN is an option of the SQLCI report writer SET LAYOUT command that
sets the left margin for the current report and for subsequent reports until you reset it.

number

specifies the number of spaces to precede the leftmost printed character in the
report. number must be an integer in the range 0 through 255 and cannot exceed
the value of the RIGHT_MARGIN layout option. The default is zero.

Each space corresponds to a position that could be occupied by one single-byte
character, regardless of the character set in use.

Example—LEFT_MARGIN

This example sets the left margin to 10:

>> SELECT * FROM PERSNL.JOB;
S> LIST FIRST 1;
JOBCODE JOBDESC
------- ------------------
 100 MANAGER
S> SET LEFT_MARGIN 10;
S> LIST FIRST 1;
 JOBCODE JOBDESC
 ------- ------------------
 100 MANAGER

LEFT_MARGIN number
HP NonStop SQL/MP Reference Manual—523352-013
L-1

LIKE Predicate
LIKE Predicate
LIKE is a predicate that searches for character strings matching a pattern.

char-exp

is a character expression that specifies the set of strings to search for matches to
pattern.

pattern

is a character expression that does not contain a column name and that specifies
the pattern string for the search.

ESCAPE char

specifies a literal, host variable (preceded by a colon), or parameter that contains a
single character to use as an escape character to turn off the special meaning of
percent and underscore.

If the column is associated with a single-byte character set, char must be one
single-byte character. If the column is associated with a double-byte character set,
char must be one double-byte character.

TERMINATE char

specifies a literal, host variable (preceded by a colon), or parameter that contains a
single character to use to indicate the end of the pattern within the pattern string.
Use this clause when the column value and the comparison value are different
lengths.

If you specify both ESCAPE and TERMINATE, the values for char must be
different in each clause.

If the column is associated with a single-byte character set, char must be one
single-byte character. If the column is associated with a double-byte character set,
char must be one double-byte character.

Considerations—LIKE

 The values you compare must be character strings. Lowercase and uppercase
letters are not equivalent. To make lowercase letters match uppercase letters, use
UPSHIFT.

 The LIKE predicate is true if the value matches any string in the column to which
you compare the value.

char-exp [NOT] LIKE pattern [ESCAPE char]

 [TERMINATE { char }]
HP NonStop SQL/MP Reference Manual—523352-013
L-2

Considerations—LIKE
 If the values you compare are both empty strings (that is, strings of zero length),
the LIKE predicate is true.

 A blank is compared in the same way as any other character.

 If the value of col-name is null or if host-variable or param-name contains
INDICATOR clauses that specify a null value, the LIKE predicate evaluates to null.

 You can use only parameters in a prepared dynamic SQL statement or in a
statement you enter through SQLCI.

 If you specify NOT, the predicate is true if the value you are comparing does not
match any string to which you compare it, or is not the same length as any string to
which you compare it. For example, NAME NOT LIKE “_Z” is true if the string is not
two characters long or the last character is not Z.

In a search-condition, the predicate NAME NOT LIKE “ABC” is equivalent to
NOT (NAME LIKE “ABC”).

 You can look for similar values by specifying only a few characters and using these
wild-card characters:

You must specify the wild-card characters (underscore and percent sign) in the
character set associated with the column or unexpected results can occur. These
are the values for the character sets SQL supports:

 If you want to search for a string containing a percent sign or underscore, you can
define an escape character (using ESCAPE character) to turn off the special
meaning of percent sign and underscore.

You can specify a character as a host variable, string literal, or a parameter name
for which you supply a one-character value later (for example, ?ESC). If you want
to include a percent sign or underscore in the comparison string, enter the escape
character immediately preceding it. For example, to locate the value A_B, enter:

NAME LIKE "A_B" ESCAPE "\"

% Percent sign indicates zero or more characters of any type are
acceptable. For example, “%ART%” matches “SMART”, “ARTIFICIAL”,
and “PARTICULAR”, but not “smart”.

_ Underscore indicates any single character is acceptable. For example,
“BOO_” matches “BOOK” or “BOOR”; but not “BOO”, “BOOKLET”, or
“book.”

Character Set Underscore Percent Sign

UNKNOWN HEX 5F HEX 25

ISO99591/9 HEX 5F HEX 25

KANJI HEX8151 HEX 8193

KSC5601 HEX A3DF HEX A3A5
HP NonStop SQL/MP Reference Manual—523352-013
L-3

Considerations—LIKE
To include the escape character itself in the comparison string, enter two escape
characters. For example, to locate A_B\C%, enter:

NAME LIKE "A_B\\C\%" ESCAPE "\"

The escape character must precede only the percent sign, underscore, or escape
character itself. For example, if the escape character is \, RA\BS is not valid.

 These guidelines apply to pattern matching using columns of data type
CHARACTER:

 Columns of data type CHARACTER are fixed length.

When a value is entered, SQL pads the value in the column with blanks if
necessary. The value “JOE” inserted in a CHAR(6) column becomes “JOE “
(3 characters plus 3 blanks).

In a comparison value, the condition is met only if the column value and the
comparison value are the same length. The value “JOE “ does not match
“JOE” but matches “JOE%”.

 The TERMINATE clause is useful in host programs where the pattern appears
in a host variable of data type CHARACTER. This example finds all names that
contain a y:

MOVE "%y%@" TO hostvar

WHERE NAME LIKE :hostvar TERMINATE "@"

 These guidelines apply to pattern matching using columns of varying-length
character data types:

 Columns of varying-length character data types do not include trailing blanks
unless blanks are specified when data is entered. For example, the value
“JOE” inserted in a VARCHAR(4) column is “JOE”. The value matches both
“JOE” and “JOE%.”

 If you cannot locate a value in a varying-length character column, it might be
because trailing blanks were specified when the value was inserted into the
table. For example, a value of “5MB__” is not located by LIKE “%MB,” but by
“%MB%.”

 The TERMINATE clause specifies the end of a pattern within a pattern-
matching string. For example, column NAME, defined as a VARCHAR column,
contains these values in the EMPLOYEE table:

NAME

Jay
Mike
Holly
Dave
HP NonStop SQL/MP Reference Manual—523352-013
L-4

Examples—LIKE
Suppose that you want to select all names that end with the letter y. If you
define the pattern-matching string as “%y@,” this statement finds all names
ending in y (provided that no trailing blanks are entered):

>> SELECT NAME FROM EMPLOYEE
+> WHERE NAME LIKE "%y@"
+> TERMINATE "@";
NAME

Jay
Holly

 The character sets associated with the column, the LIKE pattern, the ESCAPE
character, and the TERMINATE character must be the same.

 When two-character strings are considered equivalent to one-character strings,
LIKE might not return the expected result. For example, if a-umlaut is considered
equal to ae, LIKE a% does not return a match on string a-umlaut.

Examples—LIKE

 This LIKE predicate finds all employee names beginning with ZB:

EMPNAME LIKE "ZB%"

 This LIKE predicate finds all job titles that match a specific string provided at
execution time:

JOB LIKE ?SOMEJOB

 This LIKE predicate finds all part descriptions that are not FLOPPY_DISK. The
escape character indicates that the backslash in “FLOPPY_DISK” is part of the
string to search for, not a wild-card character.

PARTDESC NOT LIKE "FLOPPY_DISK" ESCAPE "\"

 This LIKE predicate specifies that the column NAME is associated with the
ISO88591 character set. The predicate finds the value A_B:

NAME LIKE _ISO88591"A_B" ESCAPE _ISO88591"\"
HP NonStop SQL/MP Reference Manual—523352-013
L-5

Limits
Limits
NonStop SQL/MP has limits on the size and number of objects, on the size of columns,
on file attributes, and on other items you use with NonStop SQL/MP.

SQL uses information stored in file labels and special records in the disk volume
directory that contain information about a table, view, partition, or catalog. As a result,
some limits depend on the size of file labels, which have a block size of 4096.

NonStop SQL/MP limits are summarized in this alphabetic list of items:

 Base tables per view

A view definition can include a maximum of 16 base tables in a FROM clause.

 Block size

The largest allowed block size is 4096 bytes.

 Clustering key length

The sum of the column lengths for the columns of the key cannot exceed 247
bytes. SQL appends an 8-byte SYSKEY column to the columns specified for the
clustering key, making the maximum actual physical key length 255.

 Column heading

The SQLCI report writer imposes a maximum of 50 lines on a column heading. Any
new-line character following the 49th one is text and does not create a new line.
Column headings are defined with the HEADING clause of the CREATE or ALTER
statements for a table or view.

 Columns per index

The maximum number of columns allowed for an index is 254 minus the number of
columns in the primary key of the underlying table.

 Columns per table

The maximum number of columns allowed per table depends on the column
definitions with these restrictions:

 The sum of the lengths of the columns in a row must not exceed the maximum
row length (see the Row length item later in this subsection). In determining the
column length for a varying-length character column, use the maximum
declared length plus two bytes. For example, suppose that you declare a
VARCHAR column of the maximum row length. The limit for the number of
columns in this situation is one.

For each column that can contain null values, add two bytes to the column
length.

 The description of the table must fit in the file label. The number of columns
that fits depends on the data types of the columns and on the presence of
HP NonStop SQL/MP Reference Manual—523352-013
L-6

Limits
default values. File label restrictions can reduce the maximum number of
columns allowed to as few as 128.

 Columns per view

The maximum number of columns allowed for a view is between 200 and 400,
depending on the size of the column definitions. The size of the column definitions
depends on the data types of the columns and the complexity and number of
operators that define the selection of rows. The descriptions of the columns of the
view must fit in a file label.

 Comments

A comment line in a catalog table cannot exceed 132 characters. The maximum
number of lines allowed is 10,000.

 Constraint definition

The search condition that defines a constraint must be less than 3,000 bytes.

The code generated for the combined search conditions of all constraints
associated with a table must be less than 31,000 bytes.

 Cursors

One object file can have up to a billion cursors. Assuming 300 bytes for each SQL
statement object, 4 megabytes would hold 12,000 cursors. If the cursor definitions
are complex or have large names, or there are many input or output variables, the
limit becomes smaller.

 Data length

Fixed-length character data has a minimum length of one character. Varying-length
character data has a minimum length of 0 characters, but the length field is two
bytes. The maximum length of a character column depends on the file organization
of the table that contains the column, on whether the character set associated with
the column is a single or double-byte character set, and on whether the data type
specifies a fixed of varying length.

A column that allows null values requires two extra bytes.

For clustering keys and system-defined primary keys, SQL requires 8 bytes for a
system-defined key called SYSKEY.

A string literal can be as long as a character column. For more information, see
Data Types on page D-1.

Data Type Key-Sequenced Relative or Entry-Sequenced

Single-byte unvarying 4061 4072

Single-byte VARYING 4059 4070

Double-byte unvarying 2030 2036

Double-byte VARYING 2029 2035
HP NonStop SQL/MP Reference Manual—523352-013
L-7

Limits
A numeric literal cannot exceed 18 digits.

 Default value for a character column

The maximum length for the default value is 8 characters.

 First key length

A specification for the first key for partitions cannot exceed the length of the
user-defined primary key or clustering key for tables or the length of the index key
for indexes. See the Index length item later in this subsection.

 FROM clause tables

The maximum number of tables that can be specified in a FROM clause is 16. This
maximum includes the underlying base tables of views.

 IN predicate expressions

The maximum number of expressions in the expression-list of an IN
predicate is 500.

 Index length

The maximum length depends on the index type:

The length of any column that allows null values is 2 bytes longer than the
declared length of the column.

 Indexes per table

The maximum number of indexes depends on the number of columns in the key,
the number of partitions in each index, and additional factors. If there are no
partitions in the indexes, a table can have a maximum of from 60 to 120 indexes; in
some situations, however, as few as 32 indexes are allowed. If there are 25
partitions per index and there is a total of 10 columns in the primary key and index,
the maximum number of indexes in a table could be reduced to as few as 34 (for a
table with standard partition arrays) or 66 (for a key-sequenced table with extended
partition arrays).

Additional factors that affect the index limit are the number of columns in the index,
the number of indexes for the underlying table, the number of protection views
defined for the underlying table, and the number of catalogs used to describe the
indexes. The description of all the indexes for a table must fit in a file label.

 Lock limit

Unique The sum of the length of the columns in the index cannot exceed
253 bytes.

Nonunique The sum of the length of the columns in the index plus the sum of
the key of the underlying table cannot exceed 253 bytes.
HP NonStop SQL/MP Reference Manual—523352-013
L-8

Limits
SQL defines a lock limit for the number of row locks that a program can own. The
limit is internal to SQL/MP software. If a program exceeds the limit and the locks
cannot be upgraded to table locks, the program receives an error message.

 MAXEXTENTS

The maximum number of extents allowed is 944 for a Format 1 partition. This
number is decreased if the extent size (primary or secondary) is very large, such
as a secondary extent size of 2,000 pages.

For Format 2 partitions, the maximum number of extents allowed is 919. This
number can change per RVU and without notice.

 Partition size

For Format 1 partitions, the maximum partition size that SQL/MP software can
support is approximately 2.1465 gigabytes. This number is determined by using
this formula: 2**31 - 1 - 1 megabyte. The 1 megabyte of space is for internal use.

The formula for applying the limit to a partition is:

PRIM + (SEC * (MAXEXT -1)) <= 2.1465 gigabytes

where

PRIM

is the primary extent size in bytes

SEC

is the secondary extent size in bytes

MAXEXT

is the maximum number of extents

For Format 2 partitions, the maximum partition size is limited to the size of the disk,
up to one terabyte.

 Partitions per index or table, extended partition array

Typically, if the primary key of the index or table is between 10 and 50 bytes, the
maximum number of partitions allowed ranges from approximately 900 (for the
smaller key size) down to 400 (for the larger key size).

The maximum number of index partitions depends on the key size; if the primary
key of a key-sequenced table is between approximately 10 and 50 bytes and the
index key size is also between 10 and 50 bytes, the maximum number of partitions
typically ranges from 674 (for keys of 10 bytes) to 246 (for keys of 50 bytes).

The actual calculation of the limit is complex and depends on such factors as disk
label space and the message size of the NonStop operating system.
HP NonStop SQL/MP Reference Manual—523352-013
L-9

Limits
When you create or alter a table or index with a large number of partitions, the
PARTNS catalog table and associated IXPART01 index might become full. To
correct the situation, distribute object and partition definitions across multiple
catalogs.

Actual limits depend upon the definition of the SQL tables and indexes, but the
PARTNS and IXPART01 catalog tables can contain approximately 500,000 rows.
Each table or index with N partitions stores N**2 rows of information in the
PARTNS catalog table. Thus, three tables of 400 partitions each can be defined in
a single catalog.

DDL and DML operations on tables or indexes that have large numbers of
partitions might return file-system error 31 or 34 because of insufficient memory in
the process file segment (PFS) used by the SQL file system. Actual limits depend
upon the definition of the SQL tables and indexes and the SQL statement being
executed, but memory limitations typically appear when a table or index has 400 or
more partitions.

If you see one of these errors, you can increase PFS size using the BINDER SET
PFS integer command:

1>RENAME SQLCAT,ZZSQLCAT
2>BIND
@ADD * FROM ZZSQLCAT
@SET PFS 256
@SELECT LIST (* OFF)
@BUILD SQLCAT !
@EXIT
3>FUP LICENSE SQLCAT

Alternately, for programs executed using TACL, you can specify PFS size in the
TACL RUN command.

Increase PFS size selectively, only as the need arises. Keep the original copy of
any program that requires a larger PFS setting. If you increase the PFS setting for
SQLCAT or SQLUTIL, you must license the new copy. If you increase the PFS
setting for SQLCI2, you must SQL compile the new copy.

 Partitions per index or key-sequenced table, standard partition array

Typically, if the primary key of the index or key-sequenced table is between 10 and
50 bytes, the maximum number of partitions allowed can be from approximately
230 (for the smaller key size) down to 110 (for the larger key size).

If the key of an index is between 10 and 50 bytes, the maximum number of index
partitions is typically between approximately 180 (for keys of 10 bytes) and 60 (for
keys of 50 bytes). In some situations, the maximum might be as few as 38.

Factors that affect the number of allowed partitions are the data types of the
columns of the primary key and the number of catalogs used to describe the
partitions. Also, the description of the partitioned table or index must fit in a file
label.
HP NonStop SQL/MP Reference Manual—523352-013
L-10

Limits
 Partitions per index or key-sequenced table, format 2 enabled partition array

Typically, if the primary key of the index or key-sequenced table is between 10 and
50 bytes, the maximum number of partitions allowed can be from approximately
800 (for the smaller key size) down to 390 (for the larger key size).

If the key of an index is between 10 and 50 bytes, the maximum number of index
partitions is typically between approximately 620 (for keys of 10 bytes) and 238 (for
keys of 50 bytes).

The actual calculation of the limit is complex and depends on such factors as disk
label space and the message size of the NonStop operating system.

When you create or alter a table or index with a large number of partitions, the
PARTNS catalog table and associated IXPART01 index might become full. To
correct the situation, distribute object and partition definitions across multiple
catalogs.

Actual limits depend upon the definition of the SQL tables and indexes, but the
PARTNS and IXPART01 catalog tables can contain approximately 500,000 rows.
Each table or index with N partitions stores N**2 rows of information in the
PARTNS catalog table. Thus, three tables of 400 partitions each can be defined in
a single catalog.

DDL and DML operations on tables or indexes that have large numbers of
partitions might return file-system error 31 or 34 because of insufficient memory in
the process file segment (PFS) used by the SQL file system. Actual limits depend
upon the definition of the SQL tables and indexes and the SQL statement being
executed, but memory limitations typically appear when a table or index has 400 or
more partitions.
HP NonStop SQL/MP Reference Manual—523352-013
L-11

Limits
 Partitions per relative or entry-sequenced table

This type of limit on partitions for a table is affected by the same restrictions that
apply to key-sequenced tables with standard partition arrays. Additional restrictions
also apply because of dependencies on the number and size of extents and on
primary key values.

These details can help you estimate the maximum number of partitions allowed for
relative or entry-sequenced tables:

 When you partition a table, NonStop SQL/MP evenly distributes all possible
rows (identified by primary key value) into the partitions in both primary and
secondary extents using the MAXEXTENTS attribute value to determine the
number of extents and the EXTENTS attribute to determine extent sizes.
(Relative files have SYSKEY values that begin at 0 and increment by 1.
Entry-sequenced files have SYSKEY values based on the block number.)

 SQL assigns rows to partitions until it either runs out of primary key values or
runs out of space declared for the table. You cannot specify partitions that
would require primary key values greater than 4,294,963,199.

 The bigger your partitions are, the fewer you can specify.

 When you define a partition for a relative or entry-sequenced table, you do not
specify the range of rows to be stored in the partition. SQL determines where
rows are stored.

 Predicates per query

The maximum number of predicates allowed in an SQL/MP query is approximately
290, a Guardian operating system limitation. The exact limit depends on the
combination of predicates and column data types.

 Prepared statements

You can have up to 20 prepared statements in an SQLCI session. (Programs can
have more prepared statements.)

 Primary key

See Syskeys on page S-90, Clustering Keys on page C-28, or User-Defined Keys
on page U-16.

 Row length

Row length is the sum of the lengths of the columns of a table. For each column
that can contain null values, add 2 bytes to the column length when computing this
sum. The length of a varying-length character column is its maximum declared
length plus 2 bytes.

The maximum row length is the block size minus space for a file header. (The
BLOCKSIZE attribute controls block size.)
HP NonStop SQL/MP Reference Manual—523352-013
L-12

Limits
A header is 32 bytes for key-sequenced tables and 22 bytes for relative and entry-
sequenced tables. In addition, there are two bytes overhead for each row in a
block.

For Format 2 key-sequenced tables, a file header is of 56 bytes.

 Statement length

The maximum length of an SQL/MP statement is 32,767 characters, including
blanks.

 Subquery nesting

Queries can be nested a maximum of 16 levels, including the outermost query.

 SYSKEY value

The value range allowed for a SYSKEY (system-defined primary key) is 0 through
4,294,963,199 for the 4-byte primary key used in a table with relative or
entry-sequenced file organization; the range is 0 through 2**63-1 for the 8-byte
primary key (actually, a timestamp) used in a table with key-sequenced file
organization.

 Tables per query

The maximum possible number of tables in a database, if enough memory is
available, is 32,767. Only 16 of these tables can be referred to in any given query.

 Temporary file size

The size of a temporary file is limited to the space available on the disk on which
the file resides. Temporary files provide space for sort operations required for some
queries, for creating indexes, for splitting partitions, and for loading tables.

 Transactions per table

The limit on the number of TMF transactions or update transactions that can be
active on a given SQL table is the same as the limit on the number of transactions
that can be active in your NonStop system. That number is configurable and
depends on the TRANSPERCPU attribute of the BEGINTRANS object of TMF. For
more information, see the description of the ALTER BEGINTRANS command in
the TMF Reference Manual.

 User-defined primary key length

The sum of the column lengths for the columns of the key cannot exceed 255
bytes.

 User process sort

No more than 32,767 rows can be sorted.

 View definition
HP NonStop SQL/MP Reference Manual—523352-013
L-13

LINE_NUMBER Function
The CREATE VIEW statement, including any name expansion from the use of
asterisks in column, view, and table specifications, can have a maximum of 3,000
bytes.

 Views per table

Approximately 180 protection views can be defined for a table. The limit is
determined by the requirement that a small amount of information about each
protection view defined on a table must fit in a file label.

There is no maximum number of shorthand views for a table.

LINE_NUMBER Function
LINE_NUMBER is an SQLCI report writer function that returns the line number of the
current detail line. LINE_NUMBER is useful for numbering detail lines in a report.

You can use LINE_NUMBER in any report writer command with a print list, but SQL
calculates the function value for detail lines only (not title or footing lines, for example),
so it is generally useful only in DETAIL commands.

OVER REPORT

determines the line number by setting a count of 0 at the beginning of the report
and incrementing the number by 1 at the start of each detail line.

OVER PAGE

determines the line number by setting a count of 0 at the beginning of each page
and incrementing the number by 1 at the start of each detail line. (A detail line is a
logical output line specified by the print list on a DETAIL command; it might consist
of more than one physical line.)

OVER break-column

determines the line number by setting a count of 0 when the value of the specified
break column changes and incrementing the number by 1 at the start of each detail
line in the group. break column is a column name, alias, detail alias, or COL
number that identifies a column named in a BREAK ON command.

 [OVER REPORT]
LINE_NUMBER [OVER PAGE]
 [OVER break-column]

The default is OVER REPORT.
HP NonStop SQL/MP Reference Manual—523352-013
L-14

Considerations—LINE_NUMBER
Considerations—LINE_NUMBER

 The default format for line numbers is I11.

 If you specify LINE_NUMBER OVER break-column, you must enter a BREAK
ON command that defines the referenced break column (and that also defines
break columns referenced in other LINE_NUMBER function calls in the current
set).

Examples—LINE_NUMBER

 This example produces a line that contains a line number, part number, and part
name. The line numbers start over at 1 on the first line of each page.

S> DETAIL LINE_NUMBER OVER PAGE, PARTNUM, PARTDESC;
(EXPR) PARTNUM PARTDESC
----------- ------- ------------------
 1 212 SYSTEM 192KB CORE
 2 244 SYSTEM 192KB SEMI
 3 1403 PROC 96KB SEMI
 ...

(EXPR) PARTNUM PARTDESC
----------- ------- ------------------
 1 2053 EDITOR
 2 2267 TEXT FORMATTER
 3 2598 C COMPILER
 ...

 This example prints the same information as the preceding command but in a
different format.

S> DETAIL LINE_NUMBER AS I4 NOHEAD, PARTNUM, PARTDESC;

 PARTNUM PARTDESC
 ------- ------------------
 1 212 SYSTEM 192KB CORE
 2 244 SYSTEM 192KB SEMI
 3 1403 PROC 96KB SEMI
 ...
HP NonStop SQL/MP Reference Manual—523352-013
L-15

LINE_SPACING Option
LINE_SPACING Option
LINE_SPACING is an option of the SQLCI report writer SET LAYOUT command that
specifies how many lines to advance between report lines.

LINE_SPACING also defines the increment of the SKIP clause. For example, if you set
the LINE_SPACING option to 2 and specify SKIP 3 as a print item in a print list, the
report writer skips six (2*3) lines before printing the next report line.

number

is an integer in the range 1 through 32,767 that specifies how many lines to
advance before printing the next report line.

Examples—LINE_SPACING

 This example sets double spacing:

>> SET LAYOUT LINE_SPACING 2;

 This example sets triple spacing and page length 62:

>> SET LAYOUT PAGE_LENGTH 62, LINE_SPACING 3;

LIST Command
LIST is an SQLCI report writer command that displays rows returned by the SELECT
command. You can use LIST only from the select-in-progress prompt (S>).

F[IRST] [number]

displays the first number rows of the result table and then returns to the
select-in-progress prompt. If you omit number, SQL uses the current value of the
LIST_COUNT session option. (The default for the LIST_COUNT session option is
ALL; you can change it with the SET SESSION command.)

N[EXT] [number]

displays the next number rows of the result table and then returns to the
select-in-progress prompt (S>).

LINE_SPACING number

The default is 1. (Single spacing)

 { { F[IRST] } [number] }
 { { N[EXT] } }
L[IST] { } ;
 { A[LL] }
HP NonStop SQL/MP Reference Manual—523352-013
L-16

Considerations—LIST
If you omit number, SQL uses the current value of the LIST_COUNT session
option.

Using LIST NEXT without number is equivalent to pressing the return key at the
S> prompt.

A[LL]

displays all rows of the result table and returns you to the standard SQLCI prompt
(>>).

Considerations—LIST

 Rows are listed on the OUT_REPORT file, or (if you did not specify one) on the
OUT file. The default for OUT and OUT_REPORT file is the home terminal of your
SQLCI process, which is typically your terminal.

 If you are experimenting with a report format, set the LIST_COUNT option to a
small number. Use LIST ALL only when you are ready to print the final report.

Example—LIST

This example sets the LIST_COUNT option to 2, issues a SELECT statement that
displays the first rows returned (because LIST_COUNT is two), and then uses the LIST
command to display the next five rows:

>> SET LIST_COUNT 2;
>> SELECT DISTINCT PARTS.PARTNUM, PARTDESC, QTY_ON_HAND,
+> LOC_CODE, PRICE
+> FROM SALES.PARTS, INVENT.PARTLOC
+> WHERE PARTS.PARTNUM = PARTLOC.PARTNUM
+> ORDER BY PARTS.PARTNUM;
PARTNUM PARTDESC QTY_ON_HAND LOC_CODE PRICE
------- ------------------ ----------- -------- ------------
 212 PC SILVER, 20 MB 18 A87 2500.00
 212 PC SILVER, 20 MB 20 G87 2500.00
S> L N 5;
 244 PC GOLD, 30 MB 23 P78 3000.00
 244 PC GOLD, 30 MB 43 A78 3000.00
 255 PC DIAMOND, 60 MB 21 A21 4000.00
 2001 GRAPHIC PRINTER,M1 0 P10 1100.00
 2001 GRAPHIC PRINTER,M1 800 A10 1100.00
HP NonStop SQL/MP Reference Manual—523352-013
L-17

Literals
Literals
Literals are numeric, string, date-time, or INTERVAL constants that can be used in
expressions, in statements, or as parameter values.

For more information, see the entries for specific types of literals:

Date-Time Literals

INTERVAL Literals

Numeric Literals

String Literals

LOAD Command
LOAD is an SQLCI utility command that loads data from an SQL table or a Guardian
file (such as a Guardian process, device, unstructured disk file, or non-SQL object) into
either an SQL table and its indexes or an Enscribe structured disk file. LOAD
overwrites existing data in the target table or file.

LOAD resembles the FUP LOAD command but, unlike FUP LOAD, it works with SQL
objects.

If SMF is installed on your node, LOAD syntax cannot specify any file located on a
$*.ZYS*. subvolume.

When using the PARTONLY option to load a single partition, you do not need to turn off
auditing, as the command does it for you. You still need to make an online dump of the
single partition.

Caution. When loading an entire table, LOAD requires that you turn off auditing for the table.
This requirement invalidates TMF online dumps of the table and its indexes. To ensure TMF
volume recovery protection for the table and its indexes, turn AUDIT back on when the LOAD
is complete, and make new TMF online dumps of all partitions of the table and its indexes.

LOAD in-file, out-file [[, load-option] ... ;

load-option is:

 { control-option }
 { in-option }
 { key-sequence-option }
 { move-option }
 { PARALLEL EXECUTION { ON [config-op] | OFF } }
HP NonStop SQL/MP Reference Manual—523352-013
L-18

LOAD Command
control-option is:

 { ALLOWERRORS [ON | OFF | num] }
 { }
 { COUNT num-records }
 { }
 { EMPTYOK }
 { }
 { FIRST { ordinal-record-num } }
 { { KEY record-spec } }
 { { KEY (key-value[, key-value] ...) } }
 { { key-specifier ALTKEY (key-value } }
 { { [, key-value] ...) } }
 { }
 { PAD pad-character }
 { }
 { REPLACE SPACES WITH { ZERO[ES] | DEFAULT[S]}}
 { }
 { UNSTRUCTURED }
 { }
 { UPSHIFT }
 { }
 { USESQLNULLS }
 { }
 { SQLNULLABLE }

in-option is:

 { BLOCKIN in-block-length }
 { { COMPACT | NO COMPACT } }
 { EBCDICIN }
 { RECIN in-record-length }
 { REELS num-reels }
 { { REWINDIN | NO REWINDIN }}
 { SHARE }
 { SKIPIN num-eofs }
 { TRIM trim-character }
 { { UNLOADIN | NO UNLOADIN }}
 { VARIN }
key-sequence-option is:

 { { PARTONLY } }
 { { PARTOF volume-name } }
 { PARTONLYIN }
 { SORTED }
 { MAX num-records }
 { SCRATCH scratch-file }
 { DSLACK percent }
 { ISLACK percent }
 { SLACK percent }
HP NonStop SQL/MP Reference Manual—523352-013
L-19

LOAD Command
in-file

is the name (or an equivalent DEFINE) of the table or file from which to load data.
in-file can be a Guardian process, device (such as a terminal or tape),
unstructured disk file, or non-SQL object.

out-file

is the name (or an equivalent DEFINE) of an existing SQL table or non-SQL object
to load.

ALLOWERRORS [ON | OFF | num]

specifies what happens when errors occur.

If you omit the ALLOWERRORS clause completely, the default is
ALLOWERRORS OFF. If you specify ALLOWERRORS but do not specify an
option, the default is ALLOWERRORS ON.

move-option is:

 { SOURCEDICT dictionary-name }
 { SOURCEREC record-name }
 { TARGETDICT dictionary-name }
 { TARGETREC record-name }
 { }
 { MOVE { source-name TO target-name } }
 { { (source-name TO target-name } }
 { { [, source-name TO target-name]...) } }
 { }
 { MOVEBYNAME [ON | OFF] }
 { MOVEBYORDER [ON | OFF] }
 { TRUNC[ATION] [ON | OFF] }
 { REDEFINE (redefine-spec [, redefine-spec]...) }

redefine-spec is:

 original-qualified-name AS redefined-qualified-name

config-op is:

CONFIG { config-file [FOR index-name] }
 { }
 { (config-file FOR index-name }
 { [, config-file FOR index-name]...) }

ON skips nonconvertible records but process subsequent records.

OFF stops the load operation after the first conversion error.

num skips nonconvertible records until the number of such records exceeds the
value of num. The maximum value for num is 32,767.
HP NonStop SQL/MP Reference Manual—523352-013
L-20

LOAD Command
Nonconvertible records include records that contain one or more of:

 A nonnumeric value in a numeric field

 A duplicate key value in the primary key field of the output file

 A null value when the target field cannot represent a null value

 Parity errors

 An ordering that does not match the sort criteria for the output file (only if you
specified SORTED)

 Inconsistencies with constraints defined for the output table

For more information about the rules for data conversion, see CONVERT
Command on page C-94.

COUNT num-records

specifies the number of records to load. The default is all records.

EMPTYOK

directs LOAD to accept an empty input file that results in an empty output file. If the
input file is empty and you do not specify EMPTYOK, LOAD terminates and reports
an error without overwriting an existing output file.

FIRST { ordinal-record-num }
 { KEY record-spec }
 { KEY (key-value[, key-value] ...) }
 { key-specifier ALTKEY (key-value }
 { [, key-value] ...) }

specifies the starting record of the input file from which to begin loading. If you omit
FIRST, the load operation starts with the first record.

ordinal-record-num

is the number of records (from the beginning of the file) to skip. If you specify this
option for an unstructured disk file, the loading begins at this offset:

ordinal-record-num * in-record-length

KEY record-spec

specifies the primary-key value for the starting record of an unstructured file, or of
a relative or entry-sequenced file or table. The record you name with KEY is the
first record to load. Specify record-spec as an integer from 0 through
4,294,967,295.

 For unstructured files, record-spec is the starting relative byte address.

 For relative files or tables, record-spec is the starting record number.
HP NonStop SQL/MP Reference Manual—523352-013
L-21

LOAD Command
 For entry-sequenced files or tables, record-spec is the Enscribe record
address. For descriptions about the record addresses in entry-sequenced files
and tables, see the Enscribe Programmer's Guide.

KEY (key-value> [, key-value] ...)

indicates the approximate position of the starting record for key-sequenced files.
Subsequent rows are obtained in primary key order. key-value is either a string
in quotation marks or an integer in the range 0 to 255. (Each integer represents the
value of 1 byte.)

For more information about specifying a FIRST KEY value, see Considerations—
LOAD on page L-33.

key-specifier ALTKEY (key-value [, key-value]...)

indicates the approximate position within the specified alternate key file of the
starting record for key-sequenced files. Subsequent rows are obtained in alternate
key order.

key-specifier is a one-character or two-character string in quotation marks, or
a numeric literal in the range 0 through 32,767 that designates the alternate key to
use for the positioning.

Specify key-value for key-sequenced files according to the description of
key-value in the preceding KEY (key-value) option and under
Considerations—LOAD on page L-33.

PAD pad-character

(for loading non-SQL objects only) pads output records containing less than
in-record-length bytes with the pad-character up to the record length
specified in the file label of the output file. Specify pad-character as a single
ASCII character inside quotation marks (“c”) or as a numeric literal in the range of
0 through 255 representing the byte value of the character.

REPLACE SPACES WITH { ZERO[ES] | DEFAULT[S] }

specifies how to load an Enscribe ASCII numeric decimal field that contains all
blanks into an SQL numeric column. ZEROES specifies that the target column
should be set to zero; DEFAULTS specifies that the target column should be set to
its default value. This option does not apply to Enscribe numeric binary fields.

If you do not specify this option for an Enscribe ASCII numeric decimal field, a
conversion error occurs for any record in which the field contains blanks.

UNSTRUCTURED

(for loading from a table or disk file only) directs LOAD to handle the data as a
sequence of bytes, ignoring any record structures normally recognized for the table
or file. This option is typically used with the COPY command to let you examine
HP NonStop SQL/MP Reference Manual—523352-013
L-22

LOAD Command
raw data on disc. You do not need to request the UNSTRUCTURED option to
examine an unstructured file.

UPSHIFT

(for loading a non-SQL object only) converts all bytes of the input that contain
lowercase ASCII characters to uppercase ASCII characters before loading the data
to the target record.

The UPSHIFT conversion is made without regard to the data types of fields or
columns of the input, so undesired changes to the data can occur if you use
UPSHIFT with input that is not composed of simple character data.

Although you cannot specify the UPSHIFT option if out-file is an SQL table,
data moved to an SQL column that has the UPSHIFT attribute is automatically
upshifted.

USESQLNULLS

(for loading from non-SQL objects to SQL tables only) specifies that a null value
from a non-SQL object be loaded as an SQL null value.

USESQLNULLS applies only if the SQL column being loaded allows null values, if
you also specify the SOURCEREC option, and if the Enscribe null value appears in
every byte of the Enscribe field. (Enscribe allows you to specify a character to use
as the null character for a field at file-creation time, and then uses that character to
represent null values within the field. Any field that is filled entirely with the null
character is handled as null.)

If you omit USESQLNULLS, LOAD provides no special treatment for Enscribe null
characters.

SQLNULLABLE

specifies that the support for null indicator values for Enscribe fields is enabled
when loading data from Enscribe to SQL or from SQL to Enscribe.

The SQLNULLABLE option causes LOAD to look for the SQLNULLABLE DDL
clause in the TARGETREC or SOURCEREC option, and depending on this clause,
add or read a two-byte null indicator for the Enscribe field value. Without
TARGETREC and SOURCEREC options, LOAD adds or reads the null indicator
for all Enscribe fields that correspond to a nullable column in the SQL table.

If you omit the SQLNULLABLE clause, LOAD does not support null indicators for
Enscribe fields. SQLNULLABLE does not affect loading from SQL tables to SQL
tables and Enscribe files to Enscribe files. The SQLNULLABLE option for Enscribe
to SQL loading automatically enables the USESQLNULLS option.

in-option

specifies characteristics of the input file.
HP NonStop SQL/MP Reference Manual—523352-013
L-23

LOAD Command
BLOCKIN in-block-length

specifies the length of an input block in bytes. in-block-length is a value from
1 through 32,767 that indicates the actual number of bytes requested in a single
physical read operation.

BLOCKIN does not apply to a table unless you specify the UNSTRUCTURED
option. If the input block length exceeds the input record length specified in the
RECIN in-record-length option, input records are deblocked. Records of the
specified length are extracted from the input block until the number of bytes
extracted equals the block length or until the last input record is read.

The read record count for all but possibly the last record in a block is equal to
in-record-length. If the input block length is not an even multiple of
in-record-length, the last record extracted from a full block is a short record
with a read count equal to the number of bytes extracted.

If you omit the BLOCKIN option and in-file is not a labeled tape, SQL uses the
RECIN record length for the block length and reads each input record in a separate
physical operation.

If in-file is a labeled tape, you can specify the input block length with either the
BLOCKIN clause of the LOAD command (as described here) or with the
BLOCKLEN attribute of the CLASS TAPE DEFINE for the tape. If you specify
values for both the BLOCKIN clause and the BLOCKLEN attribute, the values must
match.

{ COMPACT | NO COMPACT }

(for loading from files or tables with relative file organization only) controls whether
zero-length (empty) records on files or tables with relative file organization are
ignored when a file is read. COMPACT ignores empty records and renumbers
records that follow an empty record; NO COMPACT copies empty records. The
default is COMPACT.

For information about the impact of changes in SYSKEY, see Syskeys on
page S-90.

EBCDICIN

(for loading from non-SQL objects only) translates EBCDIC characters to their
ASCII equivalents in the input file. If you omit EBCDICIN, LOAD does not translate
input.

In a conversion between ASCII and EBCDIC, the symbols representing each
character are the same in ASCII and EBCDIC except for:

ASCII EBCDIC

Exclamation point Logical OR
HP NonStop SQL/MP Reference Manual—523352-013
L-24

LOAD Command
The conversion is done without regard to the data types of fields or columns of the
input, so undesired changes to the data can occur if you use EBCDICIN with input
that is not composed of simple character data.

RECIN in-record-length

specifies the maximum length of an input record in bytes. The actual number of
bytes in each input record (the read count) depends on whether you also specify
TRIM:

 If you do not specify TRIM, the read count is the actual number of bytes in the
input record. (For unstructured files that are not EDIT files, the read count is
exactly in-record-length bytes, although fewer bytes might be read from
the last record; for all other files, the read count is the number of bytes actually
read.)

 If you specify TRIM, every trailing trim-character is deleted from the input
record. The read count includes only the characters that have not been
trimmed.

If you omit RECIN, SQL determines in-record-length:

 If you specify in-block-length as less than or equal to 4096, the value of
in-record-length is used for in-block-length. If in-block-length
is greater than 4096, in-record-length is 4096.

 If you do not specify in-block-length,

 If in-file is a structured disk file or a nondisk device, in-
record-length is the record length specified or calculated when the file
was created (or when the system was generated).

 If in-file is an unstructured disk file, and if out-file is a table and you
do not specify VARIN, in-record-length is the length of the logical
record specified by SOURCEREC or—if you do not specify
SOURCEREC—the length of the logical record implied by the description
of the output table; otherwise, in-record-length is 132.

 If in-file is a process, in-record-length is 132.

RECIN does not apply to a table unless you specify the UNSTRUCTURED option.

If in-file is a labeled tape, you can specify the input record length with either the
RECIN clause of the LOAD command (as described here) or with the RECLEN
attribute of the CLASS TAPE DEFINE for the tape. If you specify values for both
the RECIN clause and the RECLEN attribute, the values must match.

Left square bracket Cent sign

Right square bracket Exclamation point

Circumflex Logical NOT sign

ASCII EBCDIC
HP NonStop SQL/MP Reference Manual—523352-013
L-25

LOAD Command
REELS num-reels

(for loading from an unlabeled magnetic tape only) sets the number of reels that
make up the input file. Specify num-reels as an integer from 1 through 255. The
tape is read until two consecutive EOF marks are reached for num-reels. At each
end of reel before the last reel, the tape is rewound and unloaded, and you are
prompted for the next reel. If you omit REELS, in-file data transfer terminates
when a single EOF mark is encountered.

{ REWINDIN | NO REWINDIN }

(for loading from a magnetic tape only) specifies whether the tape is rewound when
the end of file is read from tape. If you specify NO REWINDIN, the tape remains
positioned. The default is REWINDIN.

SHARE

(for loading from disk only) opens in-file in shared exclusion mode. Using
SHARE, you can access an in-file even if it is currently open by another
process, unless that process is open with exclusive exclusion mode. If you omit
SHARE and in-file is a table or disk file, LOAD opens in-file with protected
exclusion mode. The SHARE option cannot use certain internal performance
features and, therefore, might perform more slowly than a LOAD request without
the SHARE option.

SKIPIN num-eofs

(for loading from an unlabeled magnetic tape only) moves the tape specified as
in-file past num-eofs end-of-file marks before starting to transfer data. Specify
num-eofs as an integer from -255 through 255.

 If you specify a positive value for num-eofs, the tape is wound forward past
num-eofs EOF marks and is positioned immediately after the last EOF mark
passed.

 If you specify a negative value for num-eofs, the tape is wound backward
over (-1 times num-eofs) EOF marks, then moved forward and positioned
immediately ahead of the last EOF mark passed.

 If you specify a value of zero for num-eofs, the SKIPIN option is ignored.

If you omit the SKIPIN option, the tape remains at its current position, and the data
transfer begins with the next physical record on tape.

TRIM trim-character

(for loading from a non-SQL object only) deletes any trailing characters in each
record matching trim-character. Specify trim-character as a single ASCII
character inside quotation marks (“c”) or as a numeric literal in the range of 0
through 255 representing the byte value of the character.
HP NonStop SQL/MP Reference Manual—523352-013
L-26

LOAD Command
{ UNLOADIN | NO UNLOADIN }

(for loading from a magnetic tape only) specifies whether the tape is unloaded
when rewinding occurs. The default is UNLOADIN (the tape is unloaded when
rewound).

VARIN

(for loading only from files—not tables—with variable-length, blocked records, such
as those produced using the VAROUT option of COPY) tells LOAD that in-file
contains variable-length, blocked records that begin with a word that contains the
length of the record; the read count equals the value of that length indicator.

key-sequence-option

specifies how to load tables or files with key-sequenced file organization.

{ PARTONLY }
{ PARTOF volume-name }

(for loading files or tables with key-sequenced file organization only) directs SQL to
load only a single partition. PARTONLY affects only the output and has no effect on
how SQL reads the input file.

For an SQL table, PARTONLY directs SQL to load the partition specified as
out-file while PARTOF directs SQL to load the partition on volume
volume-name. If you specify PARTOF, you can specify any partition of the table
as out-file.

For a non-SQL object, PARTOF directs SQL to load the partition specified as
out-file. volume-name must specify the volume that contains the primary
partition. You cannot use PARTONLY with a non-SQL object.

You cannot use PARTONLY or PARTOF if the table has indexes defined for it. You
cannot use PARTONLY for an audited table if BLOCKSIZE is less than 2KB.

PARTONLYIN

(for loading files or tables with key-sequenced file organization only) directs SQL to
load only from a single partition. PARTONLYIN affects only the input and has no
effect on how SQL writes the output file.

For an SQL table and non-SQL object, setting the PARTONLYIN option directs
SQL to load from the partition specified as in-file.

SORTED

(for loading files or tables with key-sequenced file organization only) specifies that
input file records are already sorted in the key-field order of the output file and are
not to be resorted. If you omit this option and the target file is key-sequenced,
LOAD sorts the records before loading the output file.
HP NonStop SQL/MP Reference Manual—523352-013
L-27

LOAD Command
MAX num-records

(for loading files or tables—but not indexes—with key-sequenced file organization
only) specifies the number of input records as an integer from 0 through
2,147,483,647.

LOAD uses num-records to determine the size of the scratch file to be used by
the SORT process. If you specify the SORTED option, you do not have to specify
the MAX option.

If you underestimate the number of records, the sort can be significantly slower. If
you overestimate the number of records, the cost is small.

The default is MAX 50000 unless an =_SORT_DEFAULTS DEFINE with VLM ON
is in effect. With VLM ON, the default is MAX 1000000. For more information about
VLM, see =_SORT_DEFAULTS DEFINE on page Z-4.

For loading indexes, LOAD estimates the maximum number of input records based
on the size of the base table, ignoring any value you specify for MAX.

SCRATCH scratch-file

(for loading only files or tables with key-sequenced file organization) identifies the
file to be used for temporary storage by the SORT process. scratch-file is a
Guardian name.

If you omit this option, LOAD creates and uses a scratch file on a volume FastSort
chooses by its characteristics. The default initial scratch volume is usually the
volume where the SORTPROG program file resides. To override the automatic
selection algorithm, specify an initial scratch file or volume in the SCRATCH
attribute of a =_SORT_DEFAULTS DEFINE.

When loading a very large table, you might want to use a partitioned scratch file.
Use the FUP CREATE command to create the scratch file and identify the file to
LOAD with the SCRATCH option or the =_SORT_DEFAULTS DEFINE.

If you specify the SORTED option, you do not have to specify the SCRATCH
option.

For more information on how to specify and manage scratch files, see the FastSort
Manual.

DSLACK percent

(for loading only files or tables with key-sequenced file organization) specifies the
minimum percentage of space to be left in data blocks for future insertions. Specify
percent as a numeric literal from 0 through 99. If space is not available when an
insertion is made, a block split occurs.

If you omit this option, LOAD uses the SLACK percent value.
HP NonStop SQL/MP Reference Manual—523352-013
L-28

LOAD Command
ISLACK percent

(for loading only files or tables with key-sequenced file organization) specifies the
minimum percentage of space to be left in index blocks for future insertions.
Specify percent as a numeric literal from 0 through 99. If space is not available
when an insertion is made, a block split occurs.

If you omit this option, LOAD uses the SLACK percent value.

SLACK percent

for key-sequenced targets only, specifies the minimum percentage of space to be
left in both index blocks and data blocks for future insertions. Specify percent as a
numeric literal from 0 through 99. If space is not available when an insertion is
made, a block split occurs.

If you omit this option, LOAD leaves 15 percent slack space in both the data and
index blocks.

If you specify DSLACK, ISLACK, and SLACK, the LOAD utility uses the DSLACK
value for data blocks and the ISLACK value for index blocks. The SLACK value is
ignored.

move-option

specifies names of elements related to the table or file and how to map source
names to different target names.

SOURCEDICT dictionary-name

identifies the subvolume containing the DDL dictionary that contains the record or
DEF definition for an Enscribe input file. dictionary-name is a Guardian
subvolume name.

If you omit the SOURCEDICT option, LOAD assumes that the DDL dictionary
resides on the current default subvolume.

SOURCEREC ddl-record-name

identifies the name of the DDL record or DEF definition for an Enscribe input file.
ddl-record-name must be a valid DDL data name.

If you omit the SOURCEREC option, LOAD assumes that fields in the file occur in
the same order as the columns in the target table and that all variable-length
character fields are expanded to the maximum length and padded with blanks. For
information about how LOAD converts other data types if they are not explicitly
defined, see the Data type compatibility and field conversions item under
Considerations—LOAD on page L-33.
HP NonStop SQL/MP Reference Manual—523352-013
L-29

LOAD Command
TARGETDICT dictionary-name

specifies the subvolume containing the DDL dictionary that contains the DDL
record or DEF definition for an Enscribe output file. dictionary-name is a
Guardian subvolume name.

If you omit the TARGETDICT option, LOAD assumes that the dictionary resides on
the current default subvolume.

TARGETREC record-name

(for loading non-SQL objects only) specifies the DDL record name of the record or
DEF definition for outfile.

If you omit the TARGETREC option, SQL assumes that fields in out-file occur
in the same order as fields or columns in in-file and that all variable-length
character fields are expanded to the maximum length and padded with blanks. For
information about how LOAD converts other data types if they are not explicitly
defined, see the Data type compatibility and field conversions item under
Considerations—LOAD on page L-33.

MOVE { source-name TO target-name }
 { (source-name TO target-name }
 { [,source-name TO target-name] ...) }

associates a field of the source with a field in the target so that data from the
source field is loaded into the specified target field. Any column except a
system-defined primary key can be a source or target item.

source-name

is the name of a DDL elementary data field item if you are loading data from a
non-SQL object, or a column name if you are loading data from a table.

target-name

is the name of a DDL elementary data item if you are loading data to a non-SQL
object, or a column name if you are loading data to a table.

You cannot specify a DDL group name (except the VARCHAR group) or the name
of an array of fields in the MOVE option. You can, however, subscript or qualify the
name of a DDL elementary data item. You need to qualify the name if it is
ambiguous.

You cannot specify a system-defined primary key in the MOVE option.

MOVEBYNAME [ON | OFF]

specifies whether or not each field in the source record that has the same name as
a field in the target record is copied to the target field with the same name.

The DDL hyphen (-) and the SQL underscore (_) are equivalent.
HP NonStop SQL/MP Reference Manual—523352-013
L-30

LOAD Command
You can specify both MOVE and MOVEBYNAME. For fields where the two options
conflict, MOVE overrides MOVEBYNAME.

If MOVEBYNAME is ON, a DDL group representing a variable-length character
string can be loaded. For more information, see Conversion of DDL Elementary
Items on page C-103 under CONVERT.

MOVEBYNAME OFF is the default.

MOVEBYORDER [ON | OFF]

specifies whether fields in the source are loaded to fields in the target on the basis
of position. Data is loaded from the first field of the source record to the first field of
the target record (row), from the second source field to the second target field, and
so forth.

If you specify MOVEBYORDER ON, you cannot specify either the MOVE option or
MOVEBYNAME ON.

If MOVEBYORDER is ON, a DDL group representing a variable-length character
string can be loaded. For more information, see Conversion of DDL Elementary
Items on page C-103.

MOVEBYORDER ON is the default.

TRUNC[ATION] [ON | OFF]

specifies whether to truncate data from a source field that is longer than its target
field.

If TRUNC OFF is in effect, LOAD reports an error if a source field is longer than its
target field.

TRUNC OFF is the default.

REDEFINE (redefine-spec [, redefine-spec] ...)
redefine-spec is:

original-qualified-name AS redefined-qualified-name

specifies that original DDL items (groups or fields) are loaded to columns based on
redefinitions of the items. If you load from a table to a file, columns are loaded to
DDL items based on redefinitions.

Unless you include the REDEFINE option, all redefined items are loaded according
to the original definition of the original items.

original-qualified-name

identifies an original field or group in a DDL record. The name must be qualified by
the group names at all preceding levels. For example,
HP NonStop SQL/MP Reference Manual—523352-013
L-31

LOAD Command
CUSTOMER.ADDRESS.STREET-ADDRESS

is the qualified name of the STREET-ADDRESS field in the ADDRESS group.
The ADDRESS group is in the CUSTOMER group.

redefined-qualified-name

identifies a redefined field or group that corresponds to the original field or group.
The name must be qualified by the group names at all preceding levels. For
example,

CUSTOMER.ADDRESS.STREET-DETAIL

is the qualified name of the STREET-DETAIL field that redefines the
STREET-ADDRESS field.

When the field or group is loaded, the load is based on the redefinition you specify.

PARALLEL EXECUTION { ON [config-op] | OFF }
config-op is:

 CONFIG { config-file [FOR index-name] }
 { }
 { (config-file FOR index-name }
 { [, config-file FOR index-name]...) }

specifies whether to load partitions of a partitioned index in parallel. The default
(PARALLEL EXECUTION OFF) is to load partitions sequentially.

PARALLEL EXECUTION ON applies only to one partitioned index at a time. If the
loaded table has more than one partitioned index, the partitions of the first index
are loaded in parallel first. After the first index has been loaded, the partitions of the
second index are loaded in parallel, and so forth. The parallel load index operation,
therefore, loads the partitions of a physical index simultaneously; it does not load
two physical indexes simultaneously.

config-file is the name of an EDIT file that contains instructions for configuring
the processes that load the index. For information about how to specify
configuration instructions in config-file, see Parallel Index Loading on
page P-5.

FOR INDEX index-name specifies which index to load in parallel using the
configuration in the preceding config-file. index-name is the name of any
partition of the index. Each specified index must be unique.

If you specify only one configuration file in the PARALLEL EXECUTION clause and
omit the FOR index-name clause, the configuration file applies to all indexes for
the loaded table.
HP NonStop SQL/MP Reference Manual—523352-013
L-32

Considerations—LOAD
If you specify more than one configuration file in the PARALLEL EXECUTION
clause, you must specify the FOR index-name clause for each configuration file.
If at least one index is specified in the CONFIG clause, the partitions of any
indexes not specified are loaded in parallel using default configuration values.

Considerations—LOAD

 LOAD requires authority to read the source file and to write to the target file. If you
load data to or from a table, you must have authority to read the catalog in which
the table is described. If the target file is a table, LOAD requires the authority to
write to the catalog in which the table is described.

 LOAD first purges all data from the target file or table, then begins writing source
records or rows to the target file or table, converting data and reorganizing records
or rows as appropriate.

For full-table loads, LOAD sets the corrupt flag on the base table and indexes
before the load starts. If the operation finishes successfully, LOAD resets the flags.
If the operation fails, the corrupt flag indicates that the file is unusable.

If the target is a table, LOAD automatically loads any indexes on the table after it
loads the table.

When you load a very large key-sequenced file and the data must be sorted, you
might want to use a partitioned scratch file. Use FUP CREATE to create the
scratch file and the SCRATCH option of LOAD to identify it.

If the input records must be sorted, disk space for the sort scratch file and for the
output file must exist concurrently during the sorting phase.

 LOAD resembles COPY in that both transfer data from an existing source to an
existing target. The major differences between LOAD and COPY are:

 LOAD is typically used to enter initial data into an empty file. COPY is typically
used to add data to a file that already contains data.

 LOAD erases or overwrites existing records. COPY does not erase or
overwrite existing records.

 LOAD does not write to unstructured files or non-disk files but COPY does.

 COPY and LOAD provide the same in-options and move-options, but
LOAD provides additional key-sequence-options for loading
key-sequenced files. These options let you load single partitions, sort output,
and specify the amount of slack to leave in index and data blocks.

 COPY is slower than LOAD.

 You cannot execute LOAD within a user-defined TMF transaction.

You cannot load data into an audited table. If the table to be loaded is audited, you
must turn auditing off for this table before executing the LOAD utility. If you load a
partitioned table using the PARTONLY option, this restriction does not apply.
HP NonStop SQL/MP Reference Manual—523352-013
L-33

Considerations—LOAD
You should perform these operations when you need to load data into an audited
table:

1. Use ALTER TABLE to set the AUDIT attribute of the table OFF.

2. Execute the LOAD utility to load data into the nonaudited table.

3. Use ALTER TABLE to set the AUDIT attribute of the table ON.

4. Perform online dumps of all table partitions and indexes. For more information
about performing online dumps, see the TMF Operations and Recovery Guide.

If you press the Break key to interrupt a load operation, SQLCI stops the load
operation and returns the SQLCI prompt immediately, but any sort processes
started by the load operation continue to execute to completion unless you exit
SQLCI and stop them separately. Any data loaded at the time you interrupt a
load operation remains in the table or file.

If a load operation fails, the target table or file is not usable. (Depending upon
the reason for the failure, it might or might not be empty and it might or might
not be marked corrupt, but in no case is it usable.) Make any necessary
corrections in the LOAD options you specified and rerun the load operation.
Alternately, if you do not want to rerun the load operation, use the
PURGEDATA command to clear the corrupt flag.

LOAD errors can occur at the time LOAD compiles the operation or at the time
the actual data is loaded. Compile-time errors (such as references to
nonexistent fields, mapping between incompatible source and target fields, or
unmapped target fields that have no default value) always terminate the LOAD
operation. Data-loading errors (such as violations of integrity constraints,
source data that exceeds the size of the target field, or a null value in a field
mapped to a target field that does not allow null values) can be permitted or
restricted with the ALLOWERRORS option.

 Rules for using LOAD with CLASS TAPE DEFINEs or labeled tapes are described
in the discussion of the FUP COPY command in the File Utility Program (FUP)
Reference Manual.

 Loading data into Enscribe files and other non-SQL objects

A non-SQL object into which you load data must be an existing file. LOAD does not
load data into any alternate-key file associated with a non-SQL object.

The target file must have default values defined for fields that do not have source
fields mapped to them. To define a default value for a data item, use the VALUE IS
clause in the DDL description of the field.

When you load key-sequenced partitioned files, consider:

 In a partitioned file, the range of keys for the different partitions is stored in the
primary partition.
HP NonStop SQL/MP Reference Manual—523352-013
L-34

Considerations—LOAD
 To load a single partition (primary or secondary), specify the name of the
partition as out-file, and specify the name of the volume that contains the
partition in the PARTOF option. If you attempt to load a secondary partition
when you have not specified the PARTOF option, you receive an error
message.

 To load all partitions, specify the name of the primary partition as out-file
and omit the PARTOF option.

 Be careful when you use PAD and TRIM options. If your data contains the
trim-character or pad-character, data might be added or lost. Use a
pad-character or trim-character that does not appear in your data. For
example, suppose that you pad each record in a data file with zeros to a standard
size in bytes and then store the records in another file. If you later trim the trailing
zeros when you load the stored records, zeros at the end of the original data are
also trimmed.

 The target file must have default values defined for columns that do not have
source fields mapped to them. To define default values, use the DEFAULT clause
of the CREATE TABLE or ALTER TABLE command.

If a record from a non-SQL source is not long enough to supply data to all fields
mapped to target columns, each target column whose source field is missing must
have a default value defined for it.

In general, if a source record from a non-SQL source does not end exactly at a
field boundary, an error occurs. These exceptions apply:

 If the record ends in the middle of a VARCHAR field, the end of the record
defines the end of the VARCHAR data.

 If the file is an EDIT file and the record ends in the middle of a field, SQL adds
enough blanks to the end of the input record to fill the field. In such a case,
blanks must be acceptable in that column of the source record. For example, a
decimal field would not accept blanks; a character field would.

 If the record contains an array defined by an OCCURS DEPENDING ON
clause and at least one element of the array is present, the field that contains
the count must be present and the number of elements in the record must be
equal to the value of the field that contains the count.

 Move options associate source fields and target fields so that data is transferred
from each source field to its corresponding target field. Some considerations for
using move options follow:

 If you move data from a table to a table or between a non-SQL object and a
table and you do not specify MOVE, MOVEBYNAME, or MOVEBYORDER,
SQL uses MOVEBYORDER.

 You cannot specify any move options when both source and target are
non-SQL objects.
HP NonStop SQL/MP Reference Manual—523352-013
L-35

Considerations—LOAD
 Field formats

If a non-SQL object is the source or target, LOAD loads only those fields whose
DDL descriptions conform these rules:

 The field must be elementary, unless it is the special DDL group that
represents a variable-length character string, in which case the field is handled
as one field during the LOAD operation. This DDL group has this structure and
is converted to a column with data type VARCHAR:

 02 A-VARCHAR
 03 LEN PIC S9(4) COMP.
 03 VAL PIC X(len).

The subfields must be named LEN and VAL, and their pictures must be exactly
as shown.

 The field must not be a filler field.

 LOAD ignores Level-88 CONDITION-NAME clauses and Level-66 RENAMES
clauses.

 Unless you specify a REDEFINE clause in the REDEFINE option of the LOAD
command, LOAD ignores the clause and uses the original field description.

 Data type compatibility and field conversions

If you are loading data from one SQL table to another SQL table, or between an
SQL table and an Enscribe file, in either direction, the data type (including the
character set) of each source field or column must be compatible with the data type
of the corresponding target field or column.

Character fields are compatible if the associated character sets are compatible (as
described previously in this entry) and if the target field or column is large enough
to hold the values loaded from the source field. If you specify TRUNCATION ON,
the latter part of this requirement is always met.

If you do not specify TRUNCATION ON and a source field has a fixed-length
character data type, LOAD can determine whether the source field is compatible
with the target field before loading actual data. However, if a source field has a
variable-length character data type, compatibility between the source and target
field depends on the actual length of the specific records or rows in the source
data. In this case, LOAD returns an error if it encounters an incompatible record
during the actual loading.

Except for the Enscribe types COMPLEX and LOGICAL, any numeric field is
compatible with any other numeric field as long as the target field is large enough
to hold the values from the source field.

The column size for the INTERVAL data type can be found in the COLUMNS table
using a command:

 SELECT colname, colsize from COLUMNS WHERE TABLENAME LIKE
"%.table%";
HP NonStop SQL/MP Reference Manual—523352-013
L-36

Considerations—LOAD
An interval is expressed as a multiple of the smallest unit in the INTERVAL type.
For example, if the column in the table is defined as HOURS TO SECONDS, the
value of the interval "1:2:3" is 3723, which is the number of seconds in 1 hour, 2
minutes, and 3 seconds.

SQL does not support the Enscribe data types COMPLEX and LOGICAL, but an
Enscribe field of either one of these data types is compatible with an SQL column
of data type CHARACTER with the same length as the field.

The SQL date-time and INTERVAL data types have no directly corresponding
Enscribe types. (SQL date-time and INTERVAL types existed before the DDL types
of the same name but are not currently equivalent for COPY and LOAD
operations.)

When you load an Enscribe field into an SQL DATETIME column, the Enscribe
field must have the BINARY 64 data type and must contain a Julian timestamp (a
64-bit value that contains the number of microseconds between 00:00 January 1,
4713 B.C. and the date and time it represents). SQL converts the Julian timestamp
into an SQL DATETIME value and then stores the DATETIME value in the
DATETIME column.

 Implied DDL descriptions

When you load between an SQL table and a non-SQL object (in either direction)
and do not provide a DDL record for the non-SQL object, LOAD operates as if a
DDL record description constructed according to these rules was supplied, and
MOVEBYORDER is ON. The DDL record description contains one field for each
column in the table. The type of the DDL field is determined by the type of the SQL
column it corresponds to:

SQL Data Type Enscribe Data Type

CHAR (n) PIC X(n)

PIC X(n) PIC X(n)

CHAR VARYING (n)
or VARCHAR(n)

02 <field name>
 03 LEN PIC S9(4) COMP
 03 VAL PIC X(n)
The value of the LEN field describes how many
characters in the VAL field comprise the current
value of the field.

DECIMAL(n, s) PIC S9(n-s)V9(s).1

DECIMAL(n,s)
UNSIGNED

PIC 9(n-s)V9(s).

NUMERIC(n,s) BINARY 16,s. if 1 <= n and n <= 4
BINARY 32,s. if 5 <= n and n <= 9
BINARY 64,s. if 10 <= n and n <= 18
HP NonStop SQL/MP Reference Manual—523352-013
L-37

Considerations—LOAD
 When both the source and target of LOAD are SQL tables, the rules for null
values are the same as in any DML statement. When you perform a LOAD
command on one SQL table and one non-SQL object, you must give special
attention to null values, because Enscribe does not have a null value distinct
from all other values of a field.

LOAD implements a convention for indicating that a field of a non-SQL object
has the null value. The Enscribe DDL language defines NULL to be an attribute
of data fields. The NULL attribute is a one-byte value, specified either as an
integer value from 0 to 255 or as a single character in quotes. The convention
that LOAD implements is that an Enscribe field has the null value if each byte
of the field contains the value specified by the NULL attribute of that field.

For example, if the Enscribe DDL description of a file contains a field defined
as:

02 F1 PIC X(10) NULL 0.

SMALLINT BINARY 16.

SMALLINT UNSIGNED BINARY 16 UNSIGNED.

INT BINARY 32.

INT UNSIGNED BINARY 32 UNSIGNED.

LARGEINT BINARY 64.

PIC 9(d)V9(s) PIC 9(d)V9(s).

PIC S9(d)V9(s) PIC S9(d)V9(s).1

PIC 9(d)V9(s) COMP same as NUMERIC(d+s,s) UNSIGNED

PIC S9(d)V9(s) COMP same as NUMERIC(d+s,s)

FLOAT FLOAT 64.

FLOAT(n) FLOAT 32. if 1 <= n and n <= 22
FLOAT 64. if 23 <= n and n <= 54

DOUBLE PRECISION FLOAT 64

REAL FLOAT 32

DATETIME, DATE, TIME,
or TIMESTAMP

BINARY 64

INTERVAL BINARY 16. if column size = 2
BINARY 32. if column size = 4
BINARY 64. if column size = 8

1 The Enscribe data type makes the sign a separate character, that is, the sign is not embedded.

SQL Data Type Enscribe Data Type
HP NonStop SQL/MP Reference Manual—523352-013
L-38

Considerations—LOAD
then the field normally contains ASCII character data. However, if the field
contains binary 0 in each of the 10 bytes, LOAD would consider the field to
have the null value.

If the Enscribe DDL description of a file contains a field defined as:

02 F1 PIC X(10) NULL "*".

the field normally contains ASCII character data, but if the field contains "*" in
each of the 10 bytes (that is, if the field contains the value "**********"), LOAD
would consider the field to have the null value. As long as "**********" is not a
value that the field could contain in normal operation of the application, then "*"
is an acceptable NULL attribute for the field.

If the DDL description of a file contains a field defined as:

02 F1 TYPE BINARY 16 NULL 1.

the field potentially can have any value from -32768 to 32767. However, if the
field contains the value 257 (the value obtained when you place the value 1 in
each of the two bytes of the field), LOAD would consider the field to have the
null value.

When loading data from a non-SQL object to an SQL table, LOAD uses this
null value convention only if the LOAD command includes the USESQLNULLS
option. If the LOAD command includes the USESQLNULLS option, and if a
field of a record of the non-SQL object contains the field's NULL attribute value
repeated in each byte of the Enscribe field, LOAD sets the corresponding
column of the row written to the SQL table to null.

If the LOAD command does not include the USESQLNULLS option, LOAD
never interprets any field of the non-SQL object to have a null value (even if
the Enscribe DDL record description includes a NULL attribute for the field).
Therefore, even if a field of the Enscribe record contains its NULL attribute
value in each byte of the field, the field's value is copied to the column
corresponding to that field. It is not converted to the SQL null value.

When loading data from an SQL table to a non-SQL object, the
USESQLNULLS option is irrelevant. If an Enscribe field description includes
the NULL attribute, LOAD always converts an SQL null value to the Enscribe
field value obtained by placing the field's NULL attribute value into each byte of
the field. If an SQL column contains a null value and the Enscribe field
corresponding to the column does not include the NULL attribute in the
description of the field, LOAD reports file-system error 1140.

This convention for defining null values for Enscribe data sometimes is difficult
to use. You can process character fields without trouble because character
fields normally contain displayable ASCII characters in each byte. Therefore,
choosing a value for the NULL attribute of the field that is not the code of a
displayable ASCII character works easily. When you put that NULL attribute
value into each byte of the field, that gives a value for the field that is not an
expected normal value for the field. Often the field is known not to ever contain
HP NonStop SQL/MP Reference Manual—523352-013
L-39

Considerations—LOAD
some of the ASCII printable characters, in which case using one of those
characters as the NULL attribute works correctly.

For DECIMAL fields, the same thing is true, because each byte of a DECIMAL
field normally contains the ASCII code for one of the characters "0" through
"9", so it is easy to choose a value for the NULL attribute that will not yield a
null value that is the same as any expected value for the field.

For binary fields, it is sometimes difficult to choose a value for the NULL
attribute that does not yield an expected value of the field when that NULL
attribute value is placed in each byte of the field. In the example of the BINARY
16 field, above, if the NULL attribute is chosen to be 1, that gives a field value
of 257 when 1 is put into both bytes of the field. If 257 is a value that the field
could contain in normal operation of the application, NULL 1 is not a good
choice for the NULL attribute. Often, numeric fields have a limited range of
values that are expected to be in the field and that allows you to pick a NULL
attribute value which yields an out-of-range value for the field when the NULL
attribute value is placed in each byte of the field. For example, if the normal
range of values for a BINARY 16 field is 0 through 32767, a NULL attribute
value of 255 is a good choice, because putting 255 into both bytes of the field
gives a value of -1 for the field, which is not one of the normal values expected
for the field.

If a binary field has no restriction on the values it might contain, this convention
for defining a null value cannot be used for that field.

To avoid these limitations for specifying the NULL attribute value, use the
SQLNULLABLE attribute supported by DDL. Support for this attribute is
enabled in LOAD only if the SQLNULLABLE option is specified for the LOAD
command. Otherwise, LOAD ignores this attribute. Use this option only for SQL
to Enscribe and Enscribe to SQL load operations.

For SQL to Enscribe load operations, LOAD adds null indicators for all the
Enscribe fields that have the SQLNULLABLE attribute set in the DDL definition.
For LOAD operations without the TARGETREC option, the null indicators are
added for all the Enscribe fields having the corresponding SQL column as
nullable.

For Enscribe to SQL load operations, LOAD reads null indicators for all the
Enscribe fields that have the SQLNULLABLE attribute set in the DDL definition.
For LOAD operations without the SOURCEREC option, the null indicators are
read for all the Enscribe fields having the corresponding SQL column as
nullable.

In all these cases, the null indicator is of two bytes with all bits set to one to
indicate a null value, and all bits set to zero to indicate a nonnull value.
HP NonStop SQL/MP Reference Manual—523352-013
L-40

Considerations—LOAD
 These rules govern the transfer of data across character sets. A LOAD that
violates these rules terminates with an error.

For example, if the source field character set is UNKNOWN, you can copy it to a
target field associated with any character set. If the source field character set is
one of the nine supported ISO character sets, you can copy it only to a target field
associated with that same character set.

In addition, if you load double-byte data into a single-byte field or load single-byte
data into a double-byte field, the target field must be the same length, in bytes, as
the source field.

(Enscribe-to-Enscribe loads do no field-by-field conversion, so that case is not
shown in the previous table.)

 The FIRST KEY option specifies the starting point in the input table or file for a
LOAD operation. Unlike the FIRST KEY clause in the CREATE TABLE and ALTER
TABLE statements, FIRST KEY does not interpret the key value or values in terms
of the key's data type, nor does it match them with specific columns. Instead, it
accepts a series of data values and matches them byte-for-byte against the key.

Therefore, you must make sure the value or values you supply represent the
desired data in the actual key in internal SQL format. Additionally, you should
supply a complete value for each column. You can specify only a portion of the last
column in the FIRST KEY specification, but SQL uses those bytes as the leftmost
bytes, which might produce an unintended result.

Guidelines are:

Source and
Target File Types

Source Field
Character Set

Target Field
Character Set

SQL to SQL UNKNOWN Any character set

ISO88591 ISO88591

... ...

ISO88599 ISO88599

KANJI KANJI

KSC5601 KSC5601

SQL to Enscribe UNKNOWN PIC X or PIC N

ISO88591 PIC X

... ...

ISO88599 PIC X

KANJI PIC N

KSC5601 PIC N

Enscribe to SQL PIC X Any character set

PIC N Any character set
HP NonStop SQL/MP Reference Manual—523352-013
L-41

Considerations—LOAD
 You can use the FIRST KEY value option for every type of file or table except
key-sequenced files or tables.

 You should use the FIRST KEY (value, value ...) option only for
key-sequenced files or tables.

 You can specify string literals or numeric literals. A string literal occupies as
many bytes as there are characters in the literal. Each numeric literal occupies
one byte.

 To specify a value for a CHAR column, enclose the value in quotes. For
example:

FIRST KEY ("value")

To include nondisplayable characters, use the equivalent ASCII numeric form.
This example specifies the BEL control character, with a numeric value of 7 as
the fifth byte in an 8-byte key value:

FIRST KEY ("asdf",7,"jkl")

Be sure to supply enough bytes to fill the column. Pad the string with blanks or
the appropriate pad character for your application.

You must express the value of FIRST KEY value for an Enscribe
entry-sequenced file as 32 bits for block number followed by 32 bits for record
number within the block.

You must express the value in FIRST KEY value for an entry-sequenced
table as 24 bits for sector number followed by 9 bits for the record number
within the block.

 To specify a value for a VARCHAR column, handle the value as a CHAR value
and pad the value with blanks (or the appropriate pad character for your
application) to the maximum size of the VARCHAR column.

 To specify a value for a binary column (such as SMALLINT, INTEGER, or
LARGEINT), specify as many numeric literals as there are bytes in the column.
For example, each SMALLINT column is two bytes long, so specify two
numbers for each SMALLINT column. To determine the size of your target key
value, look at the binary representation of the key value and determine the
number of 8-bit groups (bytes) in the value.

One way to figure out byte values for positive values is to divide repeatedly by
256 until you reach a quotient of zero, and take the remainders in reverse
order. For example, to represent a value of 1,000,000 for a four-byte INTEGER
column:

1,000,000 divided by 256 is 3906, with a remainder of 64
 3,906 divided by 256 is 15, with a remainder of 66
 15 divided by 256 is 0, with a remainder of 15
HP NonStop SQL/MP Reference Manual—523352-013
L-42

Considerations—LOAD
To specify 1,000,000 as a four-byte INTEGER value, start with 0, followed by
15, 66, and 64:

FIRST KEY (0,15,66,64)

This example specifies a key value for a table with a four-column key of
varying types: CHAR(2), SMALLINT, CHAR(1), and SMALLINT, starting at the
values “ab”, 20, “x” and 10:

FIRST KEY ("ab", 0, 20, "x", 0, 10)

The byte string in this example is 7 bytes long—one byte for each ASCII
character and one byte for each numeric value.

 To specify a value for a numeric column (such as NUMERIC(n),
NUMERIC(n,m), PIC ((n) COMP, or PIC 9(n) COMP), determine whether the
value is represented as 2, 4, or 8 bytes. Adjust the number to an integer value
by multiplying by one factor of 10 for each digit after the implied decimal point,
then determine the number of 8-bit groups in the value. Specify each byte,
separated by commas.

This example specifies a value of 10.5 for a column declared as
NUMERIC(6,2) or PIC 9999V99 COMP:

FIRST KEY (0,0,4,26)

There are two digits after the implied decimal point, so multiply the value by
10**2 (or 100) to get 1050. Convert 1050 to byte values, to get 4,26.

 To specify an unsigned decimal column (such as DECIMAL(n) UNSIGNED),
enter the value as a string, like a CHAR value. If the value includes a fraction,
omit the decimal point but enter all digits, including leading and trailing zeros.

 To specify a negative value for a signed decimal column (such as DECIMAL(n)
or PIC S9(n)), specify the value as a numeric byte value with the initial bit set
and the remaining characters as ASCII. To do this, take the byte value of the
first digit (for example, 0 is an ASCII 48) and add it to 128, the value obtained
with the high-order bit set. Specify the remaining bytes in quotes.

This example specifies a value of -10 for a DECIMAL(4) field:

FIRST KEY (176,"010")

To specify a positive value for a signed decimal column, use the guidelines
described previously for unsigned decimal columns.

 To specify a value for a DATETIME column, use numeric byte values. The year
is stored in two bytes; the other parts are stored in one byte each. The fraction
is stored in four bytes. SQL stores only the portion of the DATETIME field that
is declared for the column.

This example specifies a value of 1993-03-01 for a DATETIME YEAR TO DAY
column:

FIRST KEY (7,201,3,1)
HP NonStop SQL/MP Reference Manual—523352-013
L-43

Considerations—LOAD
The value 7,201 for the year 1993 is obtained by dividing by 256 and using
remainders, as described in the preceding binary column discussion.

 To specify a value for an INTERVAL column, first determine the number of
bytes required. Find the entry for the column in the COLUMNS catalog table.
Do not use INVOKE output; this does not describe the internal representation
of the column. Next, form the value as described for SMALLINT, INTEGER, or
LARGEINT columns, expressed as a multiple of the smallest unit in the
interval.

 To specify a value for a floating point column, you must convert the floating
point value into a series of bytes. One way to do this is to write a program that
redefines a floating point variable as an array of bytes. Store the desired
floating point value into the variable, and then use the byte values from the
array of bytes for the FIRST KEY specification.

 Using the FIRST key-specifier ALTKEY option

These considerations apply to the use of the FIRST key-specifier ALTKEY
option:

 For nonunique alternate keys, the key includes the primary key after the last
column of the alternate key. You do not need to include primary key values in
your specification unless you want to include enough of the primary key value
to distinguish a specific row.

 To specify the value of an alternate key columns that is nullable, include two
bytes with the value 0 (for the null indicator), followed by the internal
representation for the alternate key value as described previously in Using the
FIRST KEY Option.

This example specifies an alternate key value of “KAQB” for a nullable PIC
X(4) column:

FIRST keyspec ALTKEY (0,0,"KAQB")

 To specify a null alternate key value, include two bytes with the value 255
followed by as many bytes with value 0 as needed to complete the column
value.

This example specifies an null value for a nullable PIC X(4) alternate key
column:

FIRST keyspec ALTKEY (255,255,0,0,0,0)

 Using FIRST and PARTONLYIN options

If both FIRST and PARTONLYIN options are used together, only the FIRST option
is executed. The PARTONLYIN option is ignored. To achieve results from both
options in LOAD or APPEND commands, first load the source table with the
PARTONLYIN option to a new table having the same schema, and then load or
append the new table with the FIRST option to the original target table.

 Using SHARE and PARTONLYIN options
HP NonStop SQL/MP Reference Manual—523352-013
L-44

Example—LOAD
The SQLCI LOAD command ignores the PARTONLYIN if it is combined with the
SHARE option and reads all the source partitions.

 HP encourages the use of BLOCKIN and RECIN attributes when the input file is an
unstructured file. In this case, the RECIN must be set to the actual row length and
BLOCKIN must be set to the largest multiple of the RECIN value between 1
through 32,767.

Example—LOAD

Suppose that the ODETAIL table on subvolume $VOL1.SALES is empty, and you want
to load it with data from a non-SQL object named OBASE that resides on subvolume
$VOL2.SALES. You also want to specify these requirements for the load operation:

 The source file is unsorted; a temporary scratch file named
$SPOOL.SCR.TEMP is to be used during the sorting phase of the operation.

 The source file is described by a DDL RECORD description named
OFORMAT. This RECORD entry is located in a DDL dictionary on the
$VOL2.SALES.

 Each field in the DDL RECORD description is to be mapped to a column of the
same name in the target table.

This command performs the specified LOAD:

>> LOAD $VOL2.SALES.OBASE,$VOL1.SALES.ODETAIL
+> SCRATCH $SPOOL.SCR.TEMP
+> SOURCEDICT $VOL2.SALES
+> SOURCEREC OFORMAT
+> MOVEBYNAME;

LOCK TABLE Statement
LOCK TABLE is a DCL statement that locks a whole table (or the underlying tables of a
view) and its indexes, limiting other accesses to the table and its indexes while you or
your program execute DML statements.

name

is the name (or an equivalent DEFINE) of a table or view to lock.

LOCK TABLE { name } IN { SHARE } MODE
 { EXCLUSIVE }
HP NonStop SQL/MP Reference Manual—523352-013
L-45

Considerations—LOCK TABLE
SHARE or EXCLUSIVE

specifies the locking mode:

If you request a SHARE lock on a table locked with an EXCLUSIVE lock by
another user, your request waits until the EXCLUSIVE lock is released.

If you request an EXCLUSIVE lock on a table and any part of the table is locked by
another user, your request waits until the lock is released, or until your lock request
times out and SQL returns an error message.

Considerations—LOCK TABLE

 LOCK TABLE requires authority to read the table. Locking a view requires authority
to read the view and its underlying tables.

 A SELECT statement automatically acquires SHARE locks unless you specify
BROWSE access. (DELETE, INSERT, and UPDATE automatically acquire
EXCLUSIVE locks.) You can use LOCK TABLE with the EXCLUSIVE option to
force use of EXCLUSIVE locks for a subsequent SELECT, but LOCK TABLE will
lock the whole table.

 Follow each LOCK TABLE statement with a CONTROL TABLE TABLELOCK ON
directive for the same table. This directive specifies that the table will be locked at
execution time. The compiler uses this information to select the most efficient
execution path for your data.

 Audited tables never need to be explicitly unlocked. An audited table can be locked
only within a TMF transaction and is automatically unlocked when the transaction
ends. (UNLOCK TABLE does not affect audited tables.)

You unlock nonaudited tables with UNLOCK TABLE or FREE RESOURCES. In
SQLCI (but not in host programs), nonaudited tables are sometimes unlocked
automatically. If the AUTOWORK session option (without AUDITONLY) is on,
locked nonaudited tables are unlocked after the next DML statement. Locked
tables are also unlocked when you issue COMMIT WORK or ROLLBACK WORK
(without AUDITONLY) to end a user-defined transaction, when you press the Break
key when BREAK_KEY is on, or when your SQLCI session ends.

 LOCK TABLE attempts to lock all partitions and indexes of any table it locks. If a
partition or index is not available or if the lock request times out, LOCK TABLE
displays a warning (in SQLCI) or returns the name of the unavailable partition or
index to the SQLCA (in host programs) and continues to request locks on other
partitions and indexes.

SHARE Others can read, but not delete, insert, or update the table or
view.

EXCLUSIVE Others can read with BROWSE access, but cannot read with
STABLE or REPEATABLE access and cannot delete, insert, or
update.
HP NonStop SQL/MP Reference Manual—523352-013
L-46

Examples—LOCK TABLE
Examples—LOCK TABLE

 This example locks an audited table with an EXCLUSIVE lock (presumably at a
time when few users need access to the database) to perform an update. The
CONTROL TABLE statement ensures the most efficient operation. COMMIT
WORK automatically unlocks the table when it ends the transaction.

>> VOLUME $VOL1.PERSNL;
>> BEGIN WORK;
>> CONTROL TABLE EMPLOYEE TABLELOCK ON;
>> LOCK TABLE EMPLOYEE IN EXCLUSIVE MODE;
--- SQL operation complete
>> UPDATE EMPLOYEE SET SALARY = SALARY * 1.05
+> WHERE JOBCODE <> 100;
--- 45 row(s) updated.
>> COMMIT WORK;

 This example deletes all rows of the JOB table with a job code that is not assigned
to any employee. Suppose that the JOB table is nonaudited and you want locks
held for several transactions. Because the EMPLOYEE table is audited and you
are locking it, you must define a TMF transaction. At the end of the transaction, the
EMPLOYEE table lock is released by the system. Unless AUTOWORK is set to
ON without AUDITONLY, you must use the UNLOCK TABLE command to release
the lock on the JOB table because the table is nonaudited.

>> VOLUME $VOL1.PERSNL;
>> BEGIN WORK;
>> CONTROL TABLE JOB TABLELOCK ON;
>> CONTROL TABLE EMPLOYEE TABLELOCK ON;
>> LOCK TABLE JOB IN EXCLUSIVE MODE;
--- SQL operation complete
>> LOCK TABLE EMPLOYEE IN SHARE MODE;
--- SQL operation complete
>> DELETE FROM JOB WHERE JOBCODE NOT IN (SELECT DISTINCT
+> JOBCODE FROM EMPLOYEE);
--- 8 row(S) deleted.
>> COMMIT WORK AUDITONLY;
 ...
>> UNLOCK TABLE JOB;
--- SQL operation complete

 This example locks a nonaudited table (SALES.PARTS) and then explicitly unlocks
it after processing:

EXEC SQL
 LOCK TABLE SALES.PARTS IN EXCLUSIVE MODE;
EXEC SQL
 CONTROL TABLE SALES.PARTS TABLELOCK ON;
...
EXEC SQL
 UNLOCK TABLE SALES.PARTS;
EXEC SQL
 CONTROL TABLE SALES.PARTS TABLELOCK ENABLE;
HP NonStop SQL/MP Reference Manual—523352-013
L-47

Locking
Locking
To protect the integrity of the database, SQL provides locks on data. For example, SQL
locks a row when an executing process (either SQLCI or a host program) accesses a
row to modify it. The lock ensures that no other process simultaneously modifies the
same row.

Default locking normally protects data but reduces concurrency. If your application has
problems with lock contention (as indicated by MEASURE LOCKWAIT counts or by the
value in the SQLSA WAITS field), you might want to use options that control the
characteristics of locks.

Locks have these characteristics:

 Duration (short or long)

 Granularity (table lock, partition lock, subset of rows, or single row)

 Mode (exclusive, shared, no lock)

 Holder (transaction or process)

Lock Duration

Lock duration controls how long a lock is held. You can specify lock duration only for
the read portion of a statement. All write locks are held until the end of the transaction
(for audited tables) or until the program releases the locks (for nonaudited tables).

You choose lock duration by specifying access options: STABLE for a short time or
REPEATABLE for a long time. For more information, see Access Options on page A-1.

You can also use the LOCK TABLE statement to lock a table. How long the lock is held
depends on whether the locked table is audited or nonaudited and whether the data is
locked by a cursor.

Table L-1 on page L-49 lists SQL operations that release locks and shows the effects
of STABLE and REPEATABLE access mode on lock duration. The table assumes
default locking (shared locks for reads and exclusive locks for updates) and also
assumes the locking strategy uses the minimum number of locks. SQL can use
additional locks (either row locks or table locks) if it determines that additional locks are
necessary to protect data integrity or to provide faster data access.

If a partitioned table is randomly accessed with STABLE ACCESS, the lock is held until
the next access to the same partition (not the next access to the table). This can cause
a lock to be held longer than expected.

When using sequential access with Sequential Block Buffering and STABLE access,
SQL holds the lock until it attempts to access a row that is not in the buffer. Thus, rows
at the beginning of the buffer remain locked while subsequent rows are being fetched
by the program.
HP NonStop SQL/MP Reference Manual—523352-013
L-48

Lock Duration
Lock Granularity

Lock granularity controls the number of rows affected by a single lock. The level of
granularity can be a table, a partition, a subset of rows, or a single row.

The LOCKLENGTH file attribute for a table or index controls the granularity of locks for
the table or index. You can control locks for an entire table and its associated indexes
with LOCK TABLE and CONTROL TABLE; otherwise, SQL determines the granularity
by considering the access option you specify, the table size and definition, and the
estimated percentage of rows the query will access.

SQL can automatically increase the granularity of locks for a particular transaction,
depending on processing requirements. This is called lock escalation. For example, if a
process holds many row locks in different partitions of a partitioned table, SQL might
escalate the row locks to a table lock. If a process holds many row locks on the same

Table L-1. Lock Release Summary

Audited Tables/Views Nonaudited Tables/Views

Operation STABLE REPEATABLE STABLE REPEATABLE

SELECT INTO RA KA RA KA

FETCH cursor
updateable 1

RS,KE2 KA RA KA

FETCH cursor
not updateable

RS3 KA RA KA

Set UPDATE or
DELETE

RS,KE KA RA KA

INSERT KA KA RA KA

CLOSE cursor RS,KE KA RA KA

FREE RESOURCES RS,KE KA RA RA

FREE RESOURCES
AUDIT ONLY

RS,KE KA N.A. N.A.

UNLOCK TABLE N.A. N.A. RA RA

TMF transaction
abort/commit

RA RA RA RA

COMMIT or
ROLLBACK WORK
 AUDITONLY

RA RA N.A. N.A.

A Any type of lock R Release locks
E Exclusive locks S Shared locks
K Keep locks

Example: RS,KE is release shared locks; keep exclusive.

1 Locks for UPDATE and DELETE through a cursor are processed through FETCH operations.
2 The lock is kept if the record is updated.
3 The lock is kept if the record is deleted.
HP NonStop SQL/MP Reference Manual—523352-013
L-49

Lock Mode
partition of a partitioned table, SQL might escalate the row locks to a partition lock. A
partition lock applies only to the specific partition and not to the entire table. For a
nonpartitioned table, a partition lock is a table lock. If you do not want lock escalation,
use the TABLELOCK OFF option on the CONTROL TABLE statement.

Lock Mode

Lock mode controls access to locked data. You can control lock mode only for rows
that are read.

SHARE lock mode allows multiple users to lock and read the same data. EXCLUSIVE
lock mode limits access to locked data to the lock holder and to other users who
specify BROWSE (but not STABLE or REPEATABLE) access. Lock modes are the
same whether you choose STABLE or REPEATABLE access.

Lock mode is sometimes determined by SQL: SQL ensures that an exclusive lock is in
effect for write operations and usually acquires a shared lock for operations that
access data without modifying it. You choose lock mode in these instances:

 For queries only, you can choose BROWSE access.

 On the LOCK TABLE statement, you can choose either EXCLUSIVE or SHARE.

 On the SELECT statement, you can specify IN EXCLUSIVE MODE or IN SHARE
MODE.

Lock Holder

The lock holder of an object depends on whether the object is audited or non-audited
as follows:

 Locks on audited objects are held by the TMF transaction in which the request to
access the data was made. The Transaction ID of the TMF Transaction that locked
the object is the lock holder.

 Locks on nonaudited objects are held by the process that opens the object: either
SQLCI or a host program.

Process ID or Process name of the process (host program/SQLCI) which has
locked the object, is the lock holder.

The lock holder can release a lock only under the following scenarios:

 A TMF transaction releases the locks it holds at the end of the transaction.

 A process holds a lock over the duration of one (or more) transactions, or the
process releases the lock before the transaction completes. A process releases
the locks it holds by issuing statements that affect the locks.

An AUDITONLY option is available for the SQLCI AUTOWORK session command and
for these SQL statements:

COMMIT WORK
HP NonStop SQL/MP Reference Manual—523352-013
L-50

LOCKLENGTH File Attribute
FREE RESOURCES

ROLLBACK WORK

If you specify AUDITONLY, the process releases locks on audited objects only. You can
use this option if you want to hold locks on nonaudited objects throughout a series of
transactions.

Stopping or abnormal termination of a process frees any locks the process holds on
nonaudited tables. CLOSE and FREE RESOURCES release locks on nonaudited
tables.

LOCKLENGTH File Attribute
LOCKLENGTH is a Guardian file attribute that specifies the number of leading bytes
used to identify rows for generic locking. LOCKLENGTH applies to key-sequenced
tables and indexes.

num-bytes

is an integer between 0 and the number of bytes in the key that specifies the
number of leading bytes in the primary or clustering key (including SYSKEY if it
exists) to use to identify rows for generic locking.

LOCKLENGTH 0 (the default) indicates that the entire length of the primary or
clustering key should be used.

Consideration—LOCKLENGTH

Increasing LOCKLENGTH increases lock granularity, reducing the number of locks
issued and the amount of lock escalation. Reducing the number of locks improves
performance but reduces concurrency, because one lock controls a larger group of
rows.

Example—LOCKLENGTH

This example creates a table with a LOCKLENGTH that fits the first column of a two-
column key. Each row represents part of an order, and the first column is the order
number. When order-processing applications access the table, SQL issues a single
lock against all rows for an order. (The default LOCKLENGTH would cause a separate
lock for each row in the order.)

CREATE TABLE SALES.ODETAIL (
 ORDERNUM NUMERIC (6) UNSIGNED, —Column length
 PARTNUM NUMERIC (4) UNSIGNED, 6 bytes
 QTY_ORDERED NUMERIC (5),
 PRIMARY KEY (ORDERNUM , PARTNUM) —Key declaration

LOCKLENGTH num-bytes
HP NonStop SQL/MP Reference Manual—523352-013
L-51

LOG Command
)
 LOCKLENGTH 6; —Lock length 6 bytes

LOG Command
LOG is an SQLCI command that starts or stops logging to a file. SQLCI logs the
commands you enter and the information the commands display. You can also use an
option to log only the commands. This option allows you to create an SQLCI OBEY
command file from the log file directly. SQLCI does not log the FUP, EDIT, PERUSE,
and TEDIT commands.

log-file

identifies the current log file and starts logging. For log-file, specify a device,
process, or disk file. You cannot log to any current output file (such as the INVOKE
TO, OUT, or OUT_REPORT file) or to any open file other than a terminal or
process. If you specify a nonexistent disk file, an EDIT file is created. When you
enter the LOG command, the previous log file is closed.

To stop logging and close the log file, omit log-file.

COMMANDS

allows SQLCI to log the commands only.

CLEAR

clears the new log file of all existing data before logging begins. If you omit this
option, logging information is appended to the file. CLEAR is ignored unless the file
is a disk or process file.

This information is written to the log file:

 All text that SQLCI displays or prints, including output from commands such as
SHOW, data from SELECT commands, and diagnostic messages.

 All lines you type (preceded by the current prompt).

The final version of a command is written to the log file without the extra characters
you enter while making changes with FC.

Example—LOG

This example starts logging SQLCI output to the file SUBV2.MAYLOG:

>> LOG SUBV2.MAYLOG;

LOG [log-file [COMMAND[S]] [CLEAR]] ;
HP NonStop SQL/MP Reference Manual—523352-013
L-52

LOGICAL_FOLDING Option
LOGICAL_FOLDING Option
LOGICAL_FOLDING is an option of the SQLCI report writer SET LAYOUT command
that specifies where to break a default detail line (one for which there is no DETAIL
command) that does not fit within the report width.

ON

breaks the line before the first print item that does not fit. ON is the default.

OFF

breaks the line exactly at the right margin, even if the break is in the middle of a
print item.

Considerations—LOGICAL_FOLDING

 The default right margin is the width of the current output device (OUT_REPORT
or OUT file). The default left margin is 0. Report width is right margin minus left
margin.

 The LOGICAL_FOLDING option affects only lines that are folded because of the
report width. LOGICAL_FOLDING does not affect print lines that wrap because of
the output device length; such folding is controlled by the WRAP option.

 LOGICAL_FOLDING does not affect output lines other than default detail lines. For
example, report writer displays output from the REPORT TITLE, BREAK TITLE,
and REPORT FOOTING commands according to the command specifications,
regardless of the setting of the LOGICAL_FOLDING option.

Example—LOGICAL_FOLDING

This example prints a report with LOGICAL_FOLDING ON (by default), and then with
LOGICAL_FOLDING OFF (after SET LAYOUT):

>> SET LAYOUT RIGHT_MARGIN 60;
>> SET LIST_COUNT 2;
>> SELECT * FROM INVENT.SUPPLIER;

SUPPNUM SUPPNAME STREET
------- ------------------ ----------------------
CITY STATE POSTCODE
-------------- ------------ ----------

 1 NEW COMPUTERS INC 1800 KING ST.
SAN FRANCISCO CALIFORNIA 94112
 2 DATA TERMINAL INC 2000 BAKER STREET
LAS VEGAS NEVADA 66134

S> SET LAYOUT LOGICAL_FOLDING OFF;
S> LIST FIRST 2;

LOGICAL_FOLDING { ON }
 { OFF }
HP NonStop SQL/MP Reference Manual—523352-013
L-53

Example—LOGICAL_FOLDING
SUPPNUM SUPPNAME STREET CI
------- ------------------ ---------------------- --
TY STATE POSTCODE
------------ ------------ ----------

 1 NEW COMPUTERS INC 1800 KING ST. SA
N FRANCISCO CALIFORNIA 94112
 2 DATA TERMINAL INC 2000 BAKER STREET LA
S VEGAS NEVADA 66134
HP NonStop SQL/MP Reference Manual—523352-013
L-54

M
MAX Function

MAX is a function that determines the maximum value within a set of values. The type
of the result depends on the type of the argument.

[ALL] expression

specifies an expression that indicates the set of values from which to determine a
maximum value.

The expression must include a value from each row of the result table (that is, at
least one column from the result table), and cannot include the COUNT, AVG, MIN,
or SUM functions, or another MAX function. For example,

MAX (SALARY)
MAX (PARTCOST * QTY_ORDERED)

ALL is an optional keyword that does not change the meaning of the clause. SQL
uses all rows (whether or not you specify ALL) unless you use the DISTINCT
clause, described next.

DISTINCT column

specifies a set of distinct column values from each row of the result table to
determine a maximum value. The column cannot be a column from a view that
corresponds to an expression in the view definition.

If you specify DISTINCT in more than one MAX function in the same statement,
the functions must reference the same column.

Duplicate rows are eliminated only if you specify DISTINCT; otherwise, all rows are
included, whether or not you specify ALL.

Specifying DISTINCT with the MAX function does not restrict the use of DISTINCT
with AVG, SUM, MIN, or COUNT.

Considerations—MAX

 If you specify an expression or column with a character data type as the argument
to MAX, the collation used for the comparison is the collation associated with the
argument. SQL uses a binary comparison if no collation is associated with the
argument.

MAX { ([ALL] expression) }
 { (DISTINCT column) }
HP NonStop SQL/MP Reference Manual—523352-013
M-1

Example—MAX
 MAX is evaluated after eliminating all null values from the aggregate set. If the
result set is empty, MAX returns a null value.

 A host variable that receives the result of the MAX function must have an indicator
variable to handle a possible null value. (For more information about using
indicator variables, see the SQL/MP programming manual for your host language.)

Example—MAX

To display the maximum value in the SALARY column, type:

>>SELECT MAX (SALARY) FROM PERSNL.EMPLOYEE;
(EXPR)

 175500.00
--- 1 row(s) selected.

MAXEXTENTS File Attribute
MAXEXTENTS is a file attribute that specifies the maximum number of extents that
can be allocated for an unpartitioned file or for each partition of a partitioned file.
MAXEXTENTS applies to key-sequenced, relative, and entry-sequenced tables and to
indexes.

num-extents

is an integer from 1 to 959 (but not less than the number of extents currently
allocated for the file) that specifies the maximum number of extents that can be
allocated. Format 1 partitions allow MAXEXTENTS up to 944. Format 2 partitions
allow MAXEXTENTS up to 919. These limits are enforced by DP2 when you
attempt to allocate the 945th (Format 1) or 920th (Format 2) extent.

The default is MAXEXTENTS 160.

 SQL catalog manager enforces the following limits when the define
=_SQL_LATEST_MAXEXTENTS is added:

 For FORMAT 1 partitions (whether primary or secondary), maximum allowed
MAXEXTENTS limit is 944.

 For FORMAT 2 partitions (whether primary or secondary), maximum allowed
MAXEXTENTS limit is 919.

Considerations—MAXEXTENTS

 You can alter MAXEXTENTS for any partition of an index or a key-sequenced table
but only for the last partition of a relative or entry-sequenced table. (For tables in
ascending order, the last partition is the one with the highest range of FIRST KEY

MAXEXTENTS num-extents
HP NonStop SQL/MP Reference Manual—523352-013
M-2

Message File
values; for tables in descending order, the last partition is the one with the lowest
range of FIRST KEY values.)

 It is generally not efficient to have partitions with hundreds of extents, so you
should keep MAXEXTENTS well below the allowed maximum value. If necessary,
increase the number of partitions.

In addition, the maximum value for MAXEXTENTS might be lower in future
releases. If that occurs, existing files with higher MAXEXTENTS values will still be
valid, but those files will not be able to add additional extents beyond the current
maximum value of MAXEXTENTS.

 During certain DDL operations, such as CREATE INDEX requests and ALTER
TABLE or ALTER INDEX one-way move partition requests, SQL changes the value
of MAXEXTENTS during the DDL operation and then, at the end of the operation,
resets MAXEXTENTS to the user-specified value or the actual extents allocated,
whichever is larger. If the new value exceeds the user-specified value, SQL reports
the new value in a warning message at the end of the DDL operation.

Message File
The SQL message file is a key-sequenced file that contains error messages, warning
messages, and help text for NonStop SQL/MP. The default message file,
$SYSTEM.SYSTEM.SQLMSG, contains messages and help text in U.S. English.

For information about specifying an alternate message file, see =_SQL_MSG_node
DEFINE on page Z-18.

MIN Function
MIN is a function that returns the minimum value within a set of values. The type of the
result is the type of the argument.

[ALL] expression

specifies an expression that indicates the set of values from which to determine a
minimum value.

The expression must include a value from each row of the result table (that is, at
least one column from the result table), and cannot include the COUNT, AVG,
MAX, or SUM functions, or another MIN function. For example,

MIN (SALARY)
MIN (PARTCOST * QTY_ORDERED)

MIN { ([ALL] expression) }
 { (DISTINCT column) }
HP NonStop SQL/MP Reference Manual—523352-013
M-3

Considerations—MIN
ALL is an optional keyword that does not change the meaning of the clause. SQL
uses all rows (whether or not you specify ALL) unless you use the DISTINCT
clause, described next.

DISTINCT column

specifies a set of distinct column values from each row of the result table to
determine a minimum value. The column cannot be a column from a view that
corresponds to an expression in the view definition.

If you specify DISTINCT in more than one MIN function in the same statement, the
functions must reference the same column.

Duplicate rows are eliminated only if you specify DISTINCT; otherwise, all rows are
included, whether or not you specify ALL.

Specifying DISTINCT with the MIN function places no restrictions on the use of
DISTINCT with AVG, SUM, MAX, or COUNT.

Considerations—MIN

 If you specify an expression or column with a character data type as the argument
to MIN, the collation used for the comparison is the collation associated with the
argument. SQL uses a binary comparison if no collation is associated with the
argument.

 MIN is evaluated after eliminating all null values from the aggregate set. If the
result set is empty, MIN returns a null value.

 A host variable that receives the result of the MIN function must have an indicator
variable to handle a possible null value. (For more information about using
indicator variables, see the SQL/MP programming manual for your host language.)

Example—MIN

To determine the minimum value in the SALARY column, type:

>>SELECT MIN (SALARY) FROM PERSNL.EMPLOYEE;
(EXPR)

 12000.00
--- 1 row(s) selected.

MODIFY CATALOG
The MODIFY CATALOG command has two options that can be specified as the
replace-spec:

 MODIFY CATALOG with REPLACE NODENAME

 MODIFY CATALOG with REPLACE VOLUME
HP NonStop SQL/MP Reference Manual—523352-013
M-4

MODIFY CATALOG with REPLACE NODENAME
MODIFY CATALOG with REPLACE NODENAME

The MODIFY CATALOG with REPLACE NODENAME command modifies node names
in SQL/MP catalogs on the local node. A catalog can be a user-defined catalog or the
system catalog.

This command is intended for use when physically moving a disk from one node in
your network to another node, or when system loading a node with a new node name
or number. When this happens, changes are not automatically reflected in the catalogs
and file labels. The internal consistency of the database is lost; catalogs (and objects
they describe) cannot be accessed. The MODIFY commands (LABEL, CATALOG, and
REGISTER) let you change the database to reflect the new information.

Before requesting a MODIFY CATALOG with REPLACE NODENAME operation for a
catalog, check that the file labels of the catalog are accessible. If necessary, perform a
MODIFY LABEL with REPLACE NODENUMBER operation on all catalog tables in the
catalog first, if necessary.

catalog-list-1 [EXCLUDE catalog-list-2]

identifies one or more SQL catalogs to modify. The catalogs need not be registered
in the system catalog at the time the MODIFY CATALOG with REPLACE
NODENAME command is run.

MODIFY [DICTIONARY] CATALOG target-spec replace-spec

 WITH node-name [[,] option] ... ;

target-spec is:

 catalog-list-1 [EXCLUDE catalog-list-2]

replace-spec is:

REPLACE NODENAME node-name [(volumeset [,volumeset]
 [EXCLUDE volumeset [,volumeset]])]

option is:

 [| ALLOWERRORS [OFF | ON | number-of-errors] |]
 [| [NO] LISTALL |]
 [| DETAIL [MATCH | ALL] REPORT [TO EMS-Collector]|]
 [| [ON]|]
 [| [OFF]|]
 [| CHECKONLY |]

catalog-list-n (where n = 1,2) is:

 { catalogset }
 { (catalogset [, catalogset] ...) }
HP NonStop SQL/MP Reference Manual—523352-013
M-5

MODIFY CATALOG with REPLACE NODENAME
To specify a single catalog, enter the name of the catalog (the name of the
subvolume that contains the catalog). To specify multiple catalogs in a
catalogset, use wild-card characters. You can use these wild-card characters:

For example, $DATA.* specifies all catalogs on the volume $DATA, and *.*
specifies all catalogs on the node. *VOL* matches NEWVOL, OLDVOL1, and
VOL45. VOL? matches VOL1 and VOLX, but not VOL or VOL48.

The MODIFY CATALOG with REPLACE NODENAME command assumes that a
subvolume contains a valid catalog if the subvolume contains the catalog table
TABLES (file code must be 581). The optional EXCLUDE catalog-list-2
clause specifies catalogs to be excluded from catalog-list-1.

REPLACE NODENAME node-name [(volumeset [,volumeset]
 [EXCLUDE volumeset [,volumeset]])]

specifies the node name to replace in the catalog tables. SQL catalog tables
contain file names, and those file names contain node names. Node names are
changed based on the volumeset list. Each node name is replaced by the node
name specified in the WITH node-name clause.

If the first volumeset list is specified, SQL replaces the node name only if it
matches the node name specified by node-name and if the volume name in the
file name matches one of the volume names specified in the volumeset list. The
optional EXCLUDE volumeset list clause specifies volumes to be excluded from
the first volumeset list.

node-name must be preceded by a backslash character and must consist of from
one to seven alphanumeric characters. The first character must be alphabetic. You
can specify either uppercase or lowercase alphabetic characters; alphabetic
characters are upshifted before the comparison and substitution process.

The first volumeset list specifies a volume or a set of volumes. To specify a single
volume, enter the name of the volume. To specify multiple volumes, use wild-card
characters. You can use these wild-card characters:

For example, $DAT* specifies all volumes that begin with $DAT. *VOL* matches
NEWVOL, OLDVOL1, and VOL45. VOL? matches VOL1 and VOLX, but not VOL
or VOL48.

* Matches 0 to 8 characters in the position where it appears. Specifying only
an asterisk indicates any name is acceptable. To specify all catalogs, use
either $*.* or *.*

? Matches any single character

* Matches 0 to 8 characters in the position where it appears. Specifying only
an asterisk indicates any name is acceptable. To specify all volumes, use
either $* or *

? Matches any single character
HP NonStop SQL/MP Reference Manual—523352-013
M-6

MODIFY CATALOG with REPLACE NODENAME
The maximum number of volumesets that can be specified in this clause is 10 for
each volumeset list. For example, this clause is invalid because it has 11
volumes in the first volumeset list:

($A*,$B*,$C*,$D*,$E*,$F*,$G*,$H*,$I*,$J*,$K* EXCLUDE $Z*)

If this clause is not specified, only the node name is considered.

WITH node-name

specifies the node name to replace occurrences of the node name specified in
replace-spec.

node-name must be preceded by a backslash character and consist of from one
to seven alphanumeric characters. The first character must be alphabetic. Either
uppercase or lowercase alphabetic characters can be specified; alphabetic
characters are upshifted before the comparison and substitution process.

ALLOWERRORS [OFF | ON | number-of-errors]

determines handling of nonfatal errors. MODIFY reports two classes of errors: fatal
errors and nonfatal errors. The MODIFY CATALOG with REPLACE NODENAME
command terminates immediately after reporting a fatal error. Nonfatal errors are
handled depending on the value of the ALLOWERRORS option:

If you specify ALLOWERRORS without ON, OFF, or the number of errors,
ALLOWERRORS ON is the default.

If you do not specify the ALLOWERRORS option, ALLOWERRORS OFF is the
default.

When MODIFY CATALOG with REPLACE NODENAME continues processing after
a nonfatal error has occurred, it advances to the next SQL catalog.

[NO] LISTALL

specifies how much detail MODIFY CATALOG with REPLACE NODENAME writes
to the current OUT file. If LISTALL is specified, MODIFY CATALOG with REPLACE
NODENAME reports the name of each SQL catalog considered for modification
and whether or not the catalog was modified. If NO LISTALL is specified, only
summary is reported.

OFF The MODIFY CATALOG with REPLACE NODENAME
command terminates immediately after the first
nonfatal error is encountered.

ON THE MODIFY CATALOG with REPLACE
NODENAME command continues, regardless of the
number of nonfatal errors encountered.

number-of-errors The MODIFY CATALOG with REPLACE NODENAME
command continues until the number of nonfatal
errors exceeds value of number-of-errors.
HP NonStop SQL/MP Reference Manual—523352-013
M-7

Considerations—MODIFY CATALOG with
REPLACE NODENAME
LISTALL is the default.

DETAIL [MATCH | ALL] REPORT [TO EMS-Collector]
 [ON]
 [OFF]

specifies that detail about the MODIFY CATALOG with REPLACE NODENAME
operation is to be sent in event messages to a valid EMS collector.

If MATCH is specified, detailed is reported about SQL catalog tables specified in
target-spec that contain node names that match the criteria specified in the
REPLACE clause. If ALL is specified, detailed is reported about all SQL catalog
tables specified in target-spec.

MATCH is the default.

For information on report options, see REPORT Option on page R-3.

CHECKONLY

specifies that the catalog tables specified in target-spec should be checked to
see if they contain node names that match the criteria specified in the REPLACE
clause. No catalog tables are changed. The CHECKONLY option enables you to
estimate the effect of running the MODIFY CATALOG with REPLACE NODENAME
command before actually modifying the catalog tables.

Considerations—MODIFY CATALOG with REPLACE NODENAME

 You must be logged on as the super ID to run a MODIFY CATALOG with
REPLACE NODENAME command unless you specify the CHECKONLY option. If
you specify the CHECKONLY option, you must have authority to read the catalogs.

 SQL uses the TMF subsystem to protect the integrity of the database during the
MODIFY operation. MODIFY CATALOG with REPLACE NODENAME commands
are not allowed inside a user-defined transaction.

One system-defined transaction is used for each set of catalog tables modified. If
an error occurs while MODIFY CATALOG with REPLACE NODENAME is
modifying a catalog table, the changes made to that catalog table and all other
tables in the same catalog are backed out. However, changes that have been
made to other catalogs during the same instance of the MODIFY CATALOG with
REPLACE NODENAME command are not backed out. Thus, for one set of catalog
tables, either the node name is changed in all the tables in the set or it is not
changed in any of the tables in the set.

 The MODIFY CATALOG with REPLACE NODENAME Command is one of a set of
commands that uses the MODIFY DICTIONARY utility. The other related
commands are MODIFY CATALOG with REPLACE VOLUME (to replace volume
name in catalog), MODIFY LABEL with REPLACE NODENUMBER (to replace
node number in file labels), MODIFY LABEL with REPLACE VOLUME (to replace
HP NonStop SQL/MP Reference Manual—523352-013
M-8

Considerations—MODIFY CATALOG with
REPLACE NODENAME
volume name in file label), and MODIFY REGISTER Command (to register user-
defined catalogs in the local system catalog).

 Multiple MODIFY commands (including LABEL, CATALOG, and REGISTER
commands) can be run concurrently on the same node as long as each command
is processing a different set of files or catalogs. For example, if the node number is
changed on a node that has an SQL database spread out over five volumes, five
MODIFY LABEL commands can be started concurrently, each specifying a
different volume to be modified. Note that in such a case, because the node name
did not change, it would not be necessary to run any MODIFY CATALOG with
REPLACE NODENAME commands.

 Before requesting a MODIFY CATALOG with REPLACE NODENAME operation for
a catalog, do a MODIFY LABEL with REPLACE NODENUMBER operation on all
catalog tables in the catalog.

 MODIFY CATALOG with REPLACE NODENAME locks one catalog table at a time.
The file labels of the catalog tables are not locked. Do not request DDL or update
operations until the node names are modified, including operations on partitions
and on dependent objects on remote nodes.

 The MODIFY DICTIONARY utility does not handle:

 Remote nodes. If you specify a remote file name or catalog name, the MODIFY
command reports a nonfatal error. Therefore, each node with dependent
objects or partitioned objects must have a version of NonStop SQL/MP that
supports MODIFY CATALOG with REPLACE NODENAME commands.

 User-defined SQL object files. For example, MODIFY CATALOG with
REPLACE NODENAME does not modify a node name stored in a column of a
user-defined table.

 Names stored in SQL object program files. SQL object programs can refer to
an SQL object by using either a DEFINE or the Guardian name of the object. If
DEFINEs are used, both the DEFINE name and the associated Guardian
name of the SQL object are stored in the object program file—not in the file
label. If Guardian names are used, the Guardian names are stored in the
object program file in internal network form.

 Node names in Enscribe files. If a disk containing an alternate key file or a
partition file is moved to a different node, the FUP ALTER command can be
used to change the Enscribe file label that references the file that moved. Note
that changes must be made to the Enscribe file labels that point to the disk that
moved, not to the alternate key file label or partition file label that resides on
the disk that moved.

 Dependent objects. The MODIFY CATALOG with REPLACE NODENAME
command does not modify information about dependent objects that reside in
other catalogs unless the other catalogs are specified.

It is the responsibility of the user to know how the database is distributed.
Document the MODIFY commands that need to be run, the nodes they need to
HP NonStop SQL/MP Reference Manual—523352-013
M-9

Considerations—MODIFY CATALOG with
REPLACE NODENAME
be run on, before they are used. Prepare scripts that run the necessary
MODIFY commands. When you add a new dependent object to the database,
update the scripts.

While the node is in a consistent state, you can use the DISPLAY USE OF
command to locate dependent objects. After MODIFY commands are run, use
the VERIFY utility to verify that the database is in a consistent state.

 Partitioned objects. For a partitioned SQL object, each volume that contains a
partition of the object must be specified separately. MODIFY CATALOG with
REPLACE NODENAME does not automatically modify information about all
partitions of a partitioned object.

It is the responsibility of the user to know how the database is partitioned.
While the node is in a consistent state, issue a SELECT from the PARTNS
partitions table to locate other partitions. Prepare scripts that run the necessary
MODIFY commands. After running the MODIFY commands, use the VERIFY
utility to verify that the database is in a consistent state.

 MODIFY CATALOG with REPLACE NODENAME does not mark SQL object
programs as invalid in either the catalog or in the object program file label.

 MODIFY CATALOG with REPLACE NODENAME does not change the
redefinition timestamp in either the catalog or the file label.

 You can use DEFINE names in programs to specify names of catalogs, tables,
views, indexes, partitions, and other programs. The current DEFINE set at the
time the program is SQL compiled is saved in the object program file. If objects
or object programs specified by the DEFINEs are moved between the time that
the program is SQL compiled and the time that the program is run, the
DEFINEs must be changed to reflect the new location of the objects and object
programs. This guideline is true regardless of how the database was moved
and regardless of whether the MODIFY DICTIONARY utility was used to
modify the node names and numbers.

The MODIFY DICTIONARY utility does not modify node names in the DEFINE
set stored in the object program file. After the DEFINEs are changed by the
user, if automatic recompilation is enabled, the programs are automatically
recompiled using the new DEFINEs.

 The MODIFY DICTIONARY utility is not intended to correct the situation where a
disk containing objects is moved to a new node, but the disk containing the
associated catalog is not moved to the new node.

 The MODIFY CATALOG with REPLACE NODENAME command returns a nonfatal
versioning error if an SQL catalog has a version newer than the version of
MODIFY that is accessing it, or if the catalog has a version newer than the version
of SQL/MP system software on the node where the catalog resides.
HP NonStop SQL/MP Reference Manual—523352-013
M-10

Examples—MODIFY CATALOG with REPLACE
NODENAME
Examples—MODIFY CATALOG with REPLACE NODENAME

These examples illustrate the use of the REPLACE clause.

 In this example, the node name \TESS is replaced with the node name \FOXII if
the first three characters of the volume name are $DA:

REPLACE NODENAME \TESS ($DA*) WITH \FOXII

 In this REPLACE clause, the node name \TESS is replaced with the node name
\FOXII if the volume name is either $SAM or $CAT or if the first three characters of
the volume name are $DA:

REPLACE NODENAME \TESS ($SAM,$CAT,$DA*) WITH \FOXII

 In this REPLACE clause, the node name \TESS is replaced with the node name
\FOXII if the volume name is anything other than $SYSTEM:

REPLACE NODENAME \TESS ($* EXCLUDE $SYSTEM) WITH \FOXII

 When you use the CHECKONLY option, note that the amount of information
written to the current OUT file depends on whether LISTALL or NO LISTALL is
specified. The MODIFY CATALOG with REPLACE NODENAME command
produces this display for each catalog when requested with the LISTALL option:

Checking catalog \SYS.$VOL.CAT1.
--- \SYS.$VOL.CAT1 was modified.
Checking catalog \SYS.$VOL.CAT2.
--- \SYS.$VOL.CAT2 was not modified.

This summary information is included whether you specify LISTALL or NO
LISTALL:

Summary Information:
 nnn catalog(s) require modification.
 nnn catalog(s) do not require modification.

MODIFY CATALOG with REPLACE VOLUME

The MODIFY CATALOG with REPLACE VOLUME command modifies volume names
in SQL/MP catalogs on the local node. A catalog can be a user-defined catalog or the
system catalog. This command is intended for use when physically moving a disk from
one node in your network to another node which has a similar disk volume name, or
when system loading a disk with a new disk volume name. When this happens,
changes are not automatically reflected in the catalogs and file labels. The internal
consistency of the database is lost; catalogs (and objects they describe) cannot be
accessed. The MODIFY commands (LABEL, CATALOG) enable you change the
database to reflect the new information.

Before requesting a MODIFY CATALOG with REPLACE VOLUME operation for a
catalog, check that the file labels of the catalog are accessible. If necessary, perform a

Note. The MODIFY CATALOG with REPLACE VOLUME command is supported on systems
running J06.04 and later J-series RVUs and H06.15 and later H-series RVUs only.
HP NonStop SQL/MP Reference Manual—523352-013
M-11

MODIFY CATALOG with REPLACE VOLUME
MODIFY LABEL with REPLACE VOLUME operation on all catalog tables in the
catalog first. For more information about MODIFY CATALOG with REPLACE
VOLUME, see Considerations-MODIFY CATALOG with REPLACE VOLUME for more
details.

catalog-list-1 [EXCLUDE catalog-list-2]

identifies one or more SQL catalogs to modify. The catalogs need not be registered
in the system catalog at the time the MODIFY CATALOG with REPLACE VOLUME
command is run. To specify a single catalog, enter the name of the catalog (the
name of the subvolume that contains the catalog). To specify multiple catalogs in a
catalogset, use wild-card characters. You can use these wild-card characters:

For example, $DATA.* specifies all catalogs on the volume $DATA, and *.*
specifies all catalogs on the node. *VOL* matches NEWVOL, OLDVOL1, and
VOL45. VOL? matches VOL1 and VOLX, but not VOL or VOL48.

The MODIFY CATALOG with REPLACE VOLUME command assumes that a
subvolume contains a valid catalog if the subvolume contains the catalog table

MODIFY [DICTIONARY] CATALOG target-spec replace-spec
WITH volume-name [[,] option] ... ;

target-spec is:

catalog-list-1 [EXCLUDE catalog-list-2]

replace-spec is:

REPLACE VOLUME volume-name [(node-name1 [,node-name2]
[EXCLUDE node-name3 [,node-name4]…])]

option is:
[| ALLOWERRORS [OFF | ON | number-of-errors] |]
[| [NO] LISTALL |]
[| DETAIL [MATCH | ALL] REPORT [TO EMS-Collector]|]
[| [ON]|]
[| [OFF]|]
[| CHECKONLY |]

catalog-list-n (where n = 1,2) is:
{ catalogset }
{ (catalogset [, catalogset] ...) }

* Matches 0 to 8 characters in the position where it appears. Specifying only
an asterisk indicates that any name is acceptable. To specify all volumes,
use either $*.* or *.*

? Matches any single character
HP NonStop SQL/MP Reference Manual—523352-013
M-12

MODIFY CATALOG with REPLACE VOLUME
TABLES (file code must be 581). The optional EXCLUDE catalog-list-2 clause
specifies catalogs to be excluded from catalog-list-1.

REPLACE VOLUME volume-name [(node-name1 [,node-name2]

[EXCLUDE node-name3 [,node-name4]])]

specifies the volume name to be replaced in the catalog tables. SQL catalog tables
contain file names, and those file names contain volume names. Volume names
are changed based on the node-name list. The volume name specified in
REPLACE VOLUME volume-name clause is replaced by the volume name
specified in the WITH volume-name clause.

If the first node-name list is specified, SQL replaces the volume name only if it
matches the volume name specified by volume-name and if the node name in the
file name matches one of the node names specified in the node-name list. The
optional EXCLUDE node-name list clause specifies node names to be excluded
from the first node-name list.

volume-name must be preceded by a dollar '$' character and must consist of at
least one to six alphanumeric characters. The first character must be alphabetic.
You can specify either uppercase or lowercase alphabetic characters; alphabetic
characters are upshifted before the comparison and substitution process. The
volume-name cannot include wild-card characters.

The first node-name list specifies a node name or a set of node names.
node-name must be preceded by a backslash character. To specify a single node
name, enter the name of the node. To specify multiple node names, use wild-card
characters. You can use these wild-card characters:

For example, \NOD* specifies all nodes that begin with \NOD. *NOD* matches
NEWNODE, OLDNODE1, and NODE45. NOD? matches NOD1 and NODX, but
not NOD or NOD48.

The maximum number of node-names that can be specified in this clause is 10 for
each node-name list. For example, this clause is invalid because it has 11 node
names in the first node-name list:

(\A*,\B*,\C*,\D*,\E*,\F*,\G*,\H*,\I*,\J*,\K* EXCLUDE \Z*)

If this clause is not specified, only the volume name is considered.

WITH volume-name

specifies the volume name to replace occurrences of the volume name specified in
replace-spec.

* Matches 0 to 8 characters in the position where it appears. Specifying only
an asterisk indicates any name is acceptable. To specify all volumes, use
either * or *

? Matches any single character
HP NonStop SQL/MP Reference Manual—523352-013
M-13

MODIFY CATALOG with REPLACE VOLUME
volume-name must be preceded by a dollar '$' character and consist of at least
one to six alphanumeric characters. The first character must be alphabetic. Either
uppercase or lowercase alphabetic characters can be specified; alphabetic
characters are upshifted before the comparison and substitution process.

ALLOWERRORS [OFF | ON | number-of-errors]

determines handling of nonfatal errors. MODIFY reports two classes of errors: fatal
errors and nonfatal errors. The MODIFY CATALOG command terminates
immediately after reporting a fatal error. Nonfatal errors are handled depending on
the value of the ALLOWERRORS option:

If you specify ALLOWERRORS without ON, OFF, or the number of errors,
ALLOWERRORS ON is the default. If you do not specify the ALLOWERRORS
option, ALLOWERRORS OFF is the default.

When MODIFY CATALOG with REPLACE VOLUME continues processing after a
nonfatal error has occurred, it advances to the next SQL catalog.

[NO] LISTALL

specifies how much detail MODIFY CATALOG with REPLACE VOLUME writes to
the current OUT file. If LISTALL is specified, MODIFY CATALOG with REPLACE
VOLUME reports the name of each SQL catalog considered for modification and
whether or not the catalog was modified. If NO LISTALL is specified, only summary
is reported.
LISTALL is the default option.

DETAIL [MATCH | ALL] REPORT [TO EMS-Collector]
[ON]
[OFF]

specifies that details about the MODIFY CATALOG with REPLACE VOLUME
operation is to be sent in event messages to a valid EMS collector.

If MATCH is specified, details are reported about SQL catalog tables specified in
target-spec that contain volume names that match the criteria specified in the

OFF The MODIFY CATALOG with REPLACE VOLUME
command terminates immediately after the first nonfatal
error is encountered

ON THE MODIFY CATALOG with REPLACE VOLUME
command continues, regardless of the number of nonfatal
errors encountered.

number-of-errors The MODIFY CATALOG with REPLACE VOLUME
command continues until the number of nonfatal errors
exceeds value of number-of-errors.
HP NonStop SQL/MP Reference Manual—523352-013
M-14

Considerations-MODIFY CATALOG with REPLACE
VOLUME
REPLACE clause. If ALL is specified, details are reported about all SQL catalog
tables specified in target-spec irrespective of a match being identified with regards
to volume name. MATCH is the default option.

For information on report options, see REPORT Option on page R-3.

CHECKONLY

specifies that the catalog tables specified in target-spec should be checked to see
if they contain volume names that match the criteria specified in the REPLACE
clause. No catalog tables are changed. The CHECKONLY option enables you to
estimate the effect of running the MODIFY CATALOG with REPLACE VOLUME
command before actually modifying the catalog tables.

Considerations-MODIFY CATALOG with REPLACE VOLUME

 You must be logged on as the super ID to run a MODIFY CATALOG with
REPLACE VOLUME command unless you specify the CHECKONLY option. If you
specify the CHECKONLY option, you must have authority to read the catalogs.

 SQL uses the TMF subsystem to protect the integrity of the database during the
MODIFY operation. MODIFY CATALOG with REPLACE VOLUME command is not
allowed inside a user-defined transaction.

One system-defined transaction is used for each set of catalog tables modified. If
an error occurs while MODIFY CATALOG with REPLACE VOLUME is modifying a
catalog table, the changes made to that catalog table and all other tables in the
same catalog are backed out. However, changes that have been made to other
catalogs during the same instance of the MODIFY CATALOG with REPLACE
VOLUME command are not backed out. Thus, for one set of catalog tables, either
the volume name will be changed in all the tables in the set or it will not be
changed in any of the tables in the set.

 The MODIFY CATALOG with REPLACE VOLUME command is one of a set of
commands that uses the MODIFY DICTIONARY utility. The other related
commands are MODIFY CATALOG with REPLACE NODENAME (to replace node
name in catalog), MODIFY LABEL with REPLACE NODENUMBER (to replace
node number in file label), MODIFY LABEL with REPLACE VOLUME (to replace
volume name in file label), and MODIFY REGISTER Command (to register user-
defined catalogs in the local system catalog).

 If the volume name where the SQL catalog exists, has already been changed to a
different name, then run the MODIFY LABEL with REPLACE VOLUME command
on all catalog objects in the catalog sub-volume before executing the MODIFY
CATALOG with REPLACE VOLUME command. This is required to update the
volume name corresponding to the CATALOG field in the file label. The MODIFY
CATALOG with REPLACE VOLUME cannot be run first because it will try to
identify the CATALOG name from file label for record updation in catalog indexes.
HP NonStop SQL/MP Reference Manual—523352-013
M-15

Considerations-MODIFY CATALOG with REPLACE
VOLUME
However, if the volume name where the catalog exists has not been modified at the
time of executing MODIFY DICTIONARY command, then consider executing
MODIFY CATALOG with REPLACE VOLUME command first followed by MODIFY
LABEL with REPLACE VOLUME.

For example, if a CATALOG exists on $DATA00.CATVOL and the volume name
has been changed to $NEW00, the file labels of the catalog tables and indexes
retain the CATALOG name field as $DATA00. Running the MODIFY CATALOG
with REPLACE VOLUME command on these catalog tables and indexes fails
because it tries to identify the catalog $DATA00.CATVOL for updating certain
records in indexes on catalog tables such as IXINDE01. Therefore, the update fails
because the $DATA00 name field has changed to $NEW00. Hence consider
running the MODIFY LABEL with REPLACE VOLUME command on these catalog
objects such that the file labels are updated with the new catalog name. This can
be followed by the MODIFY CATALOG with REPLACE VOLUME command.

 The MODIFY CATALOG with REPLACE VOLUME command locks one catalog
table at a time. The file labels of the catalog tables are not locked. Do not request
DDL or update operations until the volume names are modified, including
operations on partitions and on dependent objects on remote nodes.

 The MODIFY DICTIONARY utility does not handle the following:

 Remote nodes. If you specify a remote file name or catalog name, the MODIFY
command reports a nonfatal error. Therefore, each node with dependent
objects or partitioned objects must have a version of NonStop SQL/MP that
supports MODIFY CATALOG commands.

 User-defined SQL object files. For example, the MODIFY CATALOG with
REPLACE VOLUME command does not modify a volume name stored in a
column of a user-defined table.

 Names stored in SQL object program files. SQL object programs can refer to a
SQL object by using either a DEFINE or the Guardian name of the object. If
DEFINEs are used, both the DEFINE name and the associated Guardian
name of the SQL object are stored in the object program file-not in the file
label. If Guardian names are used, the Guardian names are stored in the
object program file in internal network form.

 Dependent objects. The MODIFY CATALOG with REPLACE VOLUME
command does not modify information about dependent objects that reside in
other catalogs unless the other catalogs are specified. You must be aware of
how the database is distributed. Document the MODIFY commands that need
to be run, the nodes they need to be run on, before they are used. Prepare
scripts that run the necessary MODIFY commands. When you add a new
dependent object to the database, update the scripts. While the node is in a
consistent state, you can use the DISPLAY USE OF command to locate
dependent objects. After MODIFY commands are run, use the VERIFY utility to
verify that the database is in a consistent state.
HP NonStop SQL/MP Reference Manual—523352-013
M-16

Considerations-MODIFY CATALOG with REPLACE
VOLUME
 Partitioned objects. For a partitioned SQL object, each volume that contains a
partition of the object must be specified separately. MODIFY CATALOG does
not automatically modify information about all partitions of a partitioned object.
You must be aware of how the database is partitioned. While the node is in a
consistent state, SELECT from the PARTNS partitions table to locate other
partitions. Prepare scripts that run the necessary MODIFY commands. After
running the MODIFY commands, use the VERIFY utility to verify that the
database is in a consistent state.

 The MODIFY CATALOG with REPLACE VOLUME command does not mark
SQL object programs as invalid in either the catalog or the object program file
label.

 The MODIFY CATALOG with REPLACE VOLUME command does not change
the redefinition timestamp in either the catalog or the file label.

 You can use DEFINE names in programs to specify names of catalogs, tables,
views, indexes, partitions, and other programs. The current DEFINE set at the
time the program is SQL compiled is saved in the object program file. If objects
or object programs specified by the DEFINEs are moved between the time that
the program is SQL compiled and the time that the program is run, the
DEFINEs must be changed to reflect the new location of the objects and object
programs. This guideline is true regardless of how the database was moved
and regardless of whether the MODIFY DICTIONARY utility was used to
modify the node names and numbers.

The MODIFY DICTIONARY utility does not modify volume names in the
DEFINE set stored in the object program file. After you have changed the
DEFINEs, if automatic recompilation is enabled, the programs are
automatically recompiled using the new DEFINEs.

 The MODIFY DICTIONARY utility is not intended to correct the situation where
a disk containing objects is moved to a new node, but the disk containing the
associated catalog is not moved to the new node.

 The MODIFY CATALOG with REPLACE VOLUME command returns a nonfatal
versioning error if an SQL catalog has a version newer than the version of
MODIFY that is accessing it, or if the catalog has a version newer than the
version of SQL/MP system software on the node where the catalog resides.
HP NonStop SQL/MP Reference Manual—523352-013
M-17

Examples-MODIFY CATALOG with REPLACE
VOLUME
Examples-MODIFY CATALOG with REPLACE VOLUME

These examples illustrate the use of the REPLACE clause.

 In this example, the volume name $DATA is replaced with the volume name $NEW
if the first three characters of the node name are \DA:

REPLACE VOLUME $DATA (\DA*) WITH $NEW

 In this REPLACE clause, the volume name $DATA is replaced with the volume
name $NEW if the node name is either \SAM or \IND or if the first three characters
of the node name are \DA:

REPLACE VOLUME $DATA (\SAM,\IND,\DA*) WITH $NEW

 In this REPLACE clause, the volume name $DATA will be replaced with the volume
name $NEW if the node name is anything other than \IND:

REPLACE VOLUME $DATA (* EXCLUDE \IND) WITH $NEW

 When you use the CHECKONLY option, note that the amount of information
written to the current OUT file depends on whether LISTALL or NO LISTALL is
specified. The MODIFY CATALOG command produces this display for each
catalog when requested with the LISTALL option:

Checking catalog \SYS.$VOL.CAT1.

--- \SYS.$VOL.CAT1 was modified.

Checking catalog \SYS.$VOL.CAT2.

--- \SYS.$VOL.CAT2 was not modified.

 The following summary information is included whether you specify LISTALL or NO
LISTALL:

Summary Information:

nnn catalog(s) require modification.

nnn catalog(s) do not require modification.
HP NonStop SQL/MP Reference Manual—523352-013
M-18

MODIFY LABEL
MODIFY LABEL
The MODIFY LABEL command has two options that can be specified as the
replace-spec:

 MODIFY LABEL with REPLACE NODENUMBER

 MODIFY LABEL with REPLACE VOLUME

MODIFY LABEL with REPLACE NODENUMBER

The MODIFY LABEL with REPLACE NODENUMBER command modifies node
numbers stored in file labels of SQL objects and SQL object programs on the local
node. The file label of an SQL object or object program contains names in internal
network form and therefore always contains one or more node numbers.

This command is intended for use when physically moving a disk from one node to
another node, or when system loading a node with a new node name or number.
These changes are not automatically reflected in the catalogs and file labels. When
this happens, the internal consistency of the database is lost; catalogs (and objects
they describe) cannot be accessed. The MODIFY commands (LABEL, CATALOG, and
REGISTER) enables you to change the node number or node name to reflect the new
information.

SQL objects include SQL catalog tables, user-defined tables, table partitions, indexes,
index partitions, views, and collations.
HP NonStop SQL/MP Reference Manual—523352-013
M-19

MODIFY LABEL with REPLACE NODENUMBER
simple-fileset-list-1 [EXCLUDE simple-fileset-list-2]

identifies one or more SQL objects and object programs whose file labels will be
considered for modification. File labels are modified only if they contain node
numbers that match the criteria specified in the REPLACE clause. Files included in
simple-fileset-list-1 that are not SQL objects or SQL program files are
ignored.

The optional EXCLUDE simple-fileset-list-2 clause specifies files to be
excluded from simple-fileset-list-1.

fileset is a Guardian name in which wild-card characters can be used to specify
volumes, subvolumes, files, and objects. You cannot use wild-card characters in
node names.

MODIFY [DICTIONARY] LABEL target-spec replace-spec

 WITH node-spec [[,] option] ... ;

target-spec is:

 simple-fileset-list-1 [EXCLUDE simple-fileset-list-2]

replace-spec is:

 REPLACE NODENUMBER node-spec[(volumeset[,volumeset]
 [EXCLUDE volumeset [,volumeset]])]

option is:

 [| ALLOWERRORS [OFF | ON | number-of-errors] |]
 [| [NO] LISTALL |]
 [| DETAIL [MATCH | ALL] REPORT [TO EMS-Collector]|]
 [| [ON] |]
 [| [OFF] |]
 [| CHECKONLY |]

simple-fileset-list-n (where n = 1,2) is:

 { fileset }
 { (fileset [, fileset] ...) }

node-spec is:

 { (node-name , [node-number]) }
 { (node-number , [node-name]) }
HP NonStop SQL/MP Reference Manual—523352-013
M-20

MODIFY LABEL with REPLACE NODENUMBER
The wild-card characters you can use are:

For example, *VOL* matches NEWVOL, OLDVOL1, and VOL45. $VOL1.SUBV1.*
specifies all files on subvolume SUBV1 of volume $VOL1, and \SYS1.*.SUBV1.*
specifies all files on all subvolumes named SUBV1 on any volume of node \SYS1.
TABLE? matches TABLE1 and TABLEX, but not TABLE or TABLE48.

You can also specify a logical DEFINE name as a fileset. File labels for dependent
objects and partitions are not considered for modification unless the dependent
object or partition is specified in simple-fileset-list-1. For example, if
$A.B.T1 is a table that has a dependent index, specifying $A.B.T1 results in only
the file label of the table being considered; the file label of the index is not
considered.

REPLACE NODENUMBER node-spec [(volumeset [,volumeset]
 [EXCLUDE volumeset [,volumeset]])]

from one to seven alphanumeric characters. The first specifies the node number to
replace in the file labels. The node number is replaced by the node number
specified in the WITH node-spec clause.

If the first volumeset list is specified, SQL replaces the node number only if the
node number in the file label matches the node number specified by node1 and
the volume name of the file label matches one of the volume names specified in
the first volumeset list. The optional EXCLUDE volumeset list clause specifies
volumes to be excluded from the first volumeset list.

node-spec specifies a node-number and node-name pair. node-name
specifies a node name, which must be preceded by a character must be
alphabetic. Either uppercase or lowercase alphabetic characters can be specified.
node-number specifies a node number in the range from 0 to 254.

The value of node-spec need not match the node number assigned to the local
node executing the MODIFY command.

volumeset indicates a volume or a set of volumes. To specify a single volume,
enter the name of the volume. To specify multiple volumes use wild-card
characters. You can use these wild-card characters:

* Matches 0 to 8 characters in the position where it appears. Specifying only
an asterisk indicates that any name is acceptable. To specify all files on all
volumes, use either $*.*.* or *.*.*

? Matches any single character

* Matches 0 to 8 characters in the position where it appears. Specifying only
an asterisk indicates any name is acceptable. To specify all volumes, use
either $* or *

? Matches any single character
HP NonStop SQL/MP Reference Manual—523352-013
M-21

MODIFY LABEL with REPLACE NODENUMBER
For example, $DAT* specifies all volumes that begin with $DAT. *VOL* matches
NEWVOL, OLDVOL1, and VOL45. VOL? matches VOL1 and VOLX but not VOL
or VOL48.

The maximum number of volumesets that can be specified in this clause is 10 for
each volumeset list. For example, this clause is invalid because it has 11
volumesets in the first volumeset list:

($A*,$B*,$C*,$D*,$E*,$F*,$G*,$H*,$I*,$J*,$K* EXCLUDE $AA*)

If this clause is not specified, only the node number is considered.

WITH node-spec

specifies the node number to replace occurrences of the node number specified by
replace-spec.

node-spec specifies a node-number, node-name, or both. node-number
specifies a node number in the range from 0 to 254. node-name specifies a node
name, which must be preceded by a backslash character and can consist of from
one to seven alphanumeric characters. The first character must be alphabetic.
Either uppercase or lowercase alphabetic character can be specified.

The MODIFY LABEL with REPLACE NODENUMBER command must be able to
identify a valid node number from the information given. The MODIFY LABEL with
REPLACE NODENUMBER command determines the node number:

 If you specify a recognized node name and do not specify a node number, the
corresponding node number is used.

 If you specify only a node name and the name is not known, SQL returns a
fatal error and the command terminates. An unknown name cannot be mapped
to a known node number.

 If the specified node name and node number are both unknown, SQL returns a
warning message noting that the node name and number are unknown and
that the node name is being ignored. It then proceeds with the request, using
the specified node number.

 If both a node name and number are specified, and both refer to a known
node, both must refer to the same node. Otherwise, SQL returns an error.

The value of node-spec need not match the node number assigned to the local
node executing the MODIFY command.
HP NonStop SQL/MP Reference Manual—523352-013
M-22

MODIFY LABEL with REPLACE NODENUMBER
ALLOWERRORS [OFF | ON | number-of-errors]

determines handling of nonfatal errors. MODIFY LABEL with REPLACE
NODENUMBER reports two classes of errors: fatal errors and nonfatal errors. The
MODIFY LABEL with REPLACE NODENUMBER command terminates
immediately after reporting a fatal error. Nonfatal errors are handled depending on
the value of the ALLOWERRORS option:

If you specify ALLOWERRORS without ON, OFF, or the number of errors,
ALLOWERRORS ON is the default.

If you do not specify the ALLOWERRORS option, ALLOWERRORS OFF is the
default.

The description of each MODIFY LABEL with REPLACE NODENUMBER error
states whether the error is fatal or nonfatal.

When MODIFY LABEL with REPLACE NODENUMBER continues processing after
a nonfatal error has occurred, it advances to the next SQL object or object
program.

[NO] LISTALL

specifies how much information MODIFY LABEL with REPLACE NODENUMBER
writes to the current OUT file. If LISTALL is specified, MODIFY reports the name of
each SQL object and object program whose label was considered for modification
and indicates whether or not the object or program was modified. If NO LISTALL is
specified, only summary information is reported.

LISTALL is the default.

DETAIL [MATCH | ALL] REPORT [TO EMS-Collector]
[ON]
[OFF]

specifies that detailed about the MODIFY LABEL with REPLACE NODENUMBER
operation is to be sent in event messages to a valid EMS collector.

If MATCH is specified, detail is reported about SQL objects and object programs
specified in target-spec that contain node numbers matching the criteria

OFF The MODIFY LABEL with REPLACE NODENUMBER
command terminates immediately after the first
nonfatal error is encountered.

ON THE MODIFY LABEL with REPLACE
NODENUMBER command continues, regardless of
the number of nonfatal errors encountered.

number-of-errors The MODIFY LABEL with REPLACE NODENUMBER
command continues until the number of nonfatal
errors exceeds the value of number-of-errors.
HP NonStop SQL/MP Reference Manual—523352-013
M-23

Considerations—MODIFY LABEL with REPLACE
NODENUMBER
specified in the REPLACE clause. If ALL is specified, detail is reported about all
SQL objects and object programs specified in target-spec.

MATCH is the default.

For information on report options, see REPORT Option on page R-3.

CHECKONLY

specifies that file labels specified by target-spec should be checked to see if
they contain node numbers that match the criteria specified in the REPLACE
clause. No file labels are modified. The CHECKONLY option enables you to
estimate the effect of running the MODIFY LABEL with REPLACE NODENUMBER
command before actually modifying the file labels.

The amount of information written to the current OUT file depends on whether
LISTALL or NO LISTALL is specified.

Considerations—MODIFY LABEL with REPLACE NODENUMBER

 You must be logged on as the super ID to run a MODIFY LABEL with REPLACE
NODENUMBER command unless you specify the CHECKONLY option. If the
MODIFY LABEL with REPLACE NODENUMBER CHECKONLY option is specified,
the user must have authority to read the SQL objects and object programs.

 NonStop SQL/MP uses the TMF subsystem to protect the integrity of the database
during the MODIFY operation. MODIFY LABEL with REPLACE NODENUMBER
commands are not allowed inside a user-defined transaction.

One system-defined transaction is used for each SQL object file label modified. If
an error occurs while MODIFY LABEL with REPLACE NODENUMBER is in the
middle of modifying a file label of an SQL object, the changes made to that
particular label are backed out. Changes made to other file labels by the same
instance of the MODIFY LABEL with REPLACE NODENUMBER command are not
backed out. Thus, if an error occurs, some labels might have been changed and
others might not have been.

SQL object program file labels are not modified within a TMF transaction. This
means that if an error occurs while modifying the file label of an object program file,
the label could be left in an inconsistent state.

 The MODIFY LABEL with REPLACE NODENUMBER command is one of a set of
commands that uses the MODIFY DICTIONARY utility. The other related
commands are MODIFY LABEL with REPLACE VOLUME (to replace volume
name in file label), MODIFY CATALOG with REPLACE VOLUME (to replace
volume name in catalog), MODIFY CATALOG with REPLACE NODENAME (to
replace node name in catalog), and MODIFY REGISTER Command (to register
user-defined catalogs in the local system catalog).

 To minimize unnecessary searching, make your target-spec clause as specific
as possible. For example, if SQL objects reside only on subvolumes whose names
HP NonStop SQL/MP Reference Manual—523352-013
M-24

Considerations—MODIFY LABEL with REPLACE
NODENUMBER
begin with SQL, specifying $VOL1.SQL*.* is more efficient than specifying
$VOL1.*.*. The MODIFY LABEL with REPLACE NODENUMBER command would
not have to search for SQL objects on other subvolumes.

 Multiple MODIFY commands (including LABEL, CATALOG, and REGISTER
commands) can be run concurrently on the same node as long as each command
is processing a different set of files or catalogs. For example, if the node number is
changed on a node that has an SQL database spread out over five volumes, five
MODIFY LABEL with REPLACE NODENUMBER commands can be started
concurrently, each specifying a different volume to be modified. Note that in such a
case, because the node name did not change, it would not be necessary to run
any MODIFY CATALOG commands.

 MODIFY LABEL with REPLACE NODENUMBER locks one file label at a time. The
file itself is not locked. There is nothing to prevent the user from accessing a
partially modified data dictionary. The user should refrain from using the database,
including partitions and dependent objects on remote nodes, until the node
numbers have been modified.

 The MODIFY DICTIONARY utility does not handle:

 Remote nodes. If you specify a remote file name, the MODIFY LABEL with
REPLACE NODENUMBER command reports a nonfatal error. Each node with
dependent objects or partitioned objects must have a version of NonStop
SQL/MP that supports MODIFY LABEL with REPLACE NODENUMBER
commands.

 User-defined SQL object files. For example, MODIFY LABEL with REPLACE
NODENUMBER does not modify a node number stored in a column of a user-
defined table.

 Node numbers stored in SQL object program files.

 Node numbers in Enscribe file labels. In Enscribe file labels, local file names
are stored as local names and thus do not contain a node number. However, a
reference to an alternate key file or a partition file does include a node number
if the alternate key file or partition file is stored on a different node.

If a disk containing an alternate key file or a partition file is moved to a different
node, the FUP ALTER command can be used to change the Enscribe file label
that references the file that moved. Note that changes must be made to the
Enscribe file labels that point to the disk that moved, not to the alternate key
file label or partition file label that resides on the disk that moved.

 Dependent objects. Node numbers in the file labels of dependent objects are
not modified unless the dependent object is specified in the MODIFY LABEL
with REPLACE NODENUMBER command.

For example, suppose that a table T1 resides on the \SYS1.$DB1.OBJECTS
subvolume and is registered in the \SYS1.$DB1.CAT catalog, and its
dependent index I1 resides on the \SYS2.$DBS.OBJECTS subvolume and is
registered in the \SYS2.$DBS.CAT catalog. Suppose that the $DBS disk is
HP NonStop SQL/MP Reference Manual—523352-013
M-25

Considerations—MODIFY LABEL with REPLACE
NODENUMBER
moved from \SYS2 to \SYS1. The database is left in an inconsistent state if
only these commands are run:

>> MODIFY LABEL $DBS.*.*
+> REPLACE NODENUMBER \SYS2 ($DBS) WITH \SYS1;
>> MODIFY CATALOG $DBS.CAT
+> REPLACE NODENAME \SYS2 ($DBS) WITH \SYS1;

One example of an inconsistency that exists is that the
\SYS1.$DB1.CAT.USAGES table will indicate that the USINGOBJNAME of the
index is \SYS2.$DBS.OBJECTS.I1, although $DBS is now on \SYS1.

 Partitioned objects. Node numbers in the file labels of partitions of tables and
indexes are not modified unless those partitions are specified in the MODIFY
LABEL with REPLACE NODENUMBER command.

For a partitioned SQL object, each volume that contains a partition of the
object must be specified separately. MODIFY LABEL with REPLACE
NODENUMBER does not automatically modify information about all partitions
of a partitioned object.

It is the responsibility of the user to know how the database is distributed and
partitioned. Document the MODIFY commands that need to be run—and what
nodes they need to be run on—before they are needed. Prepare scripts that
run the necessary MODIFY commands. When you add a new dependent
object to the database, update the scripts.

While the system is in a consistent state, you can use the DISPLAY USE OF
command to locate dependent objects. After MODIFY commands have been
run, you can use the VERIFY utility to verify that the database is in a consistent
state.

While the system is in a consistent state, issue a SELECT from the PARTNS
partitions table to locate partitions. Prepare scripts that run the necessary
MODIFY commands. After MODIFY commands are run, use the VERIFY utility
to verify that the database is in a consistent state.

 MODIFY LABEL with REPLACE NODENUMBER does not mark SQL object
programs as invalid in either the catalog or in the object program file label.

 MODIFY LABEL with REPLACE NODENUMBER does not change the
redefinition timestamp in either the catalog or the file label.

 DEFINE names can be used in programs to specify the names of catalogs, tables,
views, indexes, partitions, and other programs. The current DEFINE set at the time
the program is SQL compiled is saved in the object program file. If objects or
object programs specified by the DEFINEs are moved between the time that the
program is SQL compiled and the time that the program is run, the DEFINEs must
be changed to reflect the new location of the objects and object programs. This
instruction is true regardless of how the database was moved or whether the
MODIFY DICTIONARY utility was used to modify the node names and numbers.
HP NonStop SQL/MP Reference Manual—523352-013
M-26

Examples—MODIFY LABEL with REPLACE
NODENUMBER
The MODIFY DICTIONARY utility does not modify the node names in the DEFINE
set stored in the object program file.

 After the DEFINEs are changed by the user, if automatic recompilation is enabled
the programs are automatically recompiled using the new DEFINEs.

 A catalog and the objects registered in it must be on the same node. However, it is
possible for an object to be on a different disk than its catalog. The MODIFY
DICTIONARY utility is not intended to correct the situation where a disk containing
objects is moved to a new node, but the disk containing the associated catalog is
not moved to the new node.

 The MODIFY LABEL with REPLACE NODENUMBER command returns a nonfatal
versioning error if an SQL object is newer than the version of MODIFY
DICTIONARY accessing it, if the PCV of an SQL program is newer than the
version of MODIFY that is accessing it, or if the object or program has a version
newer than the version of SQL/MP system software on the node where the object
or program resides.

Examples—MODIFY LABEL with REPLACE NODENUMBER

The first group of examples show the REPLACE clause.

 In this REPLACE clause, node number 24 is replaced with node number 75 if the
first three characters of the volume name are $DA:

REPLACE NODENUMBER 24 ($DA*) WITH 75

 In this REPLACE clause, node number 100 is replaced with node number 175 if
the volume name is either $SAM or $CAT or if the first three characters of the
volume name are $DA:

REPLACE NODENUMBER 100 ($SAM,$CAT,$DA*) WITH 175

 In this REPLACE clause, node number 100 is replaced with node number 175 if
the volume name is anything other than $SYSTEM:

REPLACE NODENUMBER 100 ($* EXCLUDE $SYSTEM) WITH 175

 In this REPLACE clause, node number 24 is replaced with node number 100:

REPLACE NODENUMBER 24 WITH 100

 In this REPLACE clause, node number 24 is replaced with the node number
associated with the node name \SQL:

REPLACE NODENUMBER 24 WITH \SQL

 In this REPLACE clause, node number 24 is replaced with the node number 100 if
100 is the node number associated with the node name \SQL:

REPLACE NODENUMBER 24 WITH (\SQL,100)
HP NonStop SQL/MP Reference Manual—523352-013
M-27

Examples—MODIFY LABEL with REPLACE
NODENUMBER
 In this REPLACE clause, the node number associated with the node name
\SQLNLS is replaced with the node number associated with the node name \SQL:

REPLACE NODENUMBER \SQLNLS WITH \SQL

 In this REPLACE clause, node number 50 is replaced with the node number 100 if
50 is the node number associated with the node name \SQLNLS and 100 is the
node number associated with the node name \SQL:

REPLACE NODENUMBER (\SQLNLS,50) WITH (\SQL,100)

 This example lists the display for each object when CHECKONLY is requested with
the LISTALL option:

Checking \SYS.$VOL.SUBVOL.T1 label.
--- \SYS.$VOL.SUBVOL.T1 label requires modification.
Checking \SYS.$VOL.SUBVOL.T2 label.
--- \SYS.$VOL.SUBVOL.T2 label does not require modification.

 This example on summary information is displayed for CHECKONLY if you specify
either LISTALL or NO LISTALL:

Summary Information:
 nnn label(s) require modification.
 nnn label(s) do not require modification.

 This MODIFY LABEL with REPLACE NODENUMBER command produces this
display when requested with the LISTALL option:

Checking \SYS.$VOL.SUBVOL.T1 label.
--- \SYS.$VOL.SUBVOL.T1 label was modified.
Checking \SYS.$VOL.SUBVOL.T2 label.
--- \SYS.$VOL.SUBVOL.T2 label was not modified.

 This example on summary information is included whether you specify LISTALL or
NO LISTALL:

Summary Information:
 nnn label(s) modified.
 nnn label(s) not modified.

MODIFY LABEL with REPLACE NODENUMBER and
Partitioned Objects

This example shows the usage of MODIFY LABEL with REPLACE NODENUMBER
when you move partitioned objects.

Suppose that you have table T1 with one partition at \A.$DA1.SQL.T1, a second
partition at \A.$DB1.SQL.T1, and a third partition at \C.$DC1.SQL.T1. The catalogs
where the partitions are registered contain references to the other partitions. For
example, the catalog where \A.$DA1.SQL.T1 is registered contains a reference in the
PARTNS catalog table to all three partitions, and likewise for the catalogs where
\A.$DB1.SQL.T1 and \C.$DC1.SQL.T1 are registered.
HP NonStop SQL/MP Reference Manual—523352-013
M-28

Examples—MODIFY LABEL with REPLACE
NODENUMBER
This SELECT statements illustrate this point:

>> SELECT FILENAME,PARTITIONNAME,CATALOGNAME
+> FROM \A.$DA1.CATSUBV.PARTNS;
 FILENAME PARTITIONNAME CATALOGNAME
 -------------- -------------- ---------------
 \A.$DA1.SQL.T1 \A.$DA1.SQL.T1 \A.$DA1.CATSUBV
 \A.$DA1.SQL.T1 \A.$DB1.SQL.T1 \A.$DB1.CATSUBV
 \A.$DA1.SQL.T1 \C.$DC1.SQL.T1 \C.$DC1.CATSUBV
 >> SELECT FILENAME,PARTITIONNAME,CATALOGNAME
 +> FROM \A.$DB1.CATSUBV.PARTNS;
 FILENAME PARTITIONNAME CATALOGNAME
 -------------- -------------- ---------------
 \A.$DB1.SQL.T1 \A.$DA1.SQL.T1 \A.$DA1.CATSUBV
 \A.$DB1.SQL.T1 \A.$DB1.SQL.T1 \A.$DB1.CATSUBV
 \A.$DB1.SQL.T1 \C.$DC1.SQL.T1 \C.$DC1.CATSUBV
 >> SELECT FILENAME,PARTITIONNAME,CATALOGNAME
 +> FROM \C.$DC1.CATSUBV.PARTNS;

 FILENAME PARTITIONNAME CATALOGNAME
 -------------- -------------- ---------------
 \C.$DC1.SQL.T1 \A.$DA1.SQL.T1 \A.$DA1.CATSUBV
 \C.$DC1.SQL.T1 \A.$DB1.SQL.T1 \A.$DB1.CATSUBV
 \C.$DC1.SQL.T1 \C.$DC1.SQL.T1 \C.$DC1.CATSUBV

Now suppose that the $DB1 volume is moved from the \A node (node number 101) to
the \B node (node number 102). The MODIFY DICTIONARY commands needed to
make the NonStop SQL/MP database consistent after the move are shown:

On node \B, to modify the volume moved from \A to \B:

>> MODIFY LABEL $DB1.*.*
+> REPLACE NODENUMBER 101 ($DB1) WITH 102;
>> MODIFY CATALOG $DB1.CATSUBV

+> REPLACE NODENAME \A ($DB1) WITH \B;
>> MODIFY REGISTER CATALOG $DB1.CATSUBV;

On node \A, to modify the references to the partition moved from \A to \B:

>> MODIFY LABEL $DA1.*.*
+> REPLACE NODENUMBER 101 ($DB1) WITH 102;
>> MODIFY CATALOG $DA1.CATSUBV
+> REPLACE NODENAME \A ($DB1) WITH \B;

On node \C, to modify the references to the partition moved from \A to \B:

>> MODIFY LABEL $DC1.*.*
+> REPLACE NODENUMBER 101 ($DB1) WITH 102;
>> MODIFY CATALOG $DC1.CATSUBV
+> REPLACE NODENAME \A ($DB1) WITH \B;

Notice that the REPLACE clauses are specified as:

REPLACE NODENUMBER 101 ($DB1)
REPLACE NODENAME \A ($DB1).
HP NonStop SQL/MP Reference Manual—523352-013
M-29

MODIFY LABEL with REPLACE VOLUME
The ($DB1) part is necessary to change all references from \A.$DB1.SQL.T1 to
\B.$DB1.SQL.T1 while leaving intact all references to the \A.$DA1.SQL.T1 partition
that remains on \A.

After the MODIFY commands are run, the information in the PARTNS catalog tables
looks like this:

>> SELECT FILENAME,PARTITIONNAME,CATALOGNAME
+> FROM \A.$DA1.CATSUBV.PARTNS;

 FILENAME PARTITIONNAME CATALOGNAME
 -------------- -------------- ---------------
 \A.$DA1.SQL.T1 \A.$DA1.SQL.T1 \A.$DA1.CATSUBV
 \A.$DA1.SQL.T1 \B.$DB1.SQL.T1 \B.$DB1.CATSUBV
 \A.$DA1.SQL.T1 \C.$DC1.SQL.T1 \C.$DC1.CATSUBV
 >> SELECT FILENAME,PARTITIONNAME,CATALOGNAME
 +> FROM \B.$DB1.CATSUBV.PARTNS;

 FILENAME PARTITIONNAME CATALOGNAME
 -------------- -------------- ---------------
 \B.$DB1.SQL.T1 \A.$DA1.SQL.T1 \A.$DA1.CATSUBV
 \B.$DB1.SQL.T1 \B.$DB1.SQL.T1 \B.$DB1.CATSUBV
 \B.$DB1.SQL.T1 \C.$DC1.SQL.T1 \C.$DC1.CATSUBV
 >> SELECT FILENAME,PARTITIONNAME,CATALOGNAME
 +> FROM \C.$DC1.CATSUBV.PARTNS;

 FILENAME PARTITIONNAME CATALOGNAME
 -------------- -------------- ---------------
 \C.$DC1.SQL.T1 \A.$DA1.SQL.T1 \A.$DA1.CATSUBV
 \C.$DC1.SQL.T1 \B.$DB1.SQL.T1 \B.$DB1.CATSUBV
 \C.$DC1.SQL.T1 \C.$DC1.SQL.T1 \C.$DC1.CATSUBV

MODIFY LABEL with REPLACE VOLUME

The MODIFY LABEL with REPLACE VOLUME command modifies volume names
stored in file labels of SQL objects and SQL object programs on the local node. The file
label of an SQL object or object program contains names in internal network form and
therefore always contains one or more volume names. This command is used when
physically moving a disk from one node in your network to another node which has a
similar disk volume name, or when system loading a disk with a new disk volume
name. When this happens, changes are not automatically reflected in the catalogs and
file labels. The internal consistency of the database is lost; catalogs (and objects they
describe) cannot be accessed. The MODIFY commands (LABEL, CATALOG) enable
you to change the database to reflect the new information.

SQL objects include SQL catalog tables, user-defined tables, table partitions, indexes,
index partitions, views, and collations.

Note. The MODIFY LABEL with REPLACE VOLUME command is supported on systems
running J06.04 and later J-series RVUs and H06.15 and later H-series RVUs only.
HP NonStop SQL/MP Reference Manual—523352-013
M-30

MODIFY LABEL with REPLACE VOLUME
simple-fileset-list-1 [EXCLUDE simple-fileset-list-2]

identifies one or more SQL objects and object programs whose file labels will be
considered for modification. File labels are modified only if they contain volume
names that match the criteria specified in the REPLACE clause. Files included in
simple-fileset-list-1 that are not SQL objects or SQL program files are ignored.

The optional EXCLUDE simple-fileset-list-2 clause specifies files to be
excluded from simple-fileset-list-1.

fileset is a Guardian name in which wild-card characters can be used to specify
volumes, subvolumes, files, and objects. You cannot use wild-card characters in
node names. The wild-card characters you can use are:

For example, *VOL* matches NEWVOL, OLDVOL1, and VOL45. $VOL1.SUBV1.*
specifies all files on subvolume SUBV1 of volume $VOL1, and \SYS1.*.SUBV1.*
specifies all files on all subvolumes named SUBV1 on any volume of node \SYS1.
TABLE? matches TABLE1 and TABLEX, but not TABLE or TABLE48.

MODIFY [DICTIONARY] LABEL target-spec replace-spec
WITH volume-name [[,] option] ... ;

target-spec is:

simple-fileset-list-1 [EXCLUDE simple-fileset-list-2]

replace-spec is:

REPLACE VOLUME volume-name [(node-name1 [,node-name2]
[EXCLUDE node-name3 [,node-name4]…])]

option is:
[| ALLOWERRORS [OFF | ON | number-of-errors] |]
[| [NO] LISTALL |]
[| DETAIL [MATCH | ALL] REPORT [TO EMS-Collector]|]
[| [ON]|]
[| [OFF]|]
[| CHECKONLY |]

simple-fileset-list-n (where n = 1,2) is:
{ fileset }
{ (fileset [, fileset] ...) }

* Matches 0 to 8 characters in the position where it appears. Specifying only
an asterisk indicates that any name is acceptable. To specify all files, use
either $*.*.* or *.*.*

? Matches any single character
HP NonStop SQL/MP Reference Manual—523352-013
M-31

MODIFY LABEL with REPLACE VOLUME
You can also specify a logical DEFINE name as a fileset. File labels for dependent
objects and partitions are not considered for modification unless the dependent
object or partition is specified in simple-fileset-list-1. For example, if $A.B.T1 is a
table that has a dependent index, specifying $A.B.T1 results in only the file label of
the table being considered; the file label of the index is not considered.

REPLACE VOLUME volume-name [(node-name1 [,node-name2]
[EXCLUDE node-name3 [,node-name4]])]

specifies the volume name to be replaced in the file label. SQL file labels contain
file names, and those file names contain volume names. Volume names are
changed based on the node-name list. The volume name specified in REPLACE
VOLUME volume-name clause is replaced by the volume name specified in the
WITH volume-name clause.

If the first node-name list is specified, SQL replaces the volume name only if it
matches the volume name specified by volume-name and if the node name in the
file name matches one of the node names specified in the node-name list. The
optional EXCLUDE node-name list clause specifies node names to be excluded
from the first node-name list.

volume-name must be preceded by a dollar '$' character and must consist of at
least one to six alphanumeric characters. The first character must be alphabetic.
You can specify either uppercase or lowercase alphabetic characters; alphabetic
characters are upshifted before the comparison and substitution process. The
volume-name cannot include wild-card characters.

The first node-name list specifies a node name or a set of node names.

node-name must be preceded by a backslash character. To specify a single node
name, enter the name of the node. To specify multiple node names, use wild-card
characters. You can use these wild-card characters:

For example, \NOD* specifies all nodes that begin with \NOD. *NOD* matches
NEWNODE, OLDNODE1, and NODE45. NOD? matches NOD1 and NODX, but
not NOD or NOD48.

The maximum number of node-names that can be specified in this clause is 10 for
each node-name list. For example, this clause is invalid because it has 11 node
names in the first node-name list:

(\A*,\B*,\C*,\D*,\E*,\F*,\G*,\H*,\I*,\J*,\K* EXCLUDE \Z*)

If this clause is not specified, only the volume name is considered.

* Matches 0 to 8 characters in the position where it appears. Specifying only
an asterisk indicates any name is acceptable. To specify all files, use either
* or *

? Matches any single character
HP NonStop SQL/MP Reference Manual—523352-013
M-32

MODIFY LABEL with REPLACE VOLUME
WITH volume-name

specifies the volume name to replace occurrences of the volume name specified in
replace-spec.

volume-name must be preceded by a dollar '$' character and consist of at least
one to six alphanumeric characters. The first character must be alphabetic. Either
uppercase or lowercase alphabetic characters can be specified; alphabetic
characters are upshifted before the comparison and substitution process.

ALLOWERRORS [OFF | ON | number-of-errors]

determines handling of nonfatal errors. MODIFY reports two classes of errors: fatal
errors and nonfatal errors. The MODIFY LABEL with REPLACE VOLUME
command terminates immediately after reporting a fatal error. Nonfatal errors are
handled depending on the value of the ALLOWERRORS option:

If you specify ALLOWERRORS option without ON, OFF, or the number of errors,
ALLOWERRORS ON is the default. If you do not specify the ALLOWERRORS
option, ALLOWERRORS OFF is the default.

When the MODIFY LABEL with REPLACE VOLUME command continues
processing after a nonfatal error has occurred, it advances to the next SQL file.

[NO] LISTALL

specifies the detail MODIFY LABEL with REPLACE VOLUME writes to the current
OUT file. If LISTALL is specified, MODIFY LABEL with REPLACE VOLUME
reports the name of each SQL file label considered for modification and whether or
not the file label was modified. If NO LISTALL is specified, only the summary is
reported.

LISTALL is the default option.

OFF The MODIFY LABEL with REPLACE VOLUME
command terminates immediately after the first
nonfatal error is encountered.

ON THE MODIFY LABEL with REPLACE VOLUME
command continues, regardless of the number of
nonfatal errors encountered.

number-of-errors The MODIFY LABEL with REPLACE VOLUME
command continues until the number of nonfatal
errors exceeds value of number-of-errors.
HP NonStop SQL/MP Reference Manual—523352-013
M-33

Considerations-MODIFY LABEL with REPLACE
VOLUME
DETAIL [MATCH | ALL] REPORT [TO EMS-Collector]
[ON]
[OFF]

specifies the details about the MODIFY LABEL with REPLACE VOLUME operation
that is to be sent in event messages to a valid EMS collector.

If MATCH is specified, details are reported about SQL file labels specified in target-
spec that contain volume names that match the criteria specified in the REPLACE
clause. If ALL is specified, details are reported about all SQL file labels specified in
target-spec irrespective of a match being identified with regards to volume name.
MATCH is the default option.

CHECKONLY

specifies that the file labels specified in target-spec should be checked to see if
they contain volume names that match the criteria specified in the REPLACE
clause. No file labels are changed. The CHECKONLY option enables you to
estimate the effect of running the MODIFY LABEL with REPLACE VOLUME
command before modifying the SQL file labels.

Considerations-MODIFY LABEL with REPLACE VOLUME

 You must be logged on as the super ID to run a MODIFY LABEL with REPLACE
VOLUME command unless you specify the CHECKONLY option. If you specify the
CHECKONLY option, you must have authority to read the catalogs.

 SQL uses the TMF subsystem to protect the integrity of the database during the
MODIFY operation. The MODIFY LABEL with REPLACE VOLUME command is
not allowed inside a user-defined transaction.

One system-defined transaction is used for each SQL object file label modified. If
an error occurs while MODIFY LABEL with REPLACE VOLUME is modifying a file
label, the changes made to that particular file label is backed out. Changes made
to other file labels by the same instance of MODIFY LABEL with REPLACE
VOLUME command are not backed out. Thus, if an error occurs, some labels
might have been changed and others might not have been changed.

 The MODIFY LABEL with REPLACE VOLUME command is one of a set of
commands that uses the MODIFY DICTIONARY utility. The other related
commands are MODIFY CATALOG with REPLACE NODENAME (to replace node
name in catalog), MODIFY LABEL with REPLACE NODENUMBER (to replace
node number in file label), MODIFY CATALOG with REPLACE VOLUME (to
replace volume name in catalog), and MODIFY REGISTER Command (to register
user-defined catalogs in the local system catalog).

 If the volume name where the SQL catalog exists has already been changed to a
different name, then run the MODIFY LABEL with REPLACE VOLUME command
on all catalog objects in the catalog sub-volume before running the MODIFY
CATALOG with REPLACE VOLUME command. This is required to update the
volume name corresponding to the CATALOG field in the file label. The MODIFY
HP NonStop SQL/MP Reference Manual—523352-013
M-34

Considerations-MODIFY LABEL with REPLACE
VOLUME
CATALOG with REPLACE VOLUME command cannot be run first because it will
try to identify the CATALOG name from the file label to update the records in
catalog indexes.

However, if the volume name where the catalog exists has not been modified at the
time of running the MODIFY DICTIONARY command, consider executing MODIFY
CATALOG with REPLACE VOLUME command first followed by MODIFY LABEL
with REPLACE VOLUME command.

For example, if a catalog exists on $DATA00.CATVOL and the volume name has
been changed to $NEW00, the file labels of the catalog tables and indexes retain
the CATALOG name field as $DATA00. Running MODIFY CATALOG with
REPLACE VOLUME command on these catalog tables and indexes will fail as it
tries to identify the catalog $DATA00.CATVOL for updating certain records in
indexes on catalog tables, such as IXINDE01. Because $DATA00 has been
changed to $NEW00, the update fails. Hence, consider executing MODIFY LABEL
with REPLACE VOLUME command on these catalog objects such that the file
labels are updated with the new catalog name. This can be followed by MODIFY
CATALOG with REPLACE VOLUME command.

 To minimize unnecessary searching, make your target-spec clause as specific as
possible. For example, if SQL objects reside only on subvolumes whose names
begin with SQL, specifying $VOL1.SQL*.* is more efficient than specifying
$VOL1.*.*. The MODIFY LABEL with REPLACE VOLUME command would not
have to search for SQL objects on other subvolumes.

 The MODIFY LABEL with REPLACE VOLUME command locks one file label at a
time. The file itself is not locked. You must refrain from using the database,
including partitions and dependent objects on remote nodes, until the volume
names have been modified.

 The MODIFY DICTIONARY utility does not handle:

 Remote nodes. If you specify a remote file name, the MODIFY LABEL with
REPLACE VOLUME command reports a nonfatal error. Each node with
dependent objects or partitioned objects must have a version of NonStop
SQL/MP that supports MODIFY LABEL with REPLACE VOLUME commands.

 User-defined SQL object files. For example, MODIFY LABEL with REPLACE
VOLUME does not modify a volume name stored in a column of a user-defined
table.

 Volume names stored in SQL object program files.

 Volume names in Enscribe file labels.

 Dependent objects. Volume names in the file labels of dependent objects are
not modified unless the dependent object is specified in the MODIFY LABEL
with REPLACE VOLUME command.
HP NonStop SQL/MP Reference Manual—523352-013
M-35

Considerations-MODIFY LABEL with REPLACE
VOLUME
 Partitioned objects. Volume names in the file labels of partitions of tables and
indexes are not modified unless those partitions are specified in the MODIFY
LABEL with REPLACE VOLUME command.

For a partitioned SQL object, each volume that contains a partition of the
object must be specified separately. The MODIFY LABEL with REPLACE
VOLUME command does not automatically modify information about all
partitions of a partitioned object. You must be aware how the database is
distributed and partitioned. Document the MODIFY commands that need to be
run, and the nodes they need to be run on, before they are used. Prepare
scripts that runs the necessary MODIFY commands.

When you add a new dependent object to the database, update the scripts.
While the system is in a consistent state, you can use the DISPLAY USE OF
command to locate dependent objects. After MODIFY commands have been
run, you can use the VERIFY utility to verify that the database is in a consistent
state. While the system is in a consistent state, issue a SELECT from the
PARTNS partitions table to locate partitions. Prepare scripts that run the
necessary MODIFY commands. After the MODIFY commands are run, use the
VERIFY utility to verify that the database is in a consistent state.

 The MODIFY LABEL with REPLACE VOLUME command does not mark SQL
object programs as invalid in either the catalog or the object program file label.

 The MODIFY LABEL with REPLACE VOLUME command does not change the
redefinition timestamp in either the catalog or the file label.

 DEFINE names can be used in programs to specify the names of catalogs,
tables, views, indexes, partitions, and other programs. The current DEFINE set
at the time the program is SQL compiled is saved in the object program file. If
objects or object programs specified by the DEFINEs are moved between the
time the program is SQL compiled and the time the program is run, the
DEFINEs must be changed to reflect the new location of the objects and object
programs. This instruction is true regardless of how the database was moved
or whether the MODIFY DICTIONARY utility was used to modify the node
names and numbers. The MODIFY DICTIONARY utility does not modify the
node names in the DEFINE set stored in the object program file.

 After you have modified the DEFINEs, if automatic recompilation is enabled,
the programs are automatically recompiled using the new DEFINEs.

 A catalog and the objects registered in it must be on the same node. However,
it is possible for an object to be on a different disk than its catalog. The
MODIFY DICTIONARY utility is not intended to correct the situation where a
disk containing objects is moved to a new node, but the disk containing the
associated catalog is not moved to the new node.
HP NonStop SQL/MP Reference Manual—523352-013
M-36

Examples-MODIFY LABEL with REPLACE
VOLUME
Examples-MODIFY LABEL with REPLACE VOLUME

These examples illustrate the use of the REPLACE clause.

 In this example, the volume name $DATA is replaced with the volume name $NEW
if the first three characters of the node name are \DA:

REPLACE VOLUME $DATA (\DA*) WITH $NEW

 In this REPLACE clause, the volume name $DATA is replaced with the volume
name $NEW if the node name is either \SAM or \IND or if the first three characters
of the node name are \DA:

REPLACE VOLUME $DATA (\SAM,\IND,\DA*) WITH $NEW

 In this REPLACE clause, the volume name $DATA is replaced with the volume
name $NEW if the node name is anything other than \IND:

REPLACE VOLUME $DATA (* EXCLUDE \IND) WITH $NEW

 When you use the CHECKONLY option, note that the amount of information
written to the current OUT file depends on whether LISTALL or NO LISTALL is
specified. The MODIFY CATALOG command produces this display for each
catalog when requested with the LISTALL option:

Checking \SYS.$VOL.SUBVOL.T1 label.

--- \SYS.$VOL.SUBVOL.T1 label requires modification.

Checking \SYS.$VOL.SUBVOL.T2 label.

--- \SYS.$VOL.SUBVOL.T2 label does not require modification.

 This example on summary information is displayed for CHECKONLY if you specify
either LISTALL or NO LISTALL:

Summary Information:

nnn label(s) require modification.

nnn label(s) do not require modification.

 The MODIFY LABEL with REPLACE VOLUME command produces this display
when requested with the LISTALL option:

Checking \SYS.$VOL.SUBVOL.T1 label.

--- \SYS.$VOL.SUBVOL.T1 label was modified.

Checking \SYS.$VOL.SUBVOL.T2 label.

--- \SYS.$VOL.SUBVOL.T2 label was not modified.
HP NonStop SQL/MP Reference Manual—523352-013
M-37

MODIFY LABEL with REPLACE VOLUME and
Partitioned Objects
 This example on summary information is included whether you specify LISTALL or
NO LISTALL:

Summary Information:

nnn label(s) modified.

nnn label(s) not modified.

MODIFY LABEL with REPLACE VOLUME and Partitioned
Objects

This example shows the usage of the MODIFY LABEL with REPLACE VOLUME
command when you move partitioned objects. Suppose that you have table T1 with
one partition at \A.$DA1.SQL.T1, a second partition at \A.$DB1.SQL.T1, and a third
partition at \C.$DC1.SQL.T1. The catalogs where the partitions are registered contain
references to the other partitions. For example, the catalog where \A.$DA1.SQL.T1 is
registered contains a reference in the PARTNS catalog table to all three partitions, and
likewise for the catalogs where \A.$DB1.SQL.T1 and \C.$DC1.SQL.T1 are registered.

This SELECT statement illustrates the example:

>> SELECT FILENAME,PARTITIONNAME,CATALOGNAME

+> FROM \A.$DA1.CATSUBV.PARTNS;

FILENAME PARTITIONNAME CATALOGNAME

-------------- -------------- ---------------

\A.$DA1.SQL.T1 \A.$DA1.SQL.T1 \A.$DA1.CATSUBV

\A.$DA1.SQL.T1 \A.$DB1.SQL.T1 \A.$DB1.CATSUBV

\A.$DA1.SQL.T1 \C.$DC1.SQL.T1 \C.$DC1.CATSUBV

>> SELECT FILENAME,PARTITIONNAME,CATALOGNAME

+> FROM \A.$DB1.CATSUBV.PARTNS;

FILENAME PARTITIONNAME CATALOGNAME

-------------- -------------- ---------------

\A.$DB1.SQL.T1 \A.$DA1.SQL.T1 \A.$DA1.CATSUBV

\A.$DB1.SQL.T1 \A.$DB1.SQL.T1 \A.$DB1.CATSUBV

\A.$DB1.SQL.T1 \C.$DC1.SQL.T1 \C.$DC1.CATSUBV

>> SELECT FILENAME,PARTITIONNAME,CATALOGNAME

+> FROM \C.$DC1.CATSUBV.PARTNS;
HP NonStop SQL/MP Reference Manual—523352-013
M-38

MODIFY LABEL with REPLACE VOLUME and
Partitioned Objects
FILENAME PARTITIONNAME CATALOGNAME

-------------- -------------- ---------------

\C.$DC1.SQL.T1 \A.$DA1.SQL.T1 \A.$DA1.CATSUBV

\C.$DC1.SQL.T1 \A.$DB1.SQL.T1 \A.$DB1.CATSUBV

\C.$DC1.SQL.T1 \C.$DC1.SQL.T1 \C.$DC1.CATSUBV

Now suppose that the $DB1 volume on \A node is renamed to $XYZ. The MODIFY
DICTIONARY commands needed to make the NonStop SQL/MP database consistent
after the move are shown:

On node \A, to modify the references to the partition moved from \$DB1 to $XYZ:

>> MODIFY LABEL \A.$DA1.*.*

+> REPLACE VOLUME $DB1 WITH $XYZ;

>> MODIFY LABEL \A.$XYZ.*.*

+> REPLACE VOLUME $DB1 WITH $XYZ;

>> MODIFY CATALOG \A.$DA1.CATSUBV

+> REPLACE VOLUME $DB1 WITH $XYZ;

On node \C, to modify the references to the partition moved from $DB1 to $XYZ:

>> MODIFY LABEL \C.$DC1.*.*

+> REPLACE VOLUME $DB1 WITH $XYZ;

>> MODIFY CATALOG $DC1.CATSUBV

+> REPLACE VOLUME $DB1 WITH $XYZ;
HP NonStop SQL/MP Reference Manual—523352-013
M-39

MODIFY REGISTER Command
MODIFY REGISTER Command
The MODIFY REGISTER command registers a user-defined catalog in the local
system catalog.

Each node that uses NonStop SQL/MP has a catalog called the system catalog that
contains information about all the catalogs on the node. If a disk containing an SQL
database is moved from one node to another, the catalogs that reside on the relocated
disk are not automatically registered in the system catalog on the new node. You can
access a catalog that is not registered in the system catalog or even create new
objects and register them in such a catalog. However, to make the system consistent,
you should register all user-defined catalogs in the SQL system catalog.

CATALOG catalog-list-1 [EXCLUDE catalog-list-2]

identifies one or more SQL catalogs to be registered in the system catalog. If the
catalog is already registered in the system catalog, a warning is reported, and the
command continues.

The optional EXCLUDE catalog-list-2 clause specifies catalogs to be
excluded from catalog-list-1.

catalogset specifies one catalog or a set of catalogs. To specify a single
catalog, enter the name of the catalog (the name of the subvolume that contains
the catalog). To specify multiple volumes, use wild-card characters. You can use
these wild-card characters:

MODIFY [DICTIONARY] REGISTER target-spec

 [[,] option] ...;

target-spec is:

 CATALOG catalog-list-1 [EXCLUDE catalog-list-2]

catalog-list-n (where n = 1,2) is:

 { catalogset }
 { (catalogset [, catalogset] ...) }

option is:

 [| ALLOWERRORS [OFF | ON | number-of-errors] |]
 [| [NO] LISTALL |]

* Matches 0 to 8 characters in the position where it appears. Specifying
only an asterisk indicates any name is acceptable. To specify all
catalogs, use either $*.* or *.*.

? Matches any single character.
HP NonStop SQL/MP Reference Manual—523352-013
M-40

MODIFY REGISTER Command
For example, $DATA.* specifies all catalogs on the volume $DATA, while *.*
specifies all catalogs on the node. *VOL* matches NEWVOL, OLDVOL1, and
VOL45. VOL? matches VOL1 and VOLX but not VOL or VOL48.

The MODIFY REGISTER command functions requires that a subvolume contains
a valid catalog if the subvolume contains the catalog table TABLES (file code must
be 581).

ALLOWERRORS [OFF | ON | number-of-errors]

determines handling of nonfatal errors. MODIFY REGISTER reports two classes of
errors: fatal errors and nonfatal errors. The MODIFY command always terminates
after reporting a fatal error. Nonfatal errors are handled depending on the value of
the ALLOWERRORS option:

If you specify ALLOWERRORS without ON, OFF, or the number of errors,
ALLOWERRORS ON is the default.

If you do not specify ALLOWERRORS, ALLOWERRORS OFF is the default.

When MODIFY REGISTER continues processing after a nonfatal error has
occurred, it advances to the next SQL catalog.

Each MODIFY REGISTER error describes whether the error is fatal or nonfatal.

[NO] LISTALL

specifies how much information MODIFY REGISTER writes to the current OUT
file. If LISTALL is specified, MODIFY REGISTER reports the name of each SQL
catalog registered. If NO LISTALL is specified, only summary information is
reported.

LISTALL is the default.

OFF The MODIFY REGISTER command terminates
immediately after the first nonfatal error is
encountered.

ON The MODIFY REGISTER command continues,
regardless how many nonfatal errors are
encountered.

number-of-errors The MODIFY REGISTER command continues until
the number of nonfatal errors exceeds the value of
number-of-errors.
HP NonStop SQL/MP Reference Manual—523352-013
M-41

Considerations—MODIFY REGISTER
Considerations—MODIFY REGISTER

 You must be logged on as the super ID to run a MODIFY DICTIONARY command,
unless you specify the CHECKONLY option.

 NonStop SQL/MP uses the TMF subsystem to protect the integrity of the database
during the MODIFY REGISTER operation. MODIFY commands are not allowed
inside a user-defined transaction.

 The MODIFY REGISTER command is one of a set of commands that uses the
MODIFY DICTIONARY utility. The other related commands are MODIFY LABEL
with REPLACE NODENUMBER (to change node numbers in file labels) and
MODIFY CATALOG (to change node names in SQL catalogs).

 MODIFY REGISTER does not mark SQL object programs as invalid in either the
catalog or in the object program file label.

 MODIFY REGISTER does not change the redefinition timestamp in either the
catalog or the file label.

 The MODIFY DICTIONARY utility does not handle remote nodes. If you specify a
remote catalog name, the MODIFY REGISTER command reports a nonfatal error.
Because of this, each node with dependent objects or partitioned objects must
have a version of NonStop SQL/MP that supports MODIFY commands.

 The MODIFY REGISTER command registers a catalog in the system catalog.
However, there is no command that removes information about a catalog from the
system catalog. For example, suppose that a disk containing the catalog
$VOL1.CAT and the objects registered in it is moved from \SYSA to \SYSB. The
MODIFY DICTIONARY REGISTER option can be used to register the catalog in
the system catalog on \SYSB, but a licensed SQLCI2 process must be used to
remove the information about the $VOL1.CAT catalog from the system catalog on
\SYSA.

 A catalog and the objects registered in it must be on the same node. However, it is
possible for an object to be on a different disk than its catalog. The MODIFY
DICTIONARY utility is not intended to correct the situation where a disk containing
objects is moved to a new node but the disk containing the associated catalog is
not moved to the new node.

Examples—MODIFY REGISTER

 This example shows what is displayed for each catalog, if LISTALL is specified:

Registering catalog \SYS.$VOL.CAT1.
--- \SYS.$VOL.CAT1 was registered.
Registering catalog \SYS.$VOL.CAT2.
--- \SYS.$VOL.CAT2 was not registered.
HP NonStop SQL/MP Reference Manual—523352-013
M-42

Multibyte Character Sets
 This summary information is displayed if either LISTALL or NO LISTALL is
specified:

Summary Information:
 nnn catalog(s) registered.
 nnn catalog(s) not registered.

 For a comprehensive example, see the MODIFY LABEL on page M-20.

Multibyte Character Sets
SQL supports two multibyte character sets:

 Kanji
 KSC5601

Multibyte character sets are described under the entry Character Sets and can be
associated with columns, literals, host variables, and parameters. (You cannot use
multibyte character sets in collations. SQL always collates multibyte character values
according to the binary representation of the characters.)

System Default National Character Set

Each node in a network that runs NonStop SQL/MP has a system default national
character set associated with it. SQL uses the system default national character set
when your SQL statements specify the data type NATIONAL CHARACTER or NCHAR,
or when you use the national character form of a string literal.

The released system default national character set is Kanji, but your site can change
the default to one of the other multibyte character sets during a SYSGEN. You can use
the system procedure MBCS_DEFAULTCHARSET (described in the Guardian
Procedure Calls Reference Manual) to determine the current system default national
character set for a node.

SQL returns an error if you try to create an SQL column with a NATIONAL
CHARACTER or NCHAR data type on a node with a system default multibyte
character set that SQL does not support. The same error occurs if you use a string
literal with the prefix N (indicating the system default multibyte character set) on such a
node.

If you run SQL DDL or DML statements that use the national character data type to
create tables or manipulate data on a node with a different system default multibyte
character set, the character set used is the default on the node that runs the command,
not the node on which the tables reside.
HP NonStop SQL/MP Reference Manual—523352-013
M-43

System Default National Character Set
HP NonStop SQL/MP Reference Manual—523352-013
M-44

N
NAME Command

NAME is an SQLCI report writer command that assigns an alias to a column in the
select list of the SELECT command. You can then use the alias to refer to the column
in any other part of your report definition.

NAME is convenient for defining abbreviations for long column names or for assigning
informative names to columns that consist of expressions.

column

identifies a column in the select list of the SELECT command. It can be a column
name, an alias, or COL number (which specifies the position of the column in the
select list). It cannot be a detail alias.

alias

is an SQL identifier that is unique among column names in the select list and
among existing aliases. It becomes the alias for the specified column.

Consideration—NAME Command

If you specify an alias, it becomes the default heading for the column. If you specify
more than one alias for the same column, the most recently defined alias is the default
heading.

Example—NAME Command

This example defines an alias for the second column in a select list. The output shows
the effect of the alias on the heading.

>> SET LIST_COUNT 0;
>> SELECT EMPNUM, SALARY/12 FROM PERSNL.EMPLOYEE;
S> NAME COL 2 MONTHSAL;
S> DETAIL EMPNUM, MONTHSAL;
S> TOTAL MONTHSAL;
S> LIST FIRST 1;
EMPNUM MONTHSAL
------ --------------------
 1 14625.000000000000

NAME column alias ;
HP NonStop SQL/MP Reference Manual—523352-013
N-1

NAME Option
NAME Option
The NAME option specifies an operation name for an operation started by a statement
that includes the NAME option. Use the operation name in subsequent CONTINUE
statements or to identify EMS messages sent by the operation. For more information,
see REPORT Option on page R-3.

operation-name

is an SQL identifier to be the name for the operation. operation-name should
normally be unique on the node so that messages from the operation are not
confused with messages for other operations using the same name. Uniqueness is
not required for the operation to work correctly. If you omit the NAME option, the
name of the operation is the first two words of the statement that initiated the
operation concatenated by an underscore (for example, ALTER_TABLE).

Consideration—NAME Option

The operation name appears in EMS messages as the token ZSQL-TKN-OP-TYPE
and ZAUD-TKN-OP-TYPE. For more information about EMS messages sent by
NonStop SQL/MP, see the SQL/MP Messages Manual.

Example—NAME Option

This example CREATE INDEX statement uses the NAME option to name the index-
creation operation CREATE_INDADV:

CREATE INDEX INDADV ON STUDENTS (ADVISOR,CLASS)
 WITH SHARED ACCESS NAME CREATE_INDADV COMMIT BY REQUEST;

Name Resolution
Name resolution is the mapping of a name in an SQL statement to a particular table,
view, index, program, partition, collation, catalog, or EDIT file. Name resolution
includes mapping DEFINEs to physical names and fully qualifying partially qualified
physical names using the current default node, volume, subvolume, and catalog
names.

The time at which name resolution occurs depends upon the statement and upon
whether a CONTROL QUERY BIND NAMES AT EXECUTION directive was in effect at
the time the statement was compiled or prepared (compiled by executing a PREPARE
or EXECUTE IMMEDIATE statement). Names in an INVOKE statement in a host
language program are always resolved during host language compilation, along with
names in host language statements that are not SQL statements.

NAME operation-name
HP NonStop SQL/MP Reference Manual—523352-013
N-2

Names
By default, SQL resolves names in a static SQL statement at program startup, resolves
names in a prepared statement at the time the PREPARE or EXECUTE IMMEDIATE
executes, and resolves names in a non-prepared SQLCI statement at the time you
enter the statement. However, if a CONTROL QUERY BIND NAMES AT EXECUTION
directive is in effect at a statement's compilation, preparation, or entry (for static,
prepared, or SQLCI statements, respectively), then SQL resolves names in the
statement at the time the statement executes instead.

For more information about changing the time at which names are resolved, see
CONTROL QUERY Directive on page C-74. For information about the resolution of
DEFINE names, see DEFINEs on page D-27. For information about name resolution in
host programs and the relationship between name resolution and various compilation
options, see the SQL/MP Programming Manual for COBOL or the SQL/MP
Programming Manual for C.

Names
NonStop SQL/MP uses six main types of names:

 SQL identifiers
 Guardian names
 OSS names
 Host identifiers
 DEFINE names
 Catalog names

Rules for SQL identifiers, host identifiers, Guardian names, and OSS names are
described in separate entries for those topics. Rules for DEFINE names and catalog
names are described in the entries for DEFINEs on page D-27, and Catalogs on
page C-8.

Rules for names of other entities used in NonStop SQL/MP are described in terms of
these six types of names. For example, a table name is a Guardian name, the name of
a prepared statement is an SQL identifier, and so forth.

Generally, the rules for naming an entity used by NonStop SQL/MP are described in
the main entry that describes that entity. For example, the rules for table names are
described in Tables on page T-1, and the rules for naming prepared statements are
described in PREPARE Statement on page P-25.

Case is generally not significant in SQL/MP names, although it is significant in names
of host variables in the C programming language, in string literals, and in the c89
command.

For more information, see the entry for a specific type of name.
HP NonStop SQL/MP Reference Manual—523352-013
N-3

NEWLINE_CHAR Option
NEWLINE_CHAR Option
NEWLINE_CHAR is an option of the SQLCI report writer SET STYLE command that
specifies the character that indicates a new line in a column heading.

character

is a single-byte character to mark the end of a line in a heading string. The default
is “/”.

Consideration—NEWLINE_CHAR

For information about how to create headings, see DETAIL Command on page D-47.

Example—NEWLINE_CHAR

This example sets the new-line character to an exclamation point, then uses it in a
DETAIL command to create a two-line heading:

>> SET STYLE NEWLINE_CHAR "!";
S> DETAIL EMPNUM HEADING "Employee!Number" CENTER, ...
S> LIST FIRST 1;
Employee
 Number

234

Nonaudited Tables
Nonaudited tables are tables that are not audited by TMF, the main functional
component of the TMF product. TMF recovery operations do not protect nonaudited
tables from node failure or media failure.

NonStop SQL/MP creates audited tables by default but you can specify the creation of
a nonaudited table (or change an audited table to a nonaudited table) using the AUDIT
file attribute for the table.

For more information, see AUDIT File Attribute on page A-74 or TMF Transactions on
page T-6.

NEWLINE_CHAR "character"
HP NonStop SQL/MP Reference Manual—523352-013
N-4

NOPURGEUNTIL File Attribute
NOPURGEUNTIL File Attribute
NOPURGEUNTIL is a Guardian file attribute that specifies an expiration date and time
after which a table or index can be purged or dropped. NOPURGEUNTIL applies to
key-sequenced, relative, and entry-sequenced tables and to indexes.

SQL stores the date and time in local civil time (LCT).

Defaults

The default is NOPURGEUNTIL 0, which specifies that the object can be purged at
any time.

If you specify a date but omit time, the time 00:00 is used.

If you specify a time with no date, the current date is used.

Example—NOPURGEUNTIL

These NOPURGEUNTIL values prevent purging until 2003:

NOPURGEUNTIL JAN 01 2003
NOPURGEUNTIL 31 DEC 2003, 23:59

 { mmmbddbyyyy [, hh:nn] }
NOPURGEUNTIL { ddbmmmbyyyy [, hh:nn] }
 { hh:nn }

b is required space

mmm is a 3-character month value (JAN, FEB, MAR,APR, MAY, JUN, JUL, AUG,
SEP, OCT, NOV, or DEC)

dd is a 2-digit day value (01, 02, ... , 31)

yyyy is a 4-digit year value

hh is a 2-digit hour value (00, 01, ... , 23)

nn is a 2-digit minute value (00, 01, ..., 59)
HP NonStop SQL/MP Reference Manual—523352-013
N-5

NULL Predicate
NULL Predicate
NULL is a predicate that determines whether a column contains a null value.

Considerations—NULL

 If any expression in the NULL predicate evaluates to a value other than null, the IS
NOT NULL predicate evaluates to TRUE; otherwise, IS NOT NULL evaluates to
FALSE.

This chart summarizes expression evaluation for null predicates. rvs stands for
row value specification. Degree is the number of expressions in row value
specification.

Note that the expression

row-value-specification IS NOT NULL

is not equivalent to the expression

NOT (row-value-specification IS NULL)

 If all the expressions in the NULL predicate evaluate to null, the IS NULL predicate
evaluates to TRUE; otherwise, IS NULL evaluates to FALSE.

Examples—NULL

 This example finds all rows with a null value in the SALARY column:

SALARY IS NULL

row-value-specification IS [NOT] NULL

row-value-specification is:

 { expression [, expression] ... }
 { (expression [, expression] ...) }

Expression
rvs is
NULL

rvs is NOT
NULL

NOT rvs is
NULL

NOT rvs is
NOT NULL

degree 1:
null

TRUE FALSE FALSE TRUE

degree 1:
not null

FALSE TRUE TRUE FALSE

degree>1:
all null

TRUE FALSE FALSE TRUE

degree>1:
some null

FALSE FALSE TRUE TRUE

degree>1:
none null

FALSE TRUE TRUE FALSE
HP NonStop SQL/MP Reference Manual—523352-013
N-6

Null Values
 This example evaluates to true if the expression (PRICE + TAX) evaluates to null:

(PRICE + TAX) IS NULL

 This example evaluates to true if the value in :JOBCODE is not null:

:JOBCODE IS NOT NULL

 This example finds all rows where both FIRST_NAME and SALARY have a null
value:

FIRST_NAME, SALARY IS NULL

Null Values
A null value is a special symbol, independent of data type, that represents an unknown
or inapplicable value. A null value indicates that an item has no value. For sorting
purposes, SQL considers null values greater than all other values.

You cannot store a null value in a column, either with INSERT or UPDATE, unless the
column was declared to allow null values when it was created.

Any row of a column that allows null values can be empty. In SQL, a column that
allows null values has two extra bytes associated with it in each row. A -1 stored in
those two bytes indicates that the column has a null value for that row; a 0 indicates a
null value.

Using Null Values Versus Default Values

Various scenarios exist in which a row in a table might contain no value for a specific
column. For example:

 A database of telemarketing contacts might have AGE fields empty if contacts did
not give their age.

 An order record might have a DATE_SHIPPED column empty until the order is
actually shipped.

 An employee record for an international employee might not have a social security
number.

You allow null values in a column when you want to convey that a value in the column
is either unknown (such as the age of a telemarketing contact) or not applicable (such
as the social security number of an international employee).
HP NonStop SQL/MP Reference Manual—523352-013
N-7

Defining Columns That Allow or Prohibit Nulls
In deciding whether to allow nulls or use defaults, also note these points:

 Null values are not the same as blanks. Two blanks can be compared and found
equal, while the equivalence of two null values is indeterminate.

 Null values are not the same as zeros. Zeros can participate in arithmetic
operations, while null values are excluded from arithmetic.

Defining Columns That Allow or Prohibit Nulls

CREATE TABLE and ALTER TABLE define all the column attributes for columns of
tables. You use these statements to specify whether a new column allows null values.

A column allows null values unless the column definition includes the NOT NULL
clause or the column is part of the primary key of the table.

A null value is also the default value for a column unless the column definition includes
either the DEFAULT (excluding DEFAULT NULL) or the NO DEFAULT clause. (The
default value for a column is the value SQL inserts in a row when an INSERT
statement omits a value for a particular column or when a column is added to an
existing table.)

These sample column definitions allow or prohibit null values as indicated:

The SQL/MP Installation and Management Guide discusses defining columns with the
NULL and DEFAULT clauses in detail.

Determining Whether a Column Allows Nulls

To determine whether a column accepts null values, you can query the COLUMNS
catalog table or you can use INVOKE to list the table description in SQL format (the
default format from SQLCI) and check the column definitions. The COLUMNS table
contains descriptions of all columns of all tables registered in a catalog (as recorded in
the TABLES catalog table). The one-character NULLALLOWED column contains a Y if
a null value is allowed, and an N if not.

These examples illustrate how to display information through SQLCI about whether
columns allow or prohibit null values:

 This example queries the value of the NULLALLOWED column in the COLUMNS
catalog table for the description of a particular column in a particular table. The

CA INTEGER Allows nulls, default null

CB INTEGER DEFAULT SYSTEM Allows nulls

CC INTEGER NO DEFAULT Allows nulls

CD INTEGER DEFAULT SYSTEM NOT NULL Prohibits nulls

CF INTEGER DEFAULT NULL Allows nulls, default null
HP NonStop SQL/MP Reference Manual—523352-013
N-8

Specifying Null Values in Host Programs
example uses the LIKE predicate to avoid entering the whole, exact table name for
the OD2 table. The column of interest is the DELIV_DATE column in table OD2.

>> SELECT NULLALLOWED FROM COLUMNS
+> WHERE TABLENAME LIKE "%OD2%" AND
+> COLNAME = "DELIV_DATE";
NULLALLOWED

Y
--- 1 row(s) selected.

 This example queries the COLUMNS catalog table to display the value for the
NULLALLOWED column for all the columns of a particular table:

>> SELECT TABLENAME, COLNAME, NULLALLOWED
+> FROM COLUMNS
+> WHERE TABLENAME LIKE "%OD2%";

 This example invokes a table description in SQL format (the default format through
SQLCI). The display shows NOT NULL for columns whose definition prohibits null
values.

>> INVOKE OD2;
-- Definition of table \SYS1.$VOL1.SALES.OD2
-- Definition current at 16:36:57 - 05/23/89
(
ORDERITEM DECIMAL(6, 0) UNSIGNED NO DEFAULT
 NOT NULL
, ORDERNUM NUMERIC(6, 0) UNSIGNED NO DEFAULT
 NOT NULL
, ORDER_DATE NUMERIC(6, 0) NO DEFAULT
, DELIV_DATE NUMERIC(6, 0) NO DEFAULT
, SALES_REP DECIMAL(4, 0) UNSIGNED DEFAULT SYSTEM
, CUSTNUM DECIMAL(4, 0) UNSIGNED NO DEFAULT
)

Specifying Null Values in Host Programs

Host programs use indicator variables to indicate the presence of null values. For more
information, see Indicator Variables and Indicator Parameters on page I-11 or the
SQL/MP programming manual for your host language.

DISTINCT, GROUP BY, and ORDER BY With Null Values

In evaluating the DISTINCT, GROUP BY, and ORDER BY clauses, SQL considers all
null values to be equal. Additional considerations for these clauses are:

DISTINCT Null values are considered duplicates; a result has at most
one null

GROUP BY The result has at most one null group

ORDER BY Null values are considered greater than nonnull values
HP NonStop SQL/MP Reference Manual—523352-013
N-9

Null Values and Expression Evaluation
Null Values and Expression Evaluation

This chart summarizes the results of expression evaluation with null values.

NULL_DISPLAY Option
NULL_DISPLAY is an option of the SQLCI report writer SET STYLE command that
defines a character to represent NULL print items in a report.

character

is a printable, single-byte character used to represent the null value in a printed
report. The default is ? (question mark).

Example—NULL_DISPLAY

This example adds a column with null values and prints the column twice, using a
different value for the NULL_DISPLAY option each time:

>> ALTER TABLE PRJ ADD COLUMN DEPT PIC X(6) DEFAULT NULL;
--- SQL operation complete.
>> SELECT DEPT FROM PRJ;
DEPT

?
?
?
--- 3 row(s) selected.
>> SET STYLE NULL_DISPLAY "Z";

Expression Type Condition Result

Boolean (AND, OR, NOT) Either value null True, false, or null
See truth tables in Search
Conditions on page S-5

Arithmetic Either or both
values null

Null

NULL predicate See SEARCH CONDITION

Aggregate functions
(except COUNT)

Evaluated after
eliminating nulls

Null if set is empty

COUNT
COUNT DISTINCT

Evaluated after
eliminating nulls

 Zero if set is empty

Comparison:
> < = >=
<= <> LIKE

Either value null Null

IN predicate Expression is null Null

Subquery No values returned Null

NULL_DISPLAY "character"
HP NonStop SQL/MP Reference Manual—523352-013
N-10

Numeric Data Types
>> SELECT DEPT FROM PRJ;
DEPT

Z
Z
Z

Numeric Data Types
Table N-1 lists the numeric data types available in NonStop SQL/MP. A numeric data
type is compatible with any other numeric data type, but not with character, date-time,
or interval data types.

Table N-1. Numeric Data Types in SQL—Binary Types

SQL Designation Description Size or Range (1)

NUMERIC(1,s) to
NUMERIC(18,2)

Exact binary number with optional
scale; signed or unsigned for 1 to 9
digits; signed required for 10 or more
digits

1 to 18 digits stored:
1 to 4 digits in 2 bytes
5 to 9 digits in 4 bytes
10 to 18 digits in 8 bytes

PIC S9V9 COMP to PIC
S9(18) COMP

Binary number; same as NUMERIC 1 to 18 digits;
stored as NUMERIC

SMALLINT Binary integer; signed or unsigned –32768 to +32767
or 0 to 65535;
stored in 2 bytes

INTEGER Binary integer; signed or unsigned –2147483648 to
+2147483647
or 0 to 4294967295;
stored in 4 bytes

LARGEINT Binary integer; signed only –2**63 to 2**63-1;
stored in 8 bytes
HP NonStop SQL/MP Reference Manual—523352-013
N-11

Considerations—Numeric Data Types
Considerations—Numeric Data Types

 All the preceding data types are exact data types except for the floating point
types, which are approximate data types. Exact data types have greater precision.
Approximate data types are subject to rounding error and should not be used for
equality comparisons or other operations that require exact results.

 Floating point (approximate) data types should be used for very large or very small
numbers that cannot be stored in other data types. If you can represent column
values with an exact data type, use the exact data type instead of a floating point
data type.

 For more information about numeric data types, see Data Types on page D-1.

Table N-2. Numeric Data Types in SQL—Floating Point Types

SQL Designation Description Size or Range (1)

FLOAT [(pre)] Approximate floating point number;
pre-designates from 1 through 54
bits of precision

+/-8.62 times 10**-78
through +/-1.16 times
10**77;
stored:
pre 1 to 22 in 4 bytes,
pre 23 to 54 in 8 bytes

REAL Approximate floating point number
(22 bits)

Approximately 7 decimal
digits of precision;
same range as FLOAT;
stored in 4 bytes

DOUBLE PRECISION Approximate floating point number
(54 bits)

Approximately 16
decimal digits of
precision;
same range as FLOAT;
stored in 8 bytes

Table N-3. Numeric Data Types in SQL—Decimal Types

SQL Designation Description Size or Range (1)

DECIMAL (1,s) to
DECIMAL (18,s) and
PIC S9V9 DISPLAY to
PIC S9(18) DISPLAY

Decimal number with optional scale;
stored in ASCII; must be signed if 10
or more digits, otherwise can be
signed or unsigned.

1 to 18 digits; byte
length equals the
number of digits
HP NonStop SQL/MP Reference Manual—523352-013
N-12

Numeric Literals
Numeric Literals
A numeric literal represents a numeric value. Each numeric literal has the data type
NUMERIC and the minimum precision required to represent the value it specifies.

A simple numeric literal (one without an exponent) can include up to 18 digits (0
through 9), a plus sign (+) or a minus sign (–), and a period (.) that indicates a decimal
point. Leading zeros do not count toward the 18-digit limit; trailing zeros do.

A sign in a simple numeric literal must be the first character of the numeric literal. A
numeric literal without a sign is considered to be a positive number.

A simple numeric literal that does not include a decimal point is considered to be an
integer.

A numeric literal in scientific notation is a simple numeric literal followed by an
exponent expressed as the letter E or e followed by an optionally signed integer.

Numeric values expressed in scientific notation are handled as type REAL if they
include no more than seven digits before the exponent, but handled as type DOUBLE
PRECISION if they include eight or more digits. Because of this, trailing zeros after a
decimal can sometimes increase the precision of a numeric literal used as a DOUBLE
PRECISION value. For example, if XYZ is a table that consists of one DOUBLE
PRECISION column:

INSERT INTO XYZ VALUES (1.00000000E-10);

is more precision than

INSERT INTO XYZ VALUES (1.0E-10);

Example—Numeric Literals

These are all numeric literals:

477 580.45 +005 -.3175 1300000000
99. -0.123456789012345678 99E-2
HP NonStop SQL/MP Reference Manual—523352-013
N-13

Example—Numeric Literals
HP NonStop SQL/MP Reference Manual—523352-013
N-14

O
OBEY Command

OBEY is an SQLCI command that executes SQL statements and SQLCI commands
from a file.

OBEY executes the statements and commands exactly as if you had entered them
from the terminal. After execution, SQLCI closes the file but does not return any setting
changed by the commands (such as a session attribute) to a previous state.

OBEY is often used to set DEFINEs or define reports, but is useful in any situation in
which you repeat a sequence of statements or commands. Using OBEY to execute
statements and commands from files makes tedious jobs faster, easier to reproduce,
and more reliable.

cmd-file

is the name of a closed file that contains commands to execute.

The file (called a command file or an OBEY command file) is usually an EDIT
disk file, but can also be a device or process. It cannot be the SQLCI IN, OUT, or
log file, or an executing command file, however, because these files are open.

section

is the name of a section in the file to execute.

For each section you specify, SQLCI executes the lines in the file from the
named section header to the next section header (or the end of the file). If you
specify more than one section, SQLCI executes the sections in the order in which
they appear in the file, not in the order you specify them. If more than one section
in the file has the name you specify, SQLCI executes only the first one; other
sections with the same name are ignored.

If you omit section, SQLCI executes all lines in the file.

Considerations—OBEY

 You can use named parameters as literals in DML statements or SQLCI
commands within command files. Use SET PARAM to supply values for the
parameters before you use OBEY to execute the statements or commands. For
more information, see Parameters on page P-11.

O[BEY] cmd-file [(section [, section] ...)] ;
HP NonStop SQL/MP Reference Manual—523352-013
O-1

Considerations—OBEY
 Specify sections within a command file by including a section header starting in
column 1 at the beginning of each section:

?SECTION section-name

The section-name is an SQL identifier that is the name of the section. Each
section name within a file should be unique, because SQLCI executes only the first
section it finds that has the name you specify in an OBEY command.

 Most command files are simply EDIT files that contain SQLCI commands (and,
optionally, section headers). You can create or modify command files any way you
normally create or modify EDIT files, typically with the EDIT or TEDIT text editor.

NonStop SQL/MP also creates three types of command files for you:

 SQLCOMP creates a command file that sets DEFINEs used by a program if
you compile the program with the EXPLAIN DEFINES option and specify
OBEYFORM. See the SQL/MP programming manual for your host language.

 The SAVE command creates a command file that sets up a report definition or
other SQLCI session options. For more information, see SAVE Command on
page S-2 or the SQL/MP Report Writer Guide.

 The LOG COMMANDS command logs SQLCI commands you enter. You can
then create an SQLCI OBEY command file from the log file.

In all three cases, you can use the command file as it is or modify it with an
editor.

 You can nest command files to four levels beyond the SQLCI IN file. For example,
if you enter OBEY FILE1 at the terminal (IN file) and FILE1 contains OBEY FILE2,
FILE2 contains OBEY FILE3, and FILE3 contains OBEY FILE4, FILE4 cannot
contain an OBEY command. You can have at most five files open including the IN
file.

A command file cannot include an OBEY command that executes commands from
the same command file, however, even if the commands are within another section
of the file. (Inclusion would violate the restriction that the command file specified in
the OBEY must be closed, because a command file remains open while SQLCI
executes it.)

Within a command file, SQLCI executes commands until it reaches the end of a
section, the end of a file, another OBEY, or an EXIT command. When it reaches
the end of a section or file, SQLCI returns to the line following the OBEY command
that initiated execution of that section or file.

 If the BREAK_KEY option is ON, you can stop the execution of commands in a
command file by pressing the Break key at the terminal from which you issued the
OBEY. SQLCI closes the command file and prompts you for a new command. If a
transaction is in progress, it is rolled back.
HP NonStop SQL/MP Reference Manual—523352-013
O-2

Examples—OBEY
If BREAK_KEY is OFF, pressing the Break key interrupts execution and passes
control to the previous Break key owner, usually TACL. From TACL, enter PAUSE
to resume or STOP to terminate SQLCI.

Examples—OBEY

 This example shows the contents of a simple command file that sets DEFINE
values:

SET DEFMODE ON;
ADD DEFINE =REP, FILE \SYS1.$VOL2.SALES.SALESREP;
ADD DEFINE =CUST, FILE \SYS1.$VOL2.SALES.CUSTOMER;
ADD DEFINE =ORD, FILE \SYS1.$VOL2.SALES.ORDERS;

If the commands are in a file named DEFS, you can execute them from SQLCI by
typing,

OBEY DEFS;

 This example shows a command file that uses both sections and parameters. The
example also shows the SQLCI output when OBEY executes a short section from
a command file.

The contents of UPDOP the command file are:

?SECTION NEWJOB
UPDATE PERSNL.EMPLOYEE
 SET JOBCODE=?JCOD WHERE EMPNUM=?EMPN;
?SECTION NEWSAL
...
?SECTION NEWDEPT
...

 This example executes section NEWJOB from the command file. The first two
commands (SET PARAM and OBEY) are entered by the user; everything else is
printed by SQLCI, echoing and responding to commands from the file as it
executes them.

>>SET PARAM ?EMPN 557, ?JCOD 500;
>>OBEY UPDOP (NEWJOB);
>>?SECTION NEWJOB
>>UPDATE PERSNL.EMPLOYEE
+> SET JOBCODE = ?JCOD WHERE EMPNUM = ?EMPN;
--- 1 row(s) updated.
HP NonStop SQL/MP Reference Manual—523352-013
O-3

OCTET_LENGTH Function
OCTET_LENGTH Function
The OCTET_LENGTH function returns the length of a character string in bytes.

character-string

specifies the string for which the length is to be returned.

Considerations—OCTET LENGTH Function

 SQL returns the result as a two-byte signed integer with a scale of zero.

 If character-string is a null value, SQL returns a length of null.

 For a column declared as a fixed CHAR, SQL returns the maximum length of that
column. For a VARCHAR column, SQL returns the actual length of the string
stored in that column.

 The OCTET_LENGTH and CHAR_LENGTH functions are similar. The
CHAR_LENGTH function returns the number of characters in the string. The result
of both functions is the same for single-byte character data types. For multibyte
character data types, the two functions return different results.

Examples—OCTET LENGTH Function

 This example returns the value 6:

OCTET_LENGTH ("Robert")

 This example returns the value 6:

OCTET_LENGTH (_KANJI "abcdef")

OCTET_LENGTH (character-string)
 where character-string is:
 {string-literal }
 {column-name }
 {param-name }
 {host-var-name }
 {UPSHIFT function }
 {character-expression}
HP NonStop SQL/MP Reference Manual—523352-013
O-4

OPEN Statement
OPEN Statement
OPEN is a DML statement that opens a cursor in a host program. OPEN executes the
SELECT associated with the cursor, positions the cursor before the first row selected,
and returns statistics to the SQLSA.

In dynamic SQL, OPEN also specifies parameters for the SELECT.

cursor

is the name of a cursor defined by DECLARE CURSOR.

:cursor-var

(dynamic SQL only) is the name of a host variable of SQL type CHAR or
VARCHAR that contains the name of a cursor defined by DECLARE CURSOR.

USING :var [, :var]...

(dynamic SQL only) specifies host variables that contain values for parameters
used in a FETCH command for the cursor. Use this clause when you know the
descriptions of parameters in the prepared SELECT.

USING DESCRIPTOR :in-sqlda

(dynamic SQL only) specifies an SQLDA filled by DESCRIBE INPUT that points to
values for parameters used in a FETCH for the cursor. Use this clause when you
do not know the descriptions of parameters in the prepared SELECT.

Considerations—OPEN

 To execute OPEN, you must have read authority for tables or protection views
referred to in the SELECT associated with the cursor. If the cursor refers to a
shorthand view, you must have read authority for tables or protection views
underlying the shorthand view. If the cursor was declared FOR UPDATE, you must
also have write authority to the tables.

 If a cursor is declared on audited tables or protection views and acquires locks, a
TMF transaction must be in progress when you open the cursor. The OPEN
statement associates the cursor with the transaction.

OPEN itself acquires no locks unless a sort operation must order selected rows. (A
FETCH in the cursor acquires locks unless you specify BROWSE access in the
SELECT and subqueries.)

OPEN { cursor } [USING :var [, :var]...]
 { :cursor-var } [USING DESCRIPTOR :in-sqlda]
HP NonStop SQL/MP Reference Manual—523352-013
O-5

Example—OPEN
 To use a cursor, you must first declare it with DECLARE CURSOR and then open it
with OPEN. After a successful OPEN, you use FETCH to retrieve data.

You cannot open a cursor that is already open in the program. (Use CLOSE or
FREE RESOURCES to close a cursor before program termination.)

Example—OPEN

This example declares and opens a cursor, uses FETCH to retrieve data, then closes
the cursor:

EXEC SQL DECLARE CURSOR1 CURSOR FOR
 SELECT COL1, COL2, COL3 FROM =PARTS
 WHERE COL1 >= :HOSTVAR1 ORDER BY COL1 BROWSE ACCESS;
EXEC SQL OPEN CURSOR1;
EXEC SQL FETCH CURSOR1 INTO :HOSTVAR1, :HOSTVAR2, :HOSTVAR3;
EXEC SQL CLOSE CURSOR1;

OSS NAMES
OSS names are names used for files that belong to the Open System Services
environment on a NonStop System, rather than to the Guardian environment.

NonStop SQL/MP databases reside in the Guardian environment of a NonStop system
but you can access NonStop SQL/MP databases with programs from either the
Guardian environment or the OSS environment. NonStop SQL/MP program files from
the OSS environment have OSS names.

OSS names have two forms, pathnames and ZYQ names.

A pathname is a standard form of OSS file name and is described in detail in
documentation for the OSS environment. You use pathnames to identify files (including
SQL program files) within the OSS environment. Each pathname can have up to 1023
characters and a typical pathname might look like this:

/a/b/c/d/myfile

You use a pathname to specify an SQL program in an OSS file when you invoke c89 to
compile an SQL program, but you cannot use a pathname as a parameter on an SQL
statement or in an SQLCI command.

Each pathname is associated with a physical file that can have other pathnames as
well and that also has a special form of Guardian name referred to as a ZYQ name. A
ZYQ name is so-called because the subvolume portion of the name always begins with
the letters ZYQ. The full form of the name is:

$vol.ZYQnnnnn.Ziiiiiii

nnnnn and iiiiiii are alphanumeric strings that identify the file within the file
system. Each ZYQ file is an OSS file that has one or more corresponding pathnames.

Each SQL program in an OSS file has at least one pathname and exactly one ZYQ
name. You use the pathname to identify the file in the OSS environment where you
HP NonStop SQL/MP Reference Manual—523352-013
O-6

OUT Command
create, compile, execute, and maintain the program. NonStop SQL/MP uses the ZYQ
name to identify the file in an SQL/MP catalog.

To determine a pathname from a ZYQ name, use the DETAIL option on the FILEINFO
or FUP INFO command. Both these commands return one of the pathnames of an
OSS file as part of the DETAIL display.

OUT Command
OUT is an SQLCI command that directs SQLCI output to a specific file or closes the
current OUT file and redirects output to the initial OUT file.

list-file

is the name of the file to which you want the output written. For list-file,
specify a device, disk, or process file. The OUT file cannot be the same file as any
other current output file such as the LOG, INVOKE TO, or OUT_REPORT file
unless the file is a terminal or process. The OUT file can be the same as the IN file.

If you omit list-file, SQLCI closes the current OUT file and sends output to the
file that was the OUT file at the beginning of the SQLCI session (usually your
terminal).

If you specify a nonexistent disk file as list-file, SQLCI creates an EDIT file of
that name.

CLEAR

clears the new OUT file before anything is written to it. If you omit this option,
information is appended to the file. CLEAR is ignored unless the file is a disk or
process file.

Consideration—OUT

SQLCI writes all information that it produces to the OUT file, including output from
commands such as SHOW and DISPLAY STATISTICS, data from SELECT commands
(unless you specify an OUT_REPORT file), and diagnostic messages. SQLCI also
writes the final version of any command you fix with FC command to the OUT file, but
not the characters you enter while fixing it.

If the IN file is the same as the OUT file (which is the case in interactive usage), SQLCI
also writes the current prompt and lines that you enter to the OUT file.

SQLCI ejects a page before and after each report from a SELECT command. If the
OUT file is a spooler file and you do not specify an OUT_REPORT file, each report
appears on a separate page (or pages) and does not include the SELECT command or
diagnostic messages.

OUT [list-file [CLEAR]] ;
HP NonStop SQL/MP Reference Manual—523352-013
O-7

Example—OUT
Example—OUT

In this example, SQLCI output is directed to a printer. After the SELECT command is
executed, the output is redirected to the initial OUT file.

>> OUT $S.#FASTPRT;
>> SELECT * FROM EMPLOYEE;
>> OUT;

OUT_REPORT COMMAND
OUT_REPORT is an SQLCI report writer command that directs the formatted output of
a SELECT command to a specified report file, instead of to the OUT file.

file

is a Guardian name that specifies a disk, device, or process file (such as a spooler
collector) for reports. file cannot be the current IN file or any current output file
(such as the LOG or OUT file) unless it is a terminal or process.

If you specify the name of a nonexistent disk file as file, the report writer creates
an EDIT file of that name.

If you omit file, the report writer closes the current OUT_REPORT file and
directs reports to the current OUT file.

CLEAR

clears the new file before anything is written to it. If you omit CLEAR, reports are
appended to the existing data in the file. CLEAR is ignored unless the file is a disk
file or process.

SPOOL3 spool-option [, spool-option] ...

specifies one or more level 3 spooling options. The options apply only to spooler
files that have not already been opened by previous OUT or OUT_REPORT
commands; they have no effect on open files.

OUT_REPORT [file]
 [CLEAR] ;
 [SPOOL3 spool-option [, spool-option] ...]

spool-option is:
 { LOC loc-name }
 { FORM form-name }
 { REPORT rpt-name }
 { COPIES number }
 { PAGESIZE number }
HP NonStop SQL/MP Reference Manual—523352-013
O-8

Considerations—OUT_REPORT
The level 3 spooling options (and the defaults SQLCI uses when you open a
spooler file) are:

For more information about level 3 spooling, see the Spooler Programmer's Guide.
For more information about PERUSE, see the Spooler Utilities Reference Manual.

Considerations—OUT_REPORT

 If there is a current OUT_REPORT file, reports print to that file (and to the current
LOG file, if any), but not to the OUT file. If there is no current OUT_REPORT file,
reports print to the OUT file.

 SQLCI writes only formatted data to the OUT_REPORT file and ejects a page
before and after each report from a SELECT.

 The ENV command displays the name of the current OUT_REPORT file, in
addition to other information about the SQLCI session.

Examples—OUT_REPORT

 This example sends reports to a disk file named DRAFT on the current volume and
subvolume, clearing the file before writing:

>> OUT_REPORT DRAFT CLEAR;

 This example sends reports to a spooler location named $SPLSYS.#S2, naming
the report EMPLIST and printing four copies:

>> OUT_REPORT $SPLSYS.#S2 SPOOL3 COPIES 4, REPORT EMPLIST;

LOC #name Spooler location. Default is #DEFAULT.

FORM name Name of form. Default is blanks (no form).

REPORT name Name of report. Default is your user ID.

COPIES num Number of copies. Default is 1.

PAGESIZE num Lines per page in PERUSE. (Make this the same as the
PAGE_LENGTH option.) Default is 60.
HP NonStop SQL/MP Reference Manual—523352-013
O-9

OVERFLOW_ CHAR OPTION
OVERFLOW_ CHAR OPTION
OVERFLOW_CHAR is an option of the SQLCI report writer SET STYLE command that
specifies the default filler character to print when the value of a numeric report item is
too large for its display format.

character

is a printable, single-byte character to use as an overflow character.

The default is *.

Consideration—OVERFLOW_CHAR

You can override the default filler character for a specific print item by specifying the
OC modifier in the display format for the item. For more information, see AS Clause on
page A-60.

Example—OVERFLOW_CHAR

If you enter this command option, a value that is too large for a 10-byte display field
prints as “++++++++++”:

>> SET STYLE OVERFLOW_CHAR "+";

OWNER FILE ATTRIBUTE
OWNER is a file attribute that identifies the owner of the file. OWNER applies to tables,
indexes, protection views, collations, catalogs, programs, and Guardian files.

group-num, user-num

specifies the user ID of the user who is to be given ownership of the object;
group-num is an integer that is a group number; user-num is an integer that is a
user number.

The table default is the user ID of the creating process.

The index default is the user ID of the table's owner.

For more information about file ownership, see Security on page S-11.

OVERFLOW_CHAR “character”

OWNER group-num, user-num
HP NonStop SQL/MP Reference Manual—523352-013
O-10

P
PAGE_COUNT Option

PAGE COUNT is an option of the SQLCI report writer SET LAYOUT command that
specifies the maximum number of pages for a printed report.

number

is an integer in the range 1 through 32,767 that specifies the number of pages to
print.

ALL

specifies printing the entire report.

The default is ALL.

Consideration—PAGE_COUNT

After the report writer prints the maximum number of pages, SQLCI terminates the
SELECT command that retrieved the information for the report.

Example—PAGE_COUNT

This example limits reports to 40 pages:

>> SET LAYOUT PAGE_COUNT 40;

PAGE FOOTING Command
PAGE FOOTING is an SQLCI report writer command that specifies text for the bottom
of each report page.

print-item

specifies an item to print in the page footing. The form for print-item is the
same as in the DETAIL command, except that it cannot include the HEADING,
NOHEAD, or NAME clause. For more information, see DETAIL Command on
page D-47.

If you specify a column for print-item, SQL uses the value of the column in the
last detail line on the page.

PAGE_COUNT { number }
 { ALL }

[PAGE] FOOTING print-item[,print-item]...[CENTER] ;
HP NonStop SQL/MP Reference Manual—523352-013
P-1

Considerations—PAGE FOOTING
CENTER

centers each line of the page footing between the left and right margins. If you omit
CENTER, the page footing starts at the left margin.

Considerations—PAGE FOOTING

 On each page of a report, a blank line separates the page footing from the body of
the page. On the last page, the page footing prints below the report footing.

 Only one PAGE FOOTING command is in effect at a time. When you enter a
PAGE FOOTING command, it replaces the previous one.

 The output of the print list you specify in a PAGE FOOTING command is a logical
line, although (depending on margin settings, device widths, and use of the SKIP
clause) it might print on more than one physical line. A logical line is limited to 4072
bytes, including the field widths of all print items and the number of spaces
between items.

Example—PAGE FOOTING

This example defines a page footing with a page number and current date:

S> FOOTING "Page", PAGE_NUMBER AS I2, TAB 45,
+> "Date ", CURRENT_TIMESTAMP AS DATE *;

The footing looks like this:

Page 5 Date 11/23/94

PAGE_LENGTH Option
PAGE_LENGTH is an option of the SQLCI report writer SET LAYOUT command that
specifies the number of lines per page of the report.

ALL

prints the report without page breaks unless you specify a PAGE clause in a print
list.

The default for reports displayed on a terminal is ALL.

The default for other reports is 60.

PAGE_LENGTH { ALL }
 { number }
HP NonStop SQL/MP Reference Manual—523352-013
P-2

Considerations—PAGE_LENGTH
number

is an integer in the range 1 through 32,767 that specifies the number of lines per
report page. number must be large enough to print at least one detail line (or a
total or subtotal line, if specified) plus any page title and page footing.

Considerations—PAGE_LENGTH

 Each report page begins with the page title (if defined) and ends with a page
footing (if defined). The space left for the body of the report (detail lines, headings,
subtotals, totals, and so forth) is the page length minus the space used for the
page title and page footing and the blank lines that separate the page title and
footing from the other lines.

 If you direct a report to a line printer or process, SQL sends a form feed (ASCII 0C
or control-L) before each new page. If you direct the report to a disk file, SQL does
not send a form feed.

Example—PAGE_LENGTH

This example sets the page length to 66 lines:

>> SET LAYOUT PAGE_LENGTH 66;

PAGE_NUMBER Function
PAGE_NUMBER is an SQLCI report writer function that returns the page number of
the current report page. You can use PAGE_NUMBER in the BREAK FOOTING,
BREAK TITLE, DETAIL, PAGE FOOTING, PAGE TITLE, REPORT FOOTING, and
REPORT TITLE report writer commands.

Considerations—PAGE_NUMBER

 Normally, report pages are numbered from 1, but you can modify the sequence of
page numbers with the PAGE clause in a print list or in the DETAIL command. If
you do so, PAGE_NUMBER returns the modified number. For more information,
see DETAIL Command on page D-47.

 The default display format for the page number is I11.

Example—PAGE_NUMBER

This example prints a page number on the title line of a report:

S> PAGE TITLE TAB 40, "Monthly Report -", PAGE_NUMBER AS I2;

PAGE_NUMBER
HP NonStop SQL/MP Reference Manual—523352-013
P-3

PAGE TITLE Command
The output looks like this:

 Monthly Report - 6

PAGE TITLE Command
PAGE TITLE is an SQLCI report writer command that specifies text for the top of each
report page.

print-item

specifies an item to print in the page title. The form for print-item is the same
as in the DETAIL command, except that it cannot include the HEADING, NOHEAD,
or NAME clause. For more information, see DETAIL Command on page D-47.

If you specify a column for print-item, SQL uses the value of the column in the
first detail line on the page. If a detail line is continued from the previous page, SQL
uses the value from the SELECT output row that contains the detail line data.

CENTER

centers each line of the page title between the left and right margins. If you omit
CENTER, the page title starts at the left margin.

Considerations—PAGE TITLE

 A blank line separates the page title from the body of the report. On the first page,
the page title appears above the report title.

 Only one PAGE TITLE command is in effect at a time. When you enter a PAGE
TITLE command, it replaces the previous one.

 The output of a PAGE TITLE command is a logical line, although (depending on
margin settings, device widths, and use of the SKIP clause) it might print on more
than one physical line. A logical line is limited to 4072 bytes, including the field
widths of all print items and the number of spaces between items.

Example—PAGE TITLE

This example defines a title for each page of a report:

S> TITLE "----- Accounts of: ", SALESREP, " -----" CENTER;

The title looks like this:

 ----- Accounts of: 220 -----

[PAGE] TITLE print-item [,print-item]...[CENTER] ;
HP NonStop SQL/MP Reference Manual—523352-013
P-4

Parallel Index Loading
Parallel Index Loading
If you create an index on a base table that already contains data, SQL automatically
loads the index file with data from the base table. If the index is partitioned, you can
specify the PARALLEL EXECUTION option on the CREATE INDEX statement to direct
SQL to load partitions of the index in parallel. A similar clause on the LOAD command
serves the same function there.

When you execute CREATE INDEX or LOAD with the PARALLEL EXECUTION ON
option and the table being indexed or loaded is not empty, SQL starts a record
generator (RECGEN) process for each partition of the table and a sort process
(SORTPROG) for each partition of the index. Record generator processes read the
base table. Sort processes sort the rows and write them to the index.

The default location for the record generator program file is
$SYSTEM.SYSnn.RECGEN. You can specify a different location with the
=_SQL_RECGEN_node DEFINE.

Parallel processing uses more processor cycles and disk processes at the same time
than serial (nonparallel) processing, and thus might temporarily monopolize system
resources.

For best performance, the disk processes for the volumes used should be distributed
evenly across all processors.

Specifying certain attributes of the =_SORT_DEFAULTS DEFINE can cause problems
with multiple sort processes. For more information, see the FastSort Manual.

Default Configuration for Parallel Index Loading

You can use the PARALLEL EXECUTION clause to specify a configuration file that
describes attributes of record generator and sort processes. If you specify the
PARALLEL EXECUTION clause but do not specify a configuration file, SQL uses these
defaults:

 Priority—Record generators and sort processes use the same execution priority as
the process that creates the index.

 processor—If the partition is local, the record generator or sort process runs in the
same processor that runs the primary disk process for the partition's disk. If that
processor is not available or the partition is remote, the processor is chosen
arbitrarily and then in a sequential, circular fashion. (Note that more than one
record generator or sort process might run in the same processor.)

 Scratch file—By default, the sort process determines a volume for the scratch file.
Record generators do not have scratch files.

 Number of records (sort scratch file size)—SQL estimates the number of records
that each sort process reads as three times the estimated total number of records
in the base table divided by the number of partitions in the index:
HP NonStop SQL/MP Reference Manual—523352-013
P-5

Specifying Configuration for Parallel Index Loading
3 * Number of Records / Number of Partitions

SQL estimates the number of records in the base table by dividing the file size by
the record length. The estimate of the number of records is used by the sort
process to calculate the scratch file size. For more information on the scratch file
size, see the FastSort Manual.

 Swap file—The swap file for a sort process defaults to the same volume as the
scratch volume if the scratch volume is local. If the scratch volume is not local, the
swap file defaults to $SYSTEM. The swap file for a record generator process is the
volume of the partition being read if the partition is local. If the partition is not local,
the swap volume is the default swap volume from the =_DEFAULTS DEFINE.

Specifying Configuration for Parallel Index Loading

The CONFIG option allows you to specify an EDIT file that contains a description of a
default configuration or an explicit configuration for both record generators and sort
processes.

The configuration file can contain two types of configuration statements: comments and
CREATEINDEX statements. Keywords in the configuration file can be in uppercase,
lowercase, or mixed-case letters.

The COMMENT statement includes comments in the file. SQL ignores all lines that
begin with the word COMMENT or the characters ==. The syntax is:

With the CREATEINDEX option you can specify:

 Default priority for the record generators and the sort processes (PRI)

 Default object files for the record generators and the sort processes (PROGRAM)

 Default number of records (NUMRECS)

 Default pool of processors in which to run the record generators and another pool
in which to run the sort processes (processor)

 Default pool of volumes to use for the initial set of sort scratch files for the sort
processes (SCRATCH)

 Default pool of volumes to use for overflow storage for the sort processes, if
needed (SCRATCHON)

Note. If no configuration information is present, all record generators that read remote
partitions swap to the same volume, and all sort processes that write to remote partitions
swap to $SYSTEM. Multiple processes swapping to the same volume might cause disk
space and contention problems on that volume so you might want to specify a
configuration for parallel index loading.

{ COMMENT comment-text }
{ == comment-text }
HP NonStop SQL/MP Reference Manual—523352-013
P-6

Specifying Configuration for Parallel Index Loading
 Set of volumes to exclude from overflow storage (NOSCRATCHON)

 Default pool of volumes to use for swap files for the record generators, and another
pool for swap files for the sort processes (SWAP)

In addition, you can specify any of these attributes for a specific partition. Thus,
CREATEINDEX specifies both default and explicit configuration values for record
generators and sort processes. The values you specify override any SQL defaults.

Use default values when you want SQL to choose from a set of values (such as
scratch volume names or processor numbers) or to apply the same value to all
processes (such as the number of records or execution priority). Use explicit values
when you want SQL to use particular values for size limitation or performance reasons.

Default and explicit values are not mutually exclusive. You can set up user defaults to
be used in most cases and explicit values for one or two unusual partitions. For
example, you can explicitly specify sort scratch volumes but use a default configuration
to specify a pool of processors in which to run the sort processes. Or you might specify
a default pool of volumes to use as scratch files but specify particular scratch volumes
for certain partitions. For more information, see the Sample Configuration File on
page P-11.

LOCALONLY

directs SQL to run the parallel load operation and all associated sort processes on
the node where the operation was initiated. Use the LOCALONLY option to

 {LOCALONLY}
CREATEINDEX{BASETABLE}{DEFAULT [node-name]default-attr}
 {INDEX }{partition attr[,attr]... }

default-attr is:

 [CPU (num [, num] ...)]
 [NOSCRATCHON (scratchvol[, scratchvol]...)]
 [NUMRECS (number)]
 [PRI (priority)]
 [PROGRAM (file-name)]
 [SCRATCH (scratchvol [, scratchvol]...)]
 [SCRATCHON (scratchvol [, scratchvol]...)]
 [SWAP (swapvol [, swapvol] ...)]
attr is:

 [CPU (num)]
 [NOSCRATCHON (scratchvol[, scratchvol]...)]
 [NUMRECS (number)]
 [PRI (priority)]
 [PROGRAM (file-name)]
 [SCRATCH (scratchvol [, scratchvol]...)]
 [SCRATCHON (scratchvol [, scratchvol]...)]
 [SWAP (swapvol)]
HP NonStop SQL/MP Reference Manual—523352-013
P-7

Specifying Configuration for Parallel Index Loading
preserve software behavior available in NonStop SQL/MP versions prior to version
315.

If you do not specify LOCALONLY, each SORTPROG or RECGEN process runs
on the node where the associated partition resides.

If you specify LOCALONLY, it must be the first CREATEINDEX statement in the
configuration file.

BASETABLE

indicates attributes apply to processes that read the base table partition.

INDEX

indicates attributes apply to sort processes that write to the index partition.

DEFAULT [node-name] default-attr

specifies a node name and an attribute value for all partitions on a specific node for
which another value is not explicitly specified. If you do not specify node-name,
SQL applies the DEFAULT statement to the node where the parallel index load is
initiated.

partition

specifies the name of the volume (including a node, if desired) that contains the
partition to which the attributes apply. For example:

 $MYVOL
 \NWREG.$SALES1

The default is the local node.

CPU (num [, num] ...)

is valid only if INDEX or BASETABLE is specified. processor specifies one or more
local or remote processors for the record generator or sort process. You can
specify multiple processors only for DEFAULT processors.

NOSCRATCHON (scratchvol [, scratchvol] ...)

is valid only if INDEX is specified. NOSCRATCHON specifies one or more volumes
to be excluded as overflow scratch volumes for the sort process. FastSort also
uses this list if you do not specify an initial set of scratch volumes (with the
SCRATCH option). The NOSCRATCHON option can be used as a DEFAULT
specification or for a specific partition. You cannot specify both NOSCRATCHON
and SCRATCHON.

If you specify NOSCRATCHON, SQL excludes $SYSTEM and TMF audit volumes
from the overflow set in addition to the volumes in your list. If SMF is installed on
your node, you can specify only physical volumes for NOSCRATCHON.

The scratchvol specification can include wild-card characters (* and ?).
HP NonStop SQL/MP Reference Manual—523352-013
P-8

Specifying Configuration for Parallel Index Loading
NUMRECS (number)

is valid only if INDEX is specified and specifies the approximate number of records
to be loaded into the index partition. This number is used to calculate the scratch
file size, as described in the FastSort Manual. If this number is too small, the sort
process might fail with sort error 30 and file-system error 45 (File is full). Use this
attribute if the index is not partitioned evenly across all volumes.

PRI (priority)

is valid only if INDEX or BASETABLE is specified, and specifies the priority at
which the record generator or sort process is to run.

PROGRAM (file-name)

specifies the name of a local or remote SORTPROG object file if BASETABLE is
also specified, or specifies the name of a local or remote RECGEN object file if
INDEX is also specified. The associated swap volume must reside on the same
node as the object file.

SCRATCH (scratchvol [, scratchvol]...)

is valid only if INDEX is specified. SCRATCH specifies the name of an initial local
or remote scratch volume or volumes where the sort process can sort index
records. When you specify a list of scratch volumes in a DEFAULT specification,
FastSort assigns one volume to each sort process (each associated with a
partition) in a sequential fashion. If there are more partitions than volumes,
FastSort reuses the list as needed until all partitions have an initial scratch volume
assigned.

The SCRATCH option specifies volumes for use as initial scratch volumes. This is
not the same as overflow handling. To specify a set of volumes for overflow, use
the SCRATCHON option. To request an overflow pool but exclude specific
volumes, use the NOSCRATCHON option.

If SMF is installed on the node you specify, scratchvol can be a virtual or
physical volume. If you specify a virtual volume, FastSort ignores any volumes
specified in SCRATCHON or NOSCRATCHON and uses only the virtual volume for
both initial and overflow scratch files.

SCRATCHON (scratchvol [, scratchvol] ...)

is valid only if INDEX is specified. SCRATCHON specifies one or more volumes to
be used as overflow scratch volumes for the sort process—in case one or more
initial volumes become full. The sort processes also use this list if you do not
specify an initial set of scratch volumes (using the SCRATCH option). The
SCRATCHON option can be used as a DEFAULT specification or for a specific
partition.
HP NonStop SQL/MP Reference Manual—523352-013
P-9

Consideration—Parallel Index Loading
You can specify up to 32 volumes, limited by the line length (a maximum of 132
characters). The scratchvol specification can include wild-card characters
(* and ?).

You cannot specify both NOSCRATCHON and SCRATCHON. If you do not specify
either SCRATCHON or NOSCRATCHON, the sort processes consider using any
available volume except $SYSTEM and TMF audit trail volumes. If SMF is installed
on your node, you can specify only physical volumes for SCRATCHON.

SWAP (swapvol [, swapvol] ...)

is valid only if INDEX or BASETABLE is specified, and specifies the name of the
volume (including a node, if desired) on which to place the extended segment
swap file. For example:

 $MYVOL
 \NWREG.$SALES1

You can specify multiple swap volume names only for DEFAULT swap volumes.

Consideration—Parallel Index Loading

When the total number of table and index partitions approaches 750, parallel index
loading might terminate with one of these:

SQL error 1910, sort start error 10
SQL error 1928, record generator error 10.

If one of these errors occurs, increase the PFS space of the SQLCAT object and
license the new copy before reissuing your request.

To increase PFS size, use the BINDER product or specify the PFS run-time option.

You should increase the PFS size only when necessary. When you increase the size,
save an unmodified copy of SQLCAT.
HP NonStop SQL/MP Reference Manual—523352-013
P-10

Sample Configuration File
Sample Configuration File
== Sample configuration file for loading index
== partitions in parallel. Creates index AGEINDEX
== on table CUST, which is partitioned as follows:
== $DATA1.SALES.CUST
== $DATA2.SALES.CUST
== $DATA3.SALES.CUST
== \NEWYORK.$DATA1.SALES.CUST

== AGEINDEX is partitioned as follows:
== $DATA4.SALES.AGEINDEX
== $DATA5.SALES.AGEINDEX
== \NEWYORK.$DATA2.SALES.AGEINDEX
== \NEWYORK.$DATA3.SALES.AGEINDEX

== Set up a default priority for the RECGEN processes:
CREATEINDEX BASETABLE DEFAULT PRI (140)
CREATEINDEX BASETABLE DEFAULT \NEWYORK PRI (140)

== Set up default pools of scratch files for
== the sort processes.
CREATEINDEX INDEX DEFAULT SCRATCH ($TEMP1,$TEMP2,$TEMP3)
CREATEINDEX INDEX DEFAULT \NEWYORK SCRATCH ($TEMP4,$TEMP5)

== Request that overflow scratch files avoid certain
== disks: those specified plus $SYSTEM and TM/MP audit
== trail disks.
CREATEINDEX INDEX DEFAULT NOSCRATCHON ($SYS*,$WORK*)

== Request that overflow scratch files use specific
== disks on the remote node.
CREATEINDEX INDEX DEFAULT \NEWYORK SCRATCHON ($TEMP*)

== Request that the $data3 sort process use $temp7 for
== scratch space.
CREATEINDEX INDEX \NEWYORK.$data3 SCRATCH ($TEMP7)

== End of Configuration File

Parameters
Parameters let you provide literals for prepared DML statements or command files
when you execute the statements or commands (using EXECUTE or OBEY) rather
than when you PREPARE or create them. You can use parameters for literals in DML
statements compiled with PREPARE or for literals in SQLCI command files.

Typically, you use parameters instead of literals so that you can PREPARE a statement
at one time and execute it later—possibly multiple times—substituting different values
for each execution with the USING clause of EXECUTE.

If you use named parameters, you can also use the TACL PARAM command or the
SQLCI SET PARAM command to assign values to the parameters before you issue an
EXECUTE (for a statement) or OBEY (for a command file). In this case, you can also
reuse the parameters in subsequent executions of the statement or command file
without resetting them.
HP NonStop SQL/MP Reference Manual—523352-013
P-11

Parameters
This diagram shows how to specify a parameter in a DML statement or SQLCI
command file. For information about assigning values to parameters, see EXECUTE
Statement on page E-7 or SET PARAM Command on page S-35.

?[param-name]

specifies a parameter and, optionally, a name for the parameter. The name must
be an SQL identifier.

[INDICATOR] ?[indicator-param]

specifies an indicator parameter to use for inserting null values into the database
through the parameter, or for handling null values that might be returned to the
parameter in host programs. (An indicator parameter with a value less then 0
indicates a null value; an indicator parameter with a value of 0 indicates a nonnull
value.)

An indicator parameter has the same format as the parameter it is associated with.

For information on handling null values in dynamic SQL programs, see the
SQL/MP programming manual for your host language.

?[param-name] [[INDICATOR] ?[indicator-param]]

 [TYPE AS {DATETIME [start-dt TO] end-dt }]
 [{DATE }]
 [{TIME }]
 [{TIMESTAMP }]
 [{INTERVAL start-dt }]
 [{ [(start-field-precision)] }]
 [{ [TO end-dt] }]

start-dt and end-dt are:

 { YEAR }
 { MONTH }
 { DAY }
 { HOUR }
 { MINUTE }
 { SECOND }
 { FRACTION [(precision)] }

 Only end-dt can include the precision option for the
FRACTION field.
HP NonStop SQL/MP Reference Manual—523352-013
P-12

Considerations—Parameters
TYPE AS { DATETIME [start-dt TO] end-dt }
 { DATE }
 { TIME }
 { TIMESTAMP }
 { INTERVAL start-dt }
 { [(start-field-precision)] }
 { [TO end-dt] }

tells SQL to expect the value entered for the parameter to be a value of the
specified date-time or INTERVAL data type. (You cannot use TYPE AS to specify a
character or numeric data type for a parameter. Use the CAST function instead.)

A value for a parameter declared with a TYPE AS clause must have a character
data type and must be associated with a single-byte character set or the
UNKNOWN character set.

For example, This statement insert the character value in ?BIRTHDAY into a table
as a DATE value:

SET PARAM ?BIRTHDAY "1989-07-31";
INSERT INTO =EMPLOYEES (BIRTHDATE)
 VALUES (?BIRTHDAY TYPE AS DATE);

If the name of a DATETIME or INTERVAL parameter occurs more than once in a
single SQL statement, each occurrence must include an identical TYPE AS clause.

Considerations—Parameters

 You can use an unnamed parameter only in a prepared DML statement. The
unnamed parameter—a question mark (?) by itself—is always a distinct parameter
even when it occurs multiple times in a statement. When you execute a statement
with unnamed parameters, the position of the parameters indicates which values to
use for which parameters.

For example, this statement average the salaries of employees in departments with
numbers between 1000 and 2000, and between 5000 and 6000:

PREPARE AVGSAL FROM
 "SELECT AVG (SALARY) FROM PERSNL.EMPLOYEE
 WHERE DEPTNUM BETWEEN ? AND ?";

EXECUTE AVGSAL USING 1000, 2000;
EXECUTE AVGSAL USING 5000, 6000;

 You can use a named parameter only in a prepared DML statement or in an SQLCI
command file. Each occurrence of the same parameter name within a statement or
an SQLCI session refers to the same parameter. There is no way to qualify a
parameter name.

If you use the same parameter name more than once in a single statement, SQL
considers each reference to point to the same parameter and assigns each
occurrence the same data type, length, and other attributes as the first occurrence.
HP NonStop SQL/MP Reference Manual—523352-013
P-13

Considerations—Parameters
Assigning a value to the first occurrence of a parameter in the statement
automatically assigns a value to the other occurrences also. For example, assume
a statement uses five parameters—two named A, two unnamed, and one named
B—ordered:

?A, ?, ?B, ?, ?A

Executing the statement requires only four values, for example:

EXECUTE USING 10, 20, 30, 40;

because SQL assigns the first value (10) to each of the parameters named A. SQL
ignores any additional values in the EXECUTE USING statement, because four
values are sufficient to assign values to the parameters in the statement.

Using the same parameter name more than once in a single statement should be
done carefully, because it can lead to loss of data in certain cases. For example,
during the execution of an INSERT statement, a parameter is assigned the same
data type and attributes as the column into which the parameter's value is first
inserted. If SQL truncates the parameter value to fit into the column, other
occurrences of the parameter also receive the truncated value, even if the columns
for those parameters are large enough to hold the complete value.

 The data type of a parameter is derived from the data type of the target column:

 If the target column has a numeric data type, SQL handles the parameter as
DECIMAL(n), where n is the number of digits in the parameter value.

 If the target column has a character data type and the target column has the
UNKNOWN character set associated with it, SQL handles the parameter as
CHAR(n), where n is the number of bytes in the parameter value.

 If the target column has a character data type and the target column has a
character set other than UNKNOWN associated with it, SQL handles the data
type of the parameter as

CHAR(n) CHARACTER SET character-set-name

where character-set-name is the character set specified in the parameter
value and n is the number of quoted characters in the parameter value. In this
case, the parameter value must be a string literal.

 If you omit the TYPE AS clause from a parameter in a date-time or INTERVAL
expression, SQL assigns data types to the parameters according to these rules:

 The data type is INTERVAL if the parameter name is followed by a range of
fields and start-field-precision is specified.
HP NonStop SQL/MP Reference Manual—523352-013
P-14

Example—Parameters
 The data type is DATETIME if the parameter name is followed by a range of
fields and start-field-precision is not specified or if the expression has
any of these forms:

parameter-name { + | - } interval-term

interval-expression + parameter-name

date-time-expression - parameter-name

 The data type is NUMERIC if the expression takes either of this forms:

parameter-name { + | - } scalar-value

{ + | - } parameter-name

Example—Parameters

In this example, you can substitute different values for the ?DEPT1 and ?DEPT2
parameters each time you execute the statement:

SELECT AVG (SALARY) FROM PERSNL.EMPLOYEE
 WHERE DEPTNUM BETWEEN ?DEPT1 AND ?DEPT2;

Then you can prepare the command with the name AVGSAL and execute it like
this:

EXECUTE AVGSAL USING ?DEPT1 = 2000, ?DEPT2 = 4000;
HP NonStop SQL/MP Reference Manual—523352-013
P-15

PARTITION Clause
PARTITION Clause
PARTITION is a clause on the ALTER INDEX, ALTER TABLE, CREATE INDEX, and
CREATE TABLE statements that defines secondary partitions for a table or index.

[\node.][$volume.][subvol.]object

is the name of a secondary partition. Each fully expanded partition name must be
unique in the network, but must have the same subvolume and simple object name
as the index or table being partitioned.

CATALOG catalog

specifies the name of a catalog to contain the description of the partition. The
catalog must be on the same node as the partition. The default is the current
default catalog.

PHYSVOL volume-name

specifies a physical volume on which to place the secondary partition if SMF is
installed on your node. This option overrides SMF. volume-name can be either the
name of a physical volume or equivalent DEFINE.

Do not include the node name in your volume name.

This option is available only if you specify a virtual volume for partition.
volume-name must belong to the virtual volume you specify.

EXTENT { size | (pri-size[,sec-size]) }

specifies the EXTENT file attribute for the partition. For more information, see
EXTENT File Attribute on page E-30.

PARTITION (partition [, partition] ...)

partition is:

 [\node.][$volume.][subvol.]object

 [| CATALOG catalog |]
 [| PHYSVOL volume-name |]
 [| EXTENT { size | (pri-size[,sec-size]) } |]
 [| MAXEXTENTS integer |]
 [| { FORMAT 1 | FORMAT 2 } |]

 [FIRST KEY { value }]
 { (value [, value] ...) }
HP NonStop SQL/MP Reference Manual—523352-013
P-16

PARTITION Clause
MAXEXTENTS integer

specifies the MAXEXTENTS file attribute for the partition. For more information,
see MAXEXTENTS File Attribute on page M-2.

{ FORMAT 1 | FORMAT 2 }

indicates the format of the partition.

The default partition format type for tables and indexes is based on the partition
array value of the underlying table. For STANDARD and EXTENDED, the default
format is 1. For FORMAT2ENABLED, the default format is 2. For relative and
entry-sequenced tables, the default format is always 1 because relative and
entry-sequenced tables cannot have a FORMAT2ENABLED partition array.

FIRST KEY { value | (value [, value] ...) }

specifies the first primary key or clustering key value that can be stored in the
associated partition. FIRST KEY specifies the lowest value for the partition if the
column for the value has an ascending collating sequence; it specifies the highest
value for the partition if the column has a descending collating sequence.

You must specify a FIRST KEY clause for partitions of indexes and partitions of
tables that have user-defined primary keys or clustering keys. (The clause is
shown as optional because it does not apply to relative or entry-sequenced files.)

value is a literal or datetime literal that specifies the first value allowed in the
associated partition for a column of the key. For an index partition (but not for a
table partition), value can also be the keyword NULL, representing a null value. (A
null value is considered greater than all other values and equal to other null
values.)

For a table, the values in the FIRST KEY clause have a one-to-one
correspondence with the columns in the primary key or the clustering key of the
table. For an index, the values in the FIRST KEY clause have a one-to-one
correspondence with the indexed columns in the order specified on the CREATE
INDEX statement (not including the keytag column), and the columns of the
primary key or clustering key of the underlying table. Each value must have a data
type compatible with the data type of the column it corresponds to.

If you specify fewer FIRST KEY values than there are columns, SQL uses the
lowest or highest value for the data type of each remaining column. (The lowest
value for an ascending column and the highest value for a descending column.) To
find the highest or lowest value for a specific data type, see one of these entries:

Character Data Types

DATETIME Data Type

INTERVAL Data Type

Numeric Data Types
HP NonStop SQL/MP Reference Manual—523352-013
P-17

Consideration—PARTITION
Consideration—PARTITION

Each partition you specify must follow the rules for partitions described in the entry
PARTITIONS.

Example—PARTITION

This example shows a CREATE TABLE statement that uses the PARTITION clause:

CREATE TABLE \SYS1.$VOL1.SALES.ODETAIL (
 ORDERNUM NUMERIC (6) UNSIGNED NO DEFAULT NOT NULL,
 PARTNUM NUMERIC (4) UNSIGNED NO DEFAULT NOT NULL,
 UNIT_PRICE NUMERIC (8,2) NO DEFAULT NOT NULL,
 QTY_ORDERED NUMERIC (5) UNSIGNED NO DEFAULT NOT NULL,
 PRIMARY KEY (ORDERNUM , PARTNUM))
 CATALOG \SYS1.$VOL1.SALES
 ORGANIZATION KEY SEQUENCED
 PARTITION (
 \SYS1.$VOL2.SALES.ODETAIL
 CATALOG \SYS1.$VOL1.SALES
 EXTENT (16368,64)
 MAXEXTENTS 944
 FIRST KEY 030000
 ,
 \SYS1.$VOL3.SALES.ODETAIL
 CATALOG \SYS1.$VOL1.SALES
 EXTENT (16368,64)
 MAXEXTENTS 944
 FIRST KEY 040000
 ,
 ... --indicates 20 more
 \SYS5.$VOL1.SALES.ODETAIL --partition
 CATALOG \SYS5.VOL1.SALES --specifications
 EXTENT (16368,64)
 MAXEXTENTS 944
 FIRST KEY 980000)
 LOCKLENGTH 6
 EXTENT (16368,64)
 MAXEXTENTS 944
 NOPURGEUNTIL OCT 31 2004, 23:59
 NO AUDIT;

Some of the attributes specified apply to the entire table and some only to the primary
partition. NOPURGEUNTIL, NO AUDIT, and LOCKLENGTH apply to all partitions. The
example specifies NO AUDIT because the attribute can be changed to AUDIT after the
table will be loaded. The EXTENT and MAXEXTENTS attributes apply only to the
primary partition, for which \SYS1.$VOL1 and a first key of 000000 are assumed.
HP NonStop SQL/MP Reference Manual—523352-013
P-18

Partitions
Partitions
A partition is the portion of a table or index that resides on a single disk volume. Each
table or index consists of at least one partition.

An “unpartitioned” table or index is a table or index that consists of exactly one
partition. A “partitioned” table or index is a table or index that consists of more than one
partition.

A “primary partition” is the first partition in a partitioned table or index. Other partitions
are called “secondary partitions.” If the order is ascending, the primary partition
contains the lowest set of key values in the table or index; if the order is descending,
the primary partition contains the highest set of key values.

A partition name, like a table or index name, is a Guardian name. Each fully expanded
partition name must be unique within the network. If a table or index consists of more
than one partition, the subvolume and file name portions of the name of each partition
in the table or index must be identical. The combination of disk volume and node name
will be different for each partition, reflecting the fact that the different partitions reside
on different disk volumes.

You can create a partitioned table with CREATE TABLE. For a table with
key-sequenced file organization, you can use the PARTONLY MOVE clause of ALTER
TABLE to break the table into partitions or to break a partition into additional partitions.
For a table with entry-sequenced or relative file organization, you can add a partition to
the end of the table with the ADD PARTITION clause of ALTER TABLE. To create a
partitioned index, use CREATE INDEX or the PARTONLY MOVE clause of ALTER
INDEX.

A partition’s format is based on the partition array value of its table. If the table’s
partition array value is STANDARD, its partitions will be Format 1. If it is
FORMAT2ENABLED, its partitions can be of either format, although they will default to
Format 2. A Format 1 partition’s size is limited to two gigabytes. Format 2 partitions
can be up to one terabyte or the limit of a single disk volume, whichever is less.

You can configure tables and indexes that are Format 2 enabled, which lets them have
Format 1 or Format 2 partitions, with CREATE TABLE and CREATE INDEX. You can
also add new partitions of either format to existing tables and indexes with ALTER
TABLE and ALTER INDEX. Use the MOVE clause of ALTER TABLE or ALTER INDEX
to move data between existing partitions and newly created partitions of either format.

These rules apply to partitions:

 The FIRST KEY value of a new partition cannot duplicate the FIRST KEY value of
another partition of the table.

 You cannot create a partition in a nonaudited volume, even if the table that
includes the partition is not audited.

 You cannot partition key-sequenced tables that use SYSKEY as the primary key.
HP NonStop SQL/MP Reference Manual—523352-013
P-19

PARTNS Table
 New partitions must comply with the limits on the number and size of partitions. For
more information, see Limits on page L-6.

 You can partition tables of any file organization but you cannot partition a
key-sequenced table that has a system-defined primary key (as opposed to a
user-defined primary key) unless it also has a clustering key.

 For relative and entry-sequenced tables, SQL determines the set of rows in a
partition, depending on the size of the partitions and the size of the rows. For
key-sequenced tables and for indexes, you specify the set of rows in each partition
with the FIRST KEY clause of the PARTITION clause.

 To take advantage of Format 2 enabling, your system must be version 350 or later.

 Only key-sequenced tables can be Format 2 enabled and can have partitions that
are either Format 1 or 2. Relative and entry-sequenced tables can only be Format
1 enabled and must have Format 1 partitions.

PARTNS Table
The PARTNS table is a catalog table that describes the partitions of a table. Table P-1
describes the contents of the PARTNS table.

The PARTNS table was created in Version 1. There have been no subsequent
changes.

A partitioned table has a primary partition (the first partition of the table) and one or
more secondary partitions. Each partition has the same subvolume and object name,
but a different node or volume name than every other partition of the table (because
each partition resides on a different node or volume than every other partition of the
table).

Each partition must be registered in a catalog on the node on which that partition
resides. For each partition registered in a catalog (the FILENAME column of the
PARTNS table), the PARTNS table for that catalog contains one entry for each partition

Table P-1. The PARTNS Table

Column Name Data Type Description

1 FILENAME* CHAR (34) Name of this partition

2 PRIMARYPARTITION * CHAR (1) Y if primary partition
N if secondary partition

3 PARTITIONNAME* CHAR (34) Name of another partition of the table

4 CATALOGNAME CHAR (25) Name of catalog in which partition is
registered

5 FIRSTKEY VARCHAR (3000) Starting values for each column in
primary key

* Indicates primary key
HP NonStop SQL/MP Reference Manual—523352-013
P-20

PERUSE Command
of the table (the PARTITIONNAME column of the PARTNS table). You can register all
partitions of a table on a node in a single catalog if you want, or put them in separate
catalogs.

Values in FIRSTKEY are in ASCII format, separated by commas. For example, a key
composed of a character and an integer column might have a FIRSTKEY value such
as: “A”,1234.

Guardian names in the PARTNS table are fully qualified and use uppercase
characters.

PERUSE Command
PERUSE is an SQLCI command that invokes the Guardian PERUSE program. Use
PERUSE to examine and change the attributes of your spooled jobs in addition to
monitoring such jobs while they are in the spooler system. For a complete description
of PERUSE, see the Guardian Utilities Reference Manual.

run-options

are one or more standard run-options, separated by commas (as described in
the TACL Reference Manual).

supervisor

is the name of the spooler supervisor that PERUSE communicates with. If
supervisor is omitted, PERUSE uses $SPLS.

Example—PERUSE

This example shows how to start PERUSE from SQLCI:

>>PERUSE;
PERUSE - T9101D20 - (01JUN93) SYSTEM \SYS
Copyright Tandem Computers Incorporated 1978,1982,1983,1984,
1985,1986,1987,1988,1989,1990,1991
SPOOLER SUPERVISOR IS \SYS.$SPLS

 JOB BATCH STATE PAGES COPIES PRI HOLD LOCATION REPORT
 36 READY 2 1 4 #DEFAULT SALES
 533 OPEN 1 4 B #DEFAULT BUDGET
 1074 READY 1 1 4 A #DEFAULT MARCH
_

PERUSE [/run-options/] [supervisor] ;
HP NonStop SQL/MP Reference Manual—523352-013
P-21

Plans
Plans
A plan (also called an execution plan or a query execution plan) is an execution
method for a single compiled SQL statement. A plan captures both the semantics and
execution characteristics of the statement. Compiled programs typically include many
plans. Each plan might be operable or inoperable, optimal or not optimal, and valid or
invalid.

An operable plan is a plan that will give correct results for a given set of database
tables. An inoperable plan is one whose execution would cause an error, an incorrect
query result, or a corruption of the database.

An optimal plan is an operable plan that is also the most efficient plan for processing
the statement against a given set of database tables. Not all operable plans are
optimal plans. An optimal plan for one set of tables might be operable, but not optimal,
for a different, but similar, set of tables.

An invalid plan is a plan considered invalid by SQL because changes made after the
plan was compiled might have made the plan inoperable or not optimal. A plan is
invalid, for example, if an object referenced in the plan was redefined after the plan
was last compiled.

A plan can also be invalid for a specific program startup—but not generally invalid—if
the startup-time value of a DEFINE referenced in the plan is different from the value of
that DEFINE at the time the plan was compiled.

An invalid plan can also be an operable plan if the set of tables for which the plan was
compiled is similar to the set of tables associated with the plan at execution time. For
information about the differences permitted between such tables, see Similarity Checks
on page S-54.

An altered plan is an invalid but operable plan that the SQL compiler has updated to
use a different set of tables without actually recompiling the plan itself.

For more information about plans, see the SQL/MP Query Guide.
HP NonStop SQL/MP Reference Manual—523352-013
P-22

POSITION Function
POSITION Function
The POSITION function searches for a given substring in a character string. If the
substring is found, SQL returns the character position of the substring within the string.

substring

specifies the string substring to search for in character-string.

character-string

specifies the source string.

occurrence

specifies which occurrence of the substring to look for. occurrence must have an
unsigned numeric data type with a scale of zero. The value of occurrence must
be greater than zero; otherwise, SQL returns an error. If you omit occurrence,
SQL searches for the first occurrence of the substring.

Considerations—POSITION Function

 The result is returned as a two-byte signed integer with a scale of zero.

 If the substring is not found in character-string, SQL returns 0.

 If the value of occurrence is greater than the number of occurrences of
substring in the string, SQL returns 0.

 If the length of the character string is zero and the length of substring is greater
than zero, SQL returns 0. If the length of substring is zero, SQL returns 1.

POSITION (substring IN character-string[,occurrence])

 where substring and character-string are:

 { string-literal }
 { column-name }
 { param-name }
 { host-var-name }
 { UPSHIFT function }
 { character-expression }

 and occurrence is:

 { numeric-literal }
 { column-name }
 { param-name }
 { host-var-name }
 { expression }
HP NonStop SQL/MP Reference Manual—523352-013
P-23

Examples—POSITION Function
 If the length of substring is greater than the length of the character string, SQL
returns 0.

 If character-string, substring, or occurrence is a null value, SQL returns
a null value.

 The collating sequences of substring and character-string must be the
same or comparable, or SQL returns an error. The character sets of substring
and character-string must also be identical.

 To ignore case in the search, use the UPSHIFT function or a collation.

Examples—POSITION Function

 This example returns the value 8:

POSITION("John" IN "Robert John Smith")

 This example returns the value 12, which is the starting position of the second
occurrence of “Hello”:

POSITION("Hello" IN "Hello, and Hello", 2)

 This query returns all records in table EMPLOYEE that contain the substring
“Smith” in the EMPNAME column:

SELECT * FROM EMPLOYEE WHERE POSITION("Smith" IN EMPNAME) > 0

 This query returns all records in table EMPLOYEE that contain the substring
“SMITH,” regardless of whether the substring is in uppercase or lowercase
characters:

SELECT * FROM EMPLOYEE
 WHERE POSITION ("SMITH" IN UPSHIFT(EMPNAME)) > 0

Predicates
A predicate is a statement involving a comparison that evaluates to a value of true,
false, or unknown (null). Use predicates within search conditions to specify criteria for
choosing rows from tables or views. SQL includes this predicates:

BETWEEN Predicate

Comparison Predicate (=, <>, <, >, <=, >=)

EXISTS Predicate

IN Predicate

LIKE Predicate

NULL Predicate

Quantified Predicate (ALL, ANY, SOME)
HP NonStop SQL/MP Reference Manual—523352-013
P-24

PREPARE Statement
For more information about a specific predicate, see the entry for that predicate.

PREPARE Statement
PREPARE is a dynamic SQL statement and an SQLCI command that compiles an
SQL statement for later execution with EXECUTE.

In host programs, PREPARE also returns information to the SQLSA that you can use
to declare an SQLDA for DESCRIBE and EXECUTE statements. (For information, see
INCLUDE SQLDA Directive on page I-4 or the SQL/MP programming manual for your
host language.)

In SQLCI, you can use PREPARE to check syntax even if you don't intend to execute
the statement in the session. PREPARE also returns statistics about the compilation
time.

{ stmt-name }
{ :stmt-name-var }

specifies a name to be used for the prepared statement. If you specify the name of
an existing prepared statement, the new statement overwrites the previous one.

stmt-name is an SQL identifier that is the name. You can use this form to specify
the name in programs or in SQLCI. In SQLCI, the name must be unique among
other statement and report item names in the SQLCI session.

:stmt-name-var is a host variable that contains an SQL identifier that is the
name. You can use this form to specify the name from programs. The variable
must be of a type compatible with SQL type CHAR or VARCHAR.

FROM { "stmt" | 'stmt' }
 { :stmt-var }

specifies the statement to prepare.

{ "stmt" | 'stmt' }

(for SQLCI only) is a DCL, DDL, DML, or DSL statement enclosed in single or
double quotation marks.

:stmt-var

(for programs only) is a host variable of a character data type that contains an SQL
statement. The statement:

 Can use parameters as literals if it is a DML statement (see Parameters on
page P-11)

PREPARE { stmt-name } FROM { "stmt" | 'stmt' }
 { :stmt-name-var } { :stmt-var }
HP NonStop SQL/MP Reference Manual—523352-013
P-25

Considerations—PREPARE
 Cannot refer to host variables

 Cannot use an INTO clause if it is a SELECT

 Cannot be CLOSE, DECLARE CURSOR, DESCRIBE, DESCRIBE INPUT,
EXECUTE, EXECUTE IMMEDIATE, FETCH, OPEN, PREPARE, or RELEASE

Considerations—PREPARE

 If a PREPARE statement fails, any subsequent attempt to execute the named
statement fails.

Only the process that executes the PREPARE can execute the associated
prepared statement. The prepared statement is available for execution until the
process (the program or SQLCI session) terminates, executes another PREPARE
statement that uses the same statement name (either successfully or
unsuccessfully), or (programs only) releases the host variable that contains the
statement name with a RELEASE statement.

In programs, the scope of a prepared statement depends partly on the rules of the
host language in which the PREPARE executes. For more information, see the
SQL/MP programming manual for your host language.

 Unless a CONTROL QUERY BIND NAMES AT EXECUTION directive is in effect
when the PREPARE executes, a prepared statement uses defaults and DEFINEs
in effect at the time it is prepared, not the time it executes. (For information, see
CONTROL QUERY Directive on page C-74 or Name Resolution on page N-2.)

 You can have up to 20 prepared statements in an SQLCI session. (Programs can
have more prepared statements.)

Examples—PREPARE

 This example uses PREPARE to compile an SQL statement stored in :INTEXT, a
varying length character variable. The program constructs the SQL statement (not
shown), compiles it (naming it OPERATION1), and then executes it.

...
EXEC SQL
 PREPARE OPERATION1 FROM :INTEXT;
...
EXEC SQL
 EXECUTE OPERATION1;
...

 This SQLCI example prepares a SELECT statement (naming it EMPCOM) and
then enters the DISPLAY STATISTICS command to display the preparation
statistics:

>> PREPARE EMPCOM FROM
+> "SELECT FIRST_NAME, LAST_NAME, DEPTNUM"
+> & "FROM PERSNL.EMPLOYEE WHERE DEPTNUM <> 1500"
+> & "AND SALARY <= (SELECT AVG (SALARY)"
HP NonStop SQL/MP Reference Manual—523352-013
P-26

Primary Keys
+> & "FROM PERSNL.EMPLOYEE WHERE DEPTNUM = 1500)";
--- SQL command prepared.
>> DISPLAY STATISTICS;

 This SQLCI example prepares an INSERT statement with parameters, then
supplies parameter values with the EXECUTE:

>> PREPARE EMPIN FROM "INSERT INTO PERSNL.EMPLOYEE"
+> &" VALUES (?, ?, ?, ?, ?, ?);
---SQL command prepared.
>> EXECUTE EMPIN USING 66, "AMY", "RYAN", 3100, 300, 50500;
 WHERE DEPTNUM = 1500) ";

 This SQLCI example uses a string literal within a string literal because the
prepared statement includes a string literal itself. (Double quotes delimit the outer
string, and two quotation marks represent one quotation mark within the string.)

>> PREPARE ADDSUP FROM "INSERT INTO INVENT.SUPPLIER"
+> &" VALUES (?, ?, ?, ""BEND"", ""OREGON"", ""97709"")";
---SQL command prepared.
>> EXECUTE ADDSUP USING 572, "ULTRA-TECH",
+> &"240 INDUSTRIAL WAY";
--- 1 row(s) inserted.

Primary Keys
A primary key is a column or a group of columns whose values uniquely identify the
rows in a table and (along with file organization and any collations associated with the
file) determine the order in which the rows are stored. Each base table and each index
has a primary key.

The primary key of a table stored in a key-sequenced file can be defined by the user
(PRIMARY KEY clause of the CREATE TABLE statement), defined by the file system
(SYSKEY column), or defined by both the user and the file system (CLUSTERING
KEY clause of CREATE TABLE, plus the SYSKEY column).

The primary key of a table stored in a relative or entry-sequenced file is always defined
by the file system.

The primary key of an index includes the keytag column, the indexed columns, and—
for nonunique indexes—the primary key of the underlying table.

Primary key values affect the order in which rows are stored and retrieved. The length
of the primary key is a factor in determining the maximum number of partitions for a
table or index. The number of columns in a primary key is a factor in determining the
number of columns that can be indexed and the maximum number of indexes possible
on a table.

A primary key is sometimes called a physical primary key.

For more information, see these entries:

Clustering Keys
HP NonStop SQL/MP Reference Manual—523352-013
P-27

Print Item
Index Keys

Syskeys (system-defined primary keys)

User-Defined Keys (user-defined primary keys)

Print Item
A print item identifies an item to print in an SQLCI report writer report, optionally
accompanied by instructions for formatting the item. A print item can generally be a
column identifier for a column in the current SELECT list (a column name, column
position number, alias, or detail alias), a literal, an arithmetic expression, or a report
clause (for example, SKIP, SPACE, or TAB).

A print list is a set of one or more print items in a report writer command, separated by
commas:

print-item [, print-item] ...

For the complete syntax of a print item, see DETAIL Command on page D-47. See the
specific command in which you intend to specify a print item for any special restrictions
for that command.

PROGID File Attribute
PROGID is a Guardian file attribute that determines the process accessor ID (PAID) of
a process started from the program file. PROGID applies only to program files.

PROGID

sets the PAID of a process started from the file to the Guardian user ID of the file's
owner.

NO PROGID

sets the PAID of a process started from the file to the Guardian user ID of the user
that starts the process.

The default when a program is created is NO PROGID.

Program Invalidation
An SQL-compiled program that is registered in a catalog is either valid or invalid. A
valid program is one that can execute with the current description of the database and
that is marked as valid in the file label of the program file and in the PROGRAMS
catalog table.

[NO] PROGID
HP NonStop SQL/MP Reference Manual—523352-013
P-28

Operations That Invalidate a Program
An invalid program requires either explicit or automatic recompilation to execute. An
invalid program requires explicit recompilation to revalidate it.

Operations That Invalidate a Program

 Copying the program file. If you copy a program file by using the FUP DUPLICATE
command, the original file is unaffected, but the new file is invalid. For more
information, see the SQL/MP Programming and Installation Guide.

 Binding the program file. If you explicitly bind a program file by using the Binder
program, the original file is unaffected, but the resulting target file is invalid.

 Restoring a program file. If you restore a program file (or an underlying table of a
protection or shorthand view used by the program) by using the RESTORE
program without specifying the SQLCOMPILE ON option, the restored program is
invalid.

 Running the accelerator for the program file. If you run the accelerator to optimize
the object code (TNS/R systems only), the program file becomes invalid.

Certain operations on database objects used by a program or on the file that contains
the program cause a program to become invalid. SQL automatically marks programs
as invalid in the PROGRAMS catalog table and in the file label when these operations
occur. SQL also deletes entries for the program in the USAGES catalog table.

Performing any of these operations on an object used by a program invalidates a
registered program:

 ALTER TABLE SIMILARITY CHECK ENABLE (or DISABLE)

 ALTER VIEW SIMILARITY CHECK ENABLE (or DISABLE)

 CLEANUP table, DROP TABLE, or PURGE table

 CLEANUP view, DROP VIEW, or PURGE view

 DROP CONSTRAINT

Preventing Program Invalidation Caused by DDL Operations

Certain DDL operations on an SQL object cause a program that references the object
to be invalidated. As a result, the SQL catalog manager sets the VALID flag to N in the
PROGRAMS catalog table and in the program’s file label (if the program file is
accessible) and deletes the program’s usages entries in the USAGES table. An invalid
program must be recompiled either explicitly or automatically before it can execute.

This DDL operations do not invalidate a program compiled with the CHECK
INOPERABLE PLANS option if the similarity check is enabled for each referenced
object. The program also retains its entries in the USAGES table. (These operations,
however, do update the redefinition timestamp of each referenced object in the DDL
statement.)
HP NonStop SQL/MP Reference Manual—523352-013
P-29

Preventing Program Invalidation Caused by DDL
Operations
 ALTER TABLE...ADD PARTITION statement (including an underlying table of a
protection or shorthand view used by the program)

 ALTER TABLE...ADD COLUMN statement (for more information, including
restrictions, see the SQL/MP Installation and Management Guide.)

 ALTER TABLE statement to move or split partitions (including a simple move,
one-way split, or two-way split) or change the type of partition array

 ALTER TABLE...DROP PARTITION statement

 ALTER INDEX...DROP PARTITION statement (if the similarity check is enabled for
the base table)

 ALTER INDEX statement to move or split index partitions

 CREATE INDEX statement

 UPDATE STATISTICS...RECOMPILE statement

 Changing a collation: dropping and then re-creating the collation, renaming a
collation, or changing a DEFINE that points to a collation

The ALTER TABLE... RENAME, ALTER INDEX... RENAME, and ALTER INDEX...
ADD PARTITION statements do not invalidate a program whether or not it was
compiled with the CHECK INOPERABLE PLANS option.

These operations invalidate specific execution plans within a program even when they
do not invalidate the program as a whole. (SQL detects the invalid plans at program
execution time by comparing an object's current redefinition timestamp to its
compile-time redefinition and then performs similarity checks at that time to determine
if the plan requires recompilation.)

Host language compiling, binding, or accelerating a registered SQL program deletes it
from the catalog it is registered in if the new version of the program is written to the
same object file that held the previous version. You must re-SQL-compile the program
to reregister it and make it a valid SQL program.

An unregistered SQL program is technically neither valid nor invalid because SQL
does not maintain information about its validity in the file label of the program file or in

Note. These DDL operations always invalidate a program, even if the program is compiled
with the CHECK INOPERABLE PLANS option:

 ADD CONSTRAINT statement

 DROP CONSTRAINT statement

 DROP TABLE statement

 DROP VIEW statement

 ALTER TABLE or ALTER VIEW statement with the SIMILARITY CHECK clause

 DROP INDEX statement, if the program contains a plan that references the dropped index
HP NonStop SQL/MP Reference Manual—523352-013
P-30

PROGRAMS Table
the PROGRAMS catalog table. However, the operations listed in the subsections,
Operations That Invalidate a Program on page P-29, and Preventing Program
Invalidation Caused by DDL Operations on page P-29, invalidate specific execution
plans within an unregistered program.

For more information about program invalidation, see the SQL/MP Installation and
Management Guide.

PROGRAMS Table
The PROGRAMS table is a catalog table that describes object programs that have
been SQL-compiled. Table P-2 describes the contents of the PROGRAMS table.

Table P-2. The PROGRAMS Table (page 1 of 2)

Column Name Data Type Description

1 PROGRAMNAME * CHAR(34) Name of file that contains object code

 2 GROUPID SMALLINT
UNSIGNED

Group number of file owner's user ID if
Guardian program, 0 if OSS program

 3 USERID SMALLINT
UNSIGNED

User number of file owner's user ID if
Guardian program, 0 if OSS program

 4 CREATETIME LARGEINT
SIGNED

Julian timestamp from first SQL-compile

 5 SECURITYVECTOR CHAR(4) Program's security string if Guardian program,
$$$$ if OSS program

 6 RECOMPILETIME LARGEINT
SIGNED

Julian timestamp from last explicit
SQL-compile

 7 AUTOCOMPILE CHAR(1) Y if automatic recompilation allowed
N if not

 8 VALID CHAR(1) Y if program is valid
N if not

 9 PROGID CHAR(1) Y if process accessor ID of running program is
to be that of owner of program file
N if process accessor ID of running program is
to be that of user running program
$ if program in OSS file

10 CLEARONPURGE CHAR(1) Y if all data in file is to be physically deleted
from disk when file is purged
N if data in file is not to be physically deleted
from disk when file is purged
$ if OSS program

11 SECURITYMODE CHAR(1) S Safeguard security
G Guardian security
$ OSS program
HP NonStop SQL/MP Reference Manual—523352-013
P-31

Protection View
The columns PROGRAMNAME through CLEARONPURGE (1 through 10) were
created in version 1. Columns SECURITYMODE through
PROGRAMCATALOGVERSION (11 through 13) were added in version 300. Columns
FORCE through REGISTERONLY (14 through 18) were added in version 310. Column
OSSFILE (19) was added in version 315.

Guardian names in the PROGRAMS table are fully qualified and use uppercase
characters. Names of OSS files are stored as the corresponding ZYQ Guardian
names, not OSS pathnames.

Protection View
A protection view is a view defined with the FOR PROTECTION option of the CREATE
VIEW statements. The view can be derived from a single table by taking a projection of
the columns of the table, a restriction of the rows in the table, or both.

A protection view provides a form of column-level security, because the protection view
can be secured independently of the table.

12 PROGRAMFORMATVERSION PFV of program (oldest version of SQL that
can execute program)

SMALLINT
UNSIGNED

13 PROGRAMCATALOGVERSION PCV of program (oldest version catalog that
can register program)

SMALLINT
UNSIGNED

14 FORCE CHAR(1) Y if FORCE specified
N if not

15 SIMILARITYINFO CHAR(1) Y if similarity info stored
N if not

16 RECOMPILEMODE VARCHAR(30) ALL -RECOMPILEALL
ON_DEMAND -RECOMPILEONDEMAND
UNKNOWN -pre version 310

17 CHECKMODE VARCHAR(30) Value of CHECK clause:
INVALID_PROGRAMS (default)
INVALID_PLANS
INOPERABLE_PLANS

18 REGISTERONLY CHAR(1) Y if REGISTERONLY specified
N if not

19 OSSFILE CHAR(1) Y if OSS file
N if not

* Indicates primary key

Table P-2. The PROGRAMS Table (page 2 of 2)

Column Name Data Type Description
HP NonStop SQL/MP Reference Manual—523352-013
P-32

PURGE Command
PURGE Command
PURGE is an SQLCI utility that deletes SQL objects (except catalog tables and their
indexes), SQL programs in Guardian files, and Enscribe files. For an SQL object,
PURGE deletes the file that contains the object, the catalog entries for the object, and
objects (but not programs) that depend upon the object.

The local super ID (but not other users) can also use PURGE to delete shadow labels.

You cannot PURGE constraints or catalogs. Use DROP instead.

If PURGE cannot delete objects because of missing objects or bad labels, use
CLEANUP instead.

[!]qualified-fileset-list[!]

is a qualified fileset list that specifies the items to purge. (See Qualified Fileset List
on page Q-1.)

The leading or trailing exclamation point (!) suppresses the interactive confirmation
dialog, which is:

DO YOU WISH TO PURGE THE ENTIRE FILESET
<names of groups of files listed vertically>
(Y[ES], N[ONE], S[ELECT], F[ILES]) ?

Respond to the prompt with one of these:

If qualified-fileset-list includes any partition of a partitioned SQL object
or the primary partition of an Enscribe file, SQL purges all partitions of the SQL
object or Enscribe file. However, if qualified-fileset-list includes the
secondary partitions of an Enscribe file, but not the primary partition of the file, SQL
purges only the secondary partitions included in the list.

PURGE [!] qualified-fileset-list[!] [[,]option]... ;

option is:

 { ALLOWERRORS [ON | OFF | num] }
 { [NO] LISTALL }
 { SHADOWSONLY }

YES Purge the entire set of files

SELECT Display information about each file (as in BRIEF format from the
FILEINFO command) and then prompt again about that file

NONE Cancel the PURGE command

FILES Display names of all files that belong to the specified group, then
prompt again
HP NonStop SQL/MP Reference Manual—523352-013
P-33

Considerations—PURGE
If SMF is installed on your node, qualified-fileset-list cannot specify any
objects or files on a $*.ZYS*. subvolume.

ALLOWERRORS [ON | OFF | num]

specifies the action if errors occur:

If you omit the ALLOWERRORS clause completely, the default is
ALLOWERRORS OFF. If you specify ALLOWERRORS but do not specify an
option, the default is ALLOWERRORS ON.

If a system error causes a user-defined TMF transaction containing the PURGE
command to be rolled back, execution of the PURGE is terminated regardless of
the ALLOWERRORS setting.

[NO] LISTALL

specifies whether you want PURGE to display the name of each dropped object in
this form:

object-type $volume.subvol.name PURGED

object-type is COLLATION, FILE, INDEX, PROGRAM, SVIEW, PVIEW, or
TABLE.

LISTALL is the default. If you specify NO LISTALL, PURGE suppresses the display
of confirmations.

SHADOWSONLY

specifies that you want to purge shadow labels within
qualified-fileset-list, but not other objects or files. If you omit
SHADOWSONLY, PURGE does not purge shadow labels. SHADOWSONLY is not
allowed within a user-defined TMF transaction.

Considerations—PURGE

 PURGE requires authority to purge objects or files being purged and authority to
read and write to all catalogs that describe objects affected by the purge.

To purge an index, you also must be the generalized owner of the underlying table
and all partitions of that table must be available.

To purge a table, all partitions, indexes, views, and SQL program files that depend
on the table must be available. When you purge any partition of a table, SQL also
purges all other partitions of the table, all constraints defined on the table, all

ON Attempt to purge all specified files and objects regardless of how many
errors are encountered

OFF Stop the purge operation after the first error is encountered

num Purge all specified files and objects until the number of errors
encountered exceeds the value of num
HP NonStop SQL/MP Reference Manual—523352-013
P-34

Considerations—PURGE
indexes that depend on the table, and all views that depend on the table except
dependent shorthand views for which you lack purge authority. SQL invalidates the
latter.

To purge a protection view, all partitions of the view, all views and SQL program
files that depend on the view, all partitions of the table that the view depends on,
and all partitions of all indexes on that table must be available. When you purge a
view, SQL also purges all views that depend on the purged view, except for
dependent shorthand views for which you do not have purge authority. SQL
invalidates the latter.

To purge a collation, you must also purge objects that depend on the collation. If
you purge a collation and a table or index that depends on the collation in the
same PURGE operation, PURGE deletes the table or index before the collation.
An error occurs if you attempt to purge the collation without purging dependent
objects.

To purge shadow labels, you must be the local super ID.

 PURGE invalidates any SQL program files that depend on the SQL objects
purged.

 You can use PURGE within a user-defined TMF transaction unless the command
purges a nonaudited object or a shadow label. If PURGE fails within a user-defined
transaction, the entire PURGE operation is undone.

If you use PURGE outside of a user-defined TMF transaction, SQL automatically
begins a system-defined transaction for the purge of each audited SQL object in
qualified-fileset-list. If PURGE fails, only the system-defined transaction
in progress at the time of the failure is undone. (SQL does not begin a
system-defined transaction for an Enscribe file, even if the file is audited.)

If you press the Break key to interrupt a PURGE operation, SQL reports the last
object purged at the time you issued the break request and also completes (but
does not report) the purge of the next object to be purged. If a user-defined TMF
transaction is not in progress, all changes are committed. If a user-defined
transaction is in progress, the transaction is rolled back and all changes are
undone.

After pressing the Break key, you can restart the PURGE by reentering the
command or by using the FC command. This sequence is permissible:

>> PURGE *.*.* FROM CATALOG $VOL1.SUBV1;
>> (press the Break key)
>> PURGE *.*.* FROM CATALOG $VOL1.SUBV1;

PURGE operations that involve many partitions, especially remote partitions, can
often cause many occurrences of error 73 (The disk file or record is locked) or
error 40 (The operation timed out) when the operation attempts to update file
labels and catalog entries.
HP NonStop SQL/MP Reference Manual—523352-013
P-35

Examples—PURGE
Examples—PURGE

 This example deletes all Enscribe files, SQL programs, and SQL objects (except
for catalog table and indexes) on subvolume $VOL1.PERSNL. The exclamation
point suppresses the PURGE confirmation prompt.

>> PURGE $VOL1.PERSNL.* ! LISTALL;

Depending on the contents of the subvolume, the response might look like this:

TABLE $VOL1.PERSNL.DEPT PURGED
TABLE $VOL1.PERSNL.EMPLOYEE PURGED
TABLE $VOL1.PERSNL.JOB PURGED

3 OBJECT(S) PURGED

 This example deletes tables and files on subvolume SALES that have names that
begin with the letter “O.” The example assumes that three files meet the criteria
and shows the confirmation prompt for the PURGE:

>> VOLUME SALES;
>> PURGE O* NO LISTALL;
DO YOU WISH TO PURGE THE ENTIRE FILESET
 $VOL1.SALES.O*
(Y[ES], N[ONE], S[ELECT], F[ILES]) ?S
 CODE EOF LAST MODIF OWNER RWEP TYPE REC BLOCK
$VOL1.SALES
 ODETAIL A 12288 30Apr9116:42 255,1NUNU K Ta 14 4096
PURGE ? (Y/N) Y

 ORDERS A 12288 30Apr9116:41 255,1NUNU K Ta 16 4096
PURGE ? (Y/N) Y

 ORDREP 255,1NUNU SVi
PURGE ? (Y/N) N

2 OBJECT(S) PURGED

 This example purges all shadow labels on subvolume SALES but does not purge
any other files or objects:

>> PURGE $VOL1.SALES.* SHADOWSONLY NO LISTALL;

PURGEDATA Command
PURGEDATA is an SQLCI utility that clears data from SQL tables and their indexes,
from specified partitions of SQL tables without indexes, or from Enscribe files or
specified partitions of Enscribe files.
HP NonStop SQL/MP Reference Manual—523352-013
P-36

PURGEDATA Command
PURGEDATA works on audited and unaudited files but—unlike most other operations
on audited files—PURGEDATA cannot be used within a user-defined TMF transaction
and cannot be rolled back.

qualified-fileset-list

specifies the tables, partitions, and files to clear.

When clearing an entire SQL table, PURGEDATA also clears data from all indexes
defined on the table. PURGEDATA does not automatically clear alternate key files
of Enscribe files.

If qualified-fileset-list includes a primary or secondary partition of an
SQL table or the primary partition of an Enscribe file, PURGEDATA clears the
entire file or table associated with the partition, including all other partitions, unless
you specify the PARTONLY option; if you specify PARTONLY, PURGEDATA clears
only the partitions included in qualified-fileset-list.

If qualified-fileset-list includes a secondary partition of an Enscribe file
(but not the primary partition) and you do not specify the PARTONLY option,
PURGEDATA does not clear the secondary partition (or any other partitions of that
file).

If SMF is installed on your node, qualified-fileset-list cannot specify any
object or file on a $*.ZYS*. subvolume.

ALLOWERRORS [ON | OFF | num]

specifies what happens if errors occur:

If you omit the ALLOWERRORS clause completely, the default is
ALLOWERRORS OFF. If you specify ALLOWERRORS but do not specify an
option, the default is ALLOWERRORS ON.

[NO] LISTALL

specifies whether to list the name of each cleared object.

PURGEDATA qualified-fileset-list

 [| [,] ALLOWERRORS [ON | OFF | num] |]
 [| [,] [NO] LISTALL |] ;
 [| [,] PARTONLY |]

ON Attempt to clear all specified tables, partitions, and files, regardless how
many errors are encountered.

OFF Stop the operation after a single error.

num Clear all specified tables, partitions, and files until the number of errors
exceeds num.
HP NonStop SQL/MP Reference Manual—523352-013
P-37

Considerations—PURGEDATA
LISTALL is the default. If you specify NO LISTALL, PURGEDATA suppresses the
display.

PARTONLY

specifies that data should be cleared from individual partitions included in
qualified-fileset-list.

An individual partition to be cleared cannot be part of an SQL table with dependent
indexes. In addition, if the partition belongs to an SQL table with a relative or
entry-sequenced file organization, it must be the last partition in the file. (Neither of
these restrictions applies to Enscribe files.)

Considerations—PURGEDATA

 To use PURGEDATA, you must have write authority for the affected tables and
files. For SQL tables or partitions, you must also have authority to read and write to
the affected catalogs.

 PURGEDATA cannot clear data from SQL program files, views, collations, or
catalog tables.

You cannot use PURGEDATA to clear data directly from an SQL index.
(PURGEDATA automatically clears the appropriate indexes when you ask it to
clear an SQL table.)

PURGEDATA cannot clear data from an individual partition of an SQL table with
dependent indexes. It also cannot clear data from any individual partition but the
last one in an SQL table with a relative or entry-sequenced file organization.

 You cannot use PURGEDATA within a user-defined TMF transaction.

SQL does not start a transaction for the entire PURGEDATA operation, but does
start a transaction for the portion of the operation that involves changes to file
labels and catalogs. As a result, you cannot roll back a PURGEDATA operation,
but the consistency of the file labels and catalog entries is protected by TMF.

You can use TMF to recover an audited table or file cleared by PURGEDATA if you
have recent online dumps of the table or file and you know the time the table was
cleared. Use a TMFCOM RECOVER FILES command with TIME set to a value
just before the PURGEDATA operation.

 After pressing the Break key, you can restart a PURGEDATA operation by
reentering the same command. This sequence is permissible:

>> PURGEDATA *.*.* FROM CATALOG $VOL1.SUBV1;
>> (press the Break key)
>> PURGEDATA *.*.* FROM CATALOG $VOL1.SUBV1;

You could also use FC to reenter the PURGEDATA command.

PURGEDATA operations that involve many partitions, especially remote partitions,
can often cause many occurrences of error 73 (The disk file or record is locked) or
HP NonStop SQL/MP Reference Manual—523352-013
P-38

Examples—PURGEDATA
error 40 (The operation timed out) when the operation attempts to update file
labels and catalog entries.

If the PURGEDATA operation fails, PURGEDATA leaves the object or file marked
corrupt. To clear the corrupt flag, correct whatever problem caused the operation to
fail and repeat the PURGEDATA command.

 PURGEDATA does not apply to audited tables that reside on nodes running
versions of SQL/MP software earlier than version 300.

 If a file has dependent indexes, you must first drop them, purge the data, alter the
table to drop any partitions, and re-create the indexes.

 The PURGEDATA operation temporarily invalidates the table and indexes to
prevent concurrent access by other users until the data is purged. If an error
occurs after the table is marked invalid but before the PURGEDATA operation
begins, the table is revalidated, and the data remains unchanged.

If an error occurs during the PURGEDATA operation and the operation fails to
complete, PURGEDATA leaves the table marked as corrupt. To recover, resolve
the problem that caused the first attempt to fail, then reissue the PURGEDATA
command.

 After purging the data, the PURGEDATA operation validates the table and indexes
so that they are accessible to other users.

 In some cases, you might need to reopen the table after the PURGEDATA
operation. For example, if there is an Embedded SQL program that has a cursor
defined as SELECT query with the BROWSE access option, while fetching rows
from this cursor, if data from the table (which this cursor refers) is purged using the
PURGEDATA operation, then the FETCH operation might fail with error 8204.

Examples—PURGEDATA

 This example clears all tables and files other than catalog tables or SQL program
files on subvolume $VOL1.PERSNL and lists the names of the cleared files and
tables:

>> PURGEDATA $VOL1.PERSNL.*;
The confirmation message might look like this:
DATA ARE PURGED FROM TABLE $VOL1.PERSNL.DEPT
DATA ARE PURGED FROM TABLE $VOL1.PERSNL.JOB
DATA ARE PURGED FROM TABLE $VOL1.PERSNL.EMPLOYEE

DATA ARE PURGED FROM 3 OBJECT(S)

 This example clears data from the partition $NY.SALES.ACCTS without clearing
other partitions of the table:

>> PURGEDATA $NY.SALES.ACCTS, PARTONLY NO LISTALL;
DATA ARE PURGED FROM 1 OBJECTS(S)
HP NonStop SQL/MP Reference Manual—523352-013
P-39

Examples—PURGEDATA
HP NonStop SQL/MP Reference Manual—523352-013
P-40

Q
Qualified Fileset List

A qualified fileset list specifies a set of objects and files for an SQLCI utility operation
and optionally includes clauses that restrict the objects and files operated on based on
attributes of the objects and files.

{ fileset-list [restrictions] }
{ }
{ (fileset-list [restrictions] }
{ [, fileset-list [restrictions]] ...) }

fileset-list is:

{ fileset }

{ (fileset [, fileset] ...) }

restrictions is:

[| FROM CATALOG[S] catalogs |]
[| WHERE expression |]
[| EXCLUDE fileset-list |]
[| START startfile |]

expression is:

{ (expression) }
{ NOT expression }
{ expression AND expression }
{ expression OR expression }
{ OWNER = user-id }
{ timestamp-restriction }
{ FILECODE { < | <= | = | >= | > | <> } integer }
{ EOF { < | <= | = | >= | > | <> } integer }
{ file-attribute

timestamp-restriction is:

{ MODTIME } {BEFORE} {ddmmmyyyy [hh:mm:ss] }
{ EXPIRATIONTIME } {AFTER } {mmmdd yyyy [hh:mm:ss]}
{ CREATIONTIME } { < } {hh:mm:ss }
{ LASTOPENTIME } { > }
HP NonStop SQL/MP Reference Manual—523352-013
Q-1

Qualified Fileset List
fileset

is a set of objects and files specified as a Guardian name that optionally includes
these wild-card characters in the volume, subvolume, or file ID portions of the
name.

Notice that a single fileset used with wild-card characters can represent a
fileset that includes many objects and files.

You cannot use a wild-card character in the node portion of a Guardian name that
specifies a fileset.

You can use a DEFINE to specify a fileset, but you cannot use wild-card
characters in the name you specify in the DEFINE. As a result, a fileset you
specify with a DEFINE always consists of a single object or file.

If SMF is installed on your node, fileset cannot specify a file or object on a
$*.ZYS*. subvolume.

FROM CATALOG[S] catalogs

restricts operations to files in fileset that are also in the specified catalogs. For
example, this clause excludes Enscribe files in fileset because Enscribe files
are not described in any SQL catalog.

Specify catalogs:

{ catalog-name }

{ (catalog-name [, catalog-name] ...) }

catalog-name cannot include wild-card characters, but can be a DEFINE.

If SMF is installed on your node, catalog-name must be either a logical or direct
file.

WHERE expression

restricts operations to files in fileset that meet the criteria specified by
expression. expression can include parentheses, and NOT, AND, and OR
operators. Parentheses have the highest precedence, followed by the others in the
order shown.

? Matches any single character.
For example, TBL? matches TBL1 or TBLX but not TBL48.

* Matches any 0 to 8 characters.
For example, * matches any 0 to 8 character name; *VOL* matches
NEWVOL, OLDVOL1, VOL45, and so forth.
HP NonStop SQL/MP Reference Manual—523352-013
Q-2

Qualified Fileset List
OWNER = user-id

restricts operations to files in fileset owned by a Guardian user ID specified:

{ group-name.user-name }
{ group-name.* }
{ group-number,user-number }
{ group-number,* }

For more information about user IDs, see Security on page S-11.

timestamp-restriction

restricts operations to files in fileset that were created, modified, or last opened
before or after a specified date, or that have a NOPURGEUNTIL attribute before or
after (or greater than or less than) a specified date and time. (A later date is
greater than an earlier date; for example, June 3, 1991 is greater than May 13,
1991.)

Specify dates and times:

You can include leading zeros in dd, hh, mm, or ss.

You can include blanks between dd, mmm, and yyyy in ddmmmyyyy. You must
include a blank between dd and yyyy in mmmddyyyy.

The default date is the current date. The default time is 0:00:00.

FILECODE { < | <= | = | >= | > | <> } integer

restricts operations to files in fileset that have a FILECODE less than, less than
or equal to, equal to, greater than or equal to, greater than, or not equal to a
specified integer.

EOF { < | <= | = | >= | > | <> } integer

restricts operations to files in fileset that have an EOF less than, less than or
equal to, equal to, greater than or equal to, greater than, or not equal to a specified
integer. (An EOF is a relative byte address that is an end-of-file pointer. You can
use FILEINFO to display the EOF value of a file.)

mmm JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, or DEC
in uppercase or lowercase

dd an integer from 1 through 31

yyyy a 4-digit integer from 1900 through 2999

hh an integer from 0 through 23

mm a 1 or 2-digit integer from 0 or 00 through 59

ss a 1 or 2-digit integer from 0 or 00 through 59
HP NonStop SQL/MP Reference Manual—523352-013
Q-3

Qualified Fileset List
file-attribute

restricts operations to files in fileset that have one of these characteristics or file
attributes:

BROKEN and CRASHOPEN are states described under FILEINFO Command on
page F-9.

FORMAT1 selects files or SQL objects that are in the original disk format.

FORMAT2 selects files or objects that are in the new, larger disk format.

SAFEGUARD selects files with SAFEGUARD ON.

SQL selects files that are SQL tables, views, or indexes.

SQLPROGRAM selects files that are SQL object programs.

Other characteristics and attributes are described in separate entries.

EXCLUDE fileset

specifies a set of files to exclude from the fileset you specified just before the
WHERE clause with the EXCLUDE clause. EXCLUDE is useful for specifying files
from all subvolumes except $SYSTEM.SYSTEM:

$SYSTEM.*.* EXCLUDE $SYSTEM.SYSTEM.*.

START startfile

designates a starting position within the files in fileset.

START is useful when a utility operation is interrupted and you need to start a new
utility operation at the point of the interruption.

SQL utilities process files in the order in which you specify them within
fileset-list. Each fileset within fileset-list is processed before the
next one. Within the set of files specified by a single fileset with wild-card
characters, utilities process files in alphabetic order by fully qualified Guardian

AUDITED INDEX ROLLFORWARDNEEDED

BROKEN KEYSEQUENCED SAFEGUARD

COLLATION LICENSED SECONDARY PARTITION

CORRUPT OPEN SHORTHAND VIEW

CRASHOPEN PARTITION SQLPROGRAM

ENSCRIBE PRIMARY PARTITION SQL

ENTRYSEQUENCED PROGID TABLE

FORMAT1 PROTECTION VIEW UNSTRUCTURED

FORMAT2 RELATIVE VIEW
HP NonStop SQL/MP Reference Manual—523352-013
Q-4

Examples—Qualified Fileset List
name. (To determine the processing order to select the appropriate startfile,
issue a FILENAMES command with the same qualified fileset list used for the
utility.)

startfile is a Guardian file name that can optionally include the wild-card
character * as the subvolume or file id portion of the name. The file or set of files
that startfile specifies must be a subset of the fileset to which the clause
applies.

Examples—Qualified Fileset List

 This example displays information for all objects on subvolume $VOL1.PERSNL
that are described in the PERSNL catalog:

>> FILEINFO $VOL1.PERSNL.* FROM CATALOG $VOL1.PERSNL;

 This example displays information for all SQL objects in key-sequenced files on
volume $VOL1 that were created before April 5, 1989:

>> FILEINFO $VOL1.*.* WHERE KEYSEQUENCED AND SQL
+> AND CREATIONTIME < APR 5 1989;

 This example might be useful after an interrupted SECURE operation that changes
ownership of a set of SQL objects. The command changes ownership for only
those SQL objects on volume $VOL1 described in the catalog $VOL1.SALES,
beginning with the file SALES.ODETAIL:

>> SECURE $VOL1.*.* FROM CATALOG $VOL1.SALES
+> START $VOL1.SALES.ODETAIL,
+> OWNER 302,92;

 This example purges objects from the volume $VOL1 that are registered in the
catalog that a previous ADD DEFINE or ALTER DEFINE command specified for
the =CAT logical DEFINE name:

>> PURGE $VOL1.*.* FROM CATALOG =CAT;
HP NonStop SQL/MP Reference Manual—523352-013
Q-5

Quantified Predicate
Quantified Predicate
A quantified predicate compares the value of an expression to all, some, or any of the
values in the result of a subquery.

Considerations—Quantified Predicate

 QUANTIFIED is a comparison predicate. For a discussion of general rules for
comparisons and specific information about comparing character data (including
character data associated with collations), numeric data, date-time data, and
interval data, see Comparison Predicate on page C-58.

 The subquery result must be a table of one column. The data type of the first
expression must be compatible with the data type of the subquery result column.

 If you specify ALL, the predicate is true if either of this is true:

 The comparison is true for every value selected by subquery.

 The subquery selects no values.

 If you specify ANY, the predicate is true if the comparison is true for at least one
value selected by subquery. The predicate is false if subquery selects no value,
or if the comparison is false for every value selected. SOME is a synonym for ANY.

Specifying =ANY is the same as specifying the IN predicate, although <>ANY is
not the same as NOT IN.

Examples—Quantified Predicate

 This example finds all salaries that are greater than the salaries of all the
employees who have a jobcode of 420:

SALARY > ALL (SELECT SALARY
 FROM EMPLOYEE WHERE JOBCODE = 420)

 [ANY]
expression comparison-operator [ALL] subquery
 [SOME]

comparison-operator is one of the following:

= Equal
<> Not equal
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
HP NonStop SQL/MP Reference Manual—523352-013
Q-6

Examples—Quantified Predicate
 This example finds all part numbers that are equal to any part number with more
than five units in stock:

PARTNUM = ANY (SELECT PARTNUM
 FROM ODETAIL WHERE QTY_ORDERED > 5)
HP NonStop SQL/MP Reference Manual—523352-013
Q-7

Examples—Quantified Predicate
HP NonStop SQL/MP Reference Manual—523352-013
Q-8

R
RECLENGTH File Attribute

RECLENGTH is a file attribute that specifies the number of physical bytes of space
reserved for each row of a table. RECLENGTH applies only to relative tables.

length

is an integer that specifies the number of bytes to reserve for each record.

RECLENGTH must be at least as great as the total length of all columns in the
column list when the table is created and cannot exceed BLOCKSIZE minus 24.
(For a table with a block size of 4096, for example, the maximum record length is
4072.)

The default is the length of the table's columns.

Considerations—RECLENGTH

 RECLENGTH reserves space in a relative table so columns can be added later.
You cannot add columns to a relative table if the combined length of the new and
existing columns exceeds the table's RECLENGTH. You cannot change
RECLENGTH after the table has been created.

 Specifying a large RECLENGTH value allows you to add columns later, but wastes
disk space until you do. Each row written to the table is allotted the specified
space, regardless of the actual length of the current column list.

RELEASE Statement
RELEASE is a dynamic SQL statement that deallocates space in a host program for a
dynamic SQL statement that is referenced through a host variable and not declared as
a literal in the program.

After a statement is released, references to the statement or to an associated cursor
produce errors.

:host-identifier

is a host variable of SQL type CHAR or VARCHAR that contains the statement
name as declared in the host program. host-identifier must conform to the
naming conventions of the host language.

RECLENGTH length

RELEASE :host-identifier
HP NonStop SQL/MP Reference Manual—523352-013
R-1

REPORT FOOTING Command
For more information, see Host Variables on page H-6 and the programming
manual for your host language.

REPORT FOOTING Command
REPORT FOOTING is an SQLCI report writer command that specifies text for the end
of a report.

print-item

specifies an item to print in the report footing. The form for print-item is the
same as in the DETAIL command, except that it cannot include the HEADING,
NOHEAD, or NAME clause. For more information, see DETAIL Command on
page D-47.

If you specify a column for print-item, SQL uses the value of the column in the
last detail line in the report.

CENTER

centers each line of the report footing between the left and right margins. If you
omit CENTER, the report footing starts at the left margin.

Considerations—REPORT FOOTING

 A blank line separates the report footing from the body of the report. The report
footing appears above the page footing on the last page.

 Each REPORT FOOTING replaces the previous REPORT FOOTING. Only one
REPORT FOOTING command is in effect at a time. When you enter a REPORT
FOOTING command, it replaces the previous one.

 The Print List is limited to 4072 bytes of printed output. The output of a REPORT
FOOTING command is a logical line, although (depending on margin settings,
device widths, and use of the SKIP clause) it might print on more than one physical
line. A logical line is limited to 4072 bytes, including the field widths of all print
items and the number of spaces between items.

Example—REPORT FOOTING

This example specifies a report footing that includes both a literal and a column value:

S> REPORT FOOTING "End of Summary for Sales Representative",
+> SALESREP CENTER;

The footing looks like this:

End of Summary for Sales Representative 212

REPORT FOOTING print-item [,print-item]...[CENTER] ;
HP NonStop SQL/MP Reference Manual—523352-013
R-2

REPORT Option
REPORT Option
The REPORT option controls generation of EMS messages for an SQL operation
started by a statement that includes the option.

If you specify REPORT without an option, the default is ON.

If you omit the REPORT clause entirely, the default is OFF.

ON

directs event messages for the operation to $0, the default EMS collector.

OFF

suppresses event messages for the operation.

TO collector

directs event messages for the operation to collector. collector is the name
of a primary or alternate EMS collector (or an equivalent DEFINE).

Considerations—REPORT Option

 EMS (Event Management Service) is a collection of processes, tools, and
interfaces that provide event-message collation and distribution in the DSM
(Distributed Systems Management) environment. A few SQL statements send
EMS messages (also called event messages) that allow you to monitor the
progress of the operation started by the statement. These statements include the
REPORT option to allow you to control the generation of such messages and
specify the collector to which the messages are sent.

For more information about EMS in general, see the EMS Manual. For more
information about EMS messages issued by SQL/MP software, see the SQL/MP
Messages Manual.

 The EDIT file RPTSQL on the subvolume on which NonStop SQL/MP is installed
(normally $SYSTEM.SYSTEM) contains a TACL script that generates EMS reports
for SQL operations. You can use it to produce default reports or customize a copy
of it to produce variations on the default reports.

For more information, see the comments within the file RPTSQL itself.

Examples—REPORT Option

 This CREATE INDEX example uses the REPORT option to explicitly turn on the
sending of EMS messages associated with the operation. Because the REPORT

 [ON]
REPORT [OFF]
 [TO collector]
HP NonStop SQL/MP Reference Manual—523352-013
R-3

Examples—REPORT Option
option does not specify an EMS collector, messages go to $0, the default EMS
collector.

CREATE INDEX $DK.REG1.IREL2 ON $DK.APPL.RECORDS(COL1, COL6)
 WITH SHARED ACCESS NAME CREATE_INDEX_IREL2
 REPORT ON
 COMMIT WHEN READY
 ONCOMMITERROR COMMIT BY REQUEST;

 The sample report in Example R-1 is produced from EMS messages sent by the
operation started with the CREATE INDEX statement in the previous example. The
actual report also includes the date and time to the left of the process identification
that begins each messages, but the date and time columns are not shown here
because of the width of the report.

Example R-1. Report Example (page 1 of 2)

\SQ.3,49 TANDEM.SQL.D30 000001
 CREATE_INDEX_IREL2 command started
\SA.3,49 TANDEM.SQL.D30 000002 Target
 \SA.DK.REG1.IREL2 created
\SA.3,49 TANDEM.SQL.D30 000003 All target
 partitions have been created
 Time to create targets: 0 secs
\SA.$X314 TANDEM.SQLAUDIT.D30 000002 ** Audit Fixup
 Status **
 Time since last status: 0 secs
 Distance to audit EOF : ? kbytes
 Records read : 0 recs
 Records redone : 0 recs
 Read rate : 0 bytes/sec
 Redo rate : 0 bytes/sec
 Progress rate : ? bytes/sec
\SA.3,49 TANDEM.SQLAUDIT.D30 000001 Audit Fixup
 Initialized
 Time to perform initialization: 6 secs
\SA.3,49 TANDEM.SQL.D30 000004 Data Copy
 Started
\SA.3,49 TANDEM.SQL.D30 000006 Data Copy
 Completed
 Time since last status: 6 secs
\SA.3,49 TANDEM.SQL.D30 000007 Online dump
 allowed for \SA.DK.REG1.IREL2
\SA.3,49 TANDEM.SQLAUDIT.D30 000003 Audit Fixup 1
 started
\SA.3,49 TANDEM.SQLAUDIT.D30 000004 Audit Fixup 1
 completed
 Duration: 2 secs
\SA.3,49 TANDEM.SQLAUDIT.D30 000003 Audit Fixup 2
 started
\SA.3,49 TANDEM.SQLAUDIT.D30 000004 Audit Fixup 2
 completed
 Duration: 2 secs
\SA.3,49 TANDEM.SQL.D30 000017
 CREATE_INDEX_IREL2 command returning to
 caller
 SQLCODE returned: 1618
 Message Text:
 - WARNING from SQL [1618]: The
 CREATE_INDEX_IREL2 statement is ready to
 - commit.
HP NonStop SQL/MP Reference Manual—523352-013
R-4

Examples—REPORT Option
\SA.$X314 TANDEM.SQLAUDIT.D30 000002 ** Audit Fixup
 Status **
 Time since last status: 300 secs
 Distance to audit EOF : ? kbytes
 Records read : 3781 recs
 Records redone : 97 recs
 Read rate : 2370 bytes/sec
 Redo rate : 28 bytes/sec
 Progress rate : ? bytes/sec
\SA.$X314 TANDEM.SQLAUDIT.D30 000002 ** Audit Fixup
 Status **
 Time since last status: 300 secs
 Distance to audit EOF : ? kbytes
 Records read : 4907 recs
 Records redone : 266 recs
 Read rate : 677 bytes/sec
 Redo rate : 51 bytes/sec
 Progress rate : ? bytes/sec
\SA.3,49 TANDEM.SQL.D30 000017
 CREATE_INDEX_IREL2 command returning to
 caller
 SQLCODE returned: -1622
 Message Text:
 - ERROR from SQL [-1622]: The CREATE_INDEX
 statement specified in the
 - CONTINUE command is not the same as
 the current command in progress.
 - Please enter the correct name.
\SA.3,49 TANDEM.SQL.D30 000009 Commit phase
 has begun
\SA.3,49 TANDEM.SQL.D30 000011 All file locks
 have been obtained
 Time since last event 0 secs
\SA.3,49 TANDEM.SQLAUDIT.D30 000003 Audit Fixup 3
 started
\SA.3,49 TANDEM.SQLAUDIT.D30 000004 Audit Fixup 3
 completed
 Duration: 0 secs
\SA.3,49 TANDEM.SQL.D30 000012 All partition
 labels have been updated,
 Time since last event 2 secs
\SA.$X314 TANDEM.SQLAUDIT.D30 000002 ** Audit Fixup
 Status **
 Time since last status: 105 secs
 Distance to audit EOF : ? kbytes
 Records read : 4939 recs
 Records redone : 277 recs
 Read rate : 26 bytes/sec
 Redo rate : 9 bytes/sec
 Progress rate : ? bytes/sec
\SA.3,49 TANDEM.SQLAUDIT.D30 000005 Audit Fixup
 Terminated
\SA.3,49 TANDEM.SQL.D30 000016
CREATE_INDEX_IREL2 command has completed

Example R-1. Report Example (page 2 of 2)
HP NonStop SQL/MP Reference Manual—523352-013
R-5

REPORT TITLE Command
REPORT TITLE Command
REPORT TITLE is an SQLCI report writer command that specifies text to print at the
beginning of the report as the main title for the report.

print-item

specifies an item to print in the report title. The form for print-item is the same
as for the DETAIL command, except that it cannot include the HEADING,
NOHEAD, or NAME clause. For more information, see DETAIL Command on
page D-47.

If you specify a column for print-item, SQL uses the column value from the first
detail line in the report.

CENTER

centers each line of the report title between the left and right margins. If you omit
CENTER, the report title starts immediately after the left margin.

Considerations—REPORT TITLE

 A blank line separates the report title from the body of the report. The report title
appears below the page title on the first page.

 Each REPORT TITLE command replaces the previous one. Only one REPORT
TITLE command is in effect at a time. When you enter a REPORT TITLE
command, it replaces the previous REPORT TITLE command.

 The print list is limited to 4072 bytes of printed output. The output of a REPORT
TITLE command is a logical line, although (depending on margin settings, device
widths, and use of the SKIP clause) it might print on more than one physical line. A
logical line is limited to 4072 bytes, including the field widths of all print items and
the number of spaces between items.

Examples—REPORT TITLE

 This example selects data for a report and define list count:

>> SET LIST_COUNT 0;
>> SELECT * FROM SALES.ORDERS, PERSNL.EMPLOYEE
+> WHERE SALESREP = EMPNUM AND
+> SALESREP = 226;

 This example defines a report title, defines a detail line that omits the SALESREP
column, and lists all selected rows. Other elements of the report use the default
report format.

REPORT TITLE print-item [,print-item]...[CENTER] ;
HP NonStop SQL/MP Reference Manual—523352-013
R-6

Report Writer
S> REPORT TITLE "Summary of Orders:", SALESREP,
+> CONCAT (FIRST_NAME STRIP, " ", LAST_NAME);
S> DETAIL COL 1, COL 2, COL 3, COL 5;
S> LIST ALL;
Summary of Orders: 226 HEIDI WEIGL

ORDERNUM ORDER_DATE DELIV_DATE CUSTNUM
---------- ---------- ----------- -------

 200490 880319 881101 123
 300380 880319 880820 123
 600480 880512 881010 3333

Report Writer
The report writer is a component of SQLCI that enables you to produce formatted
reports from rows returned by SELECT statements. It includes:

BREAK FOOTING
Command

OUT_REPORT
COMMAND

RESET REPORT
Command

BREAK ON Command PAGE FOOTING
Command

RESET STYLE Command

BREAK TITLE Command PAGE TITLE Command SET LAYOUT Command

CANCEL Command REPORT FOOTING
Command

SET STYLE Command

DETAIL Command REPORT TITLE
Command

SUBTOTAL Command

NAME Command RESET LAYOUT
Command

TOTAL Command

Style and Layout Options

CENTER_REPORT
Option

NEWLINE_CHAR Option ROWCOUNT Option

DATE_FORMAT Option NULL_DISPLAY Option SUBTOTAL_LABEL
Option

DECIMAL_POINT Option OVERFLOW_ CHAR
OPTION

TIME_FORMAT Option

HEADINGS Option PAGE_COUNT Option UNDERLINE_CHAR
Option

LEFT_MARGIN Option PAGE_LENGTH Option VARCHAR_WIDTH Option

LINE_SPACING Option RIGHT_MARGIN Option WINDOW OPTION

LOGICAL_FOLDING
Option

SPACE Option
HP NonStop SQL/MP Reference Manual—523352-013
R-7

Report Writer
For more information, see the entries for specific commands, functions, clauses, or
options. Clauses marked with an asterisk (*) are described in DETAIL Command on
page D-47. For more information about using the report writer, see the SQL/MP Report
Writer Guide.

The uses of these commands, functions, clauses, and options are summarized in the
tables that follow.

Table R-1 includes the report writer commands just listed, in addition to other SQLCI
commands typically used with report writer commands.

For example, the SQLCI SET SESSION includes such options as
MANDATORY_REPORT that can affect report format.

Table R-2 on page R-10, Table R-3 on page R-10, and Table R-4 on page R-11
summarize, respectively, functions, print-list clauses, and style and format options
available for report writing.

Clauses

AS Clause IF/THEN/ELSE Clause SKIP*

AUDIT File Attribute NEED* SPACE Option*

CONCAT Clause PAGE* TAB*

Functions

COMPUTE_TIMESTAMP
Function

LINE_NUMBER Function

CURRENT_TIMESTAMP
Function

PAGE_NUMBER Function

Table R-1. SQLCI Commands Used to Write Reports (page 1 of 2)

BREAK FOOTING Defines text for the end of a break group

BREAK ON Groups lines by item value

BREAK TITLE Defines text for the start of a break group

CANCEL Cancels the current SELECT command

BREAK FOOTING Defines text for the end of a break group

BREAK ON Groups lines by item value

BREAK TITLE Defines text for the start of a break group

CANCEL Cancels the current SELECT command

DETAIL Defines detail line content and format

EXECUTE Executes a compiled command

LIST Displays rows returned by a SELECT command

LOG Starts or ends logging of session activity to a file

OUT Specifies or closes the output file
HP NonStop SQL/MP Reference Manual—523352-013
R-8

Report Writer
OUT_REPORT Directs the output of a SELECT to a report file or closes the current
report file

PREPARE Compiles a command. Useful for compiling a SELECT command
before producing a report

NAME Defines a name for a column in the select list for use in reports

PAGE FOOTING Defines text for the bottom of each page

PAGE TITLE Defines text for the top of each page

REPORT FOOTING Defines text for the end of the report

REPORT TITLE Defines text for the start of the report

RESET LAYOUT Resets layout options to default settings

RESET REPORT Deletes commands from the current report definition, or deletes
columns or alias from stored report formatting commands in the
current report definition

RESET SESSION Resets session options to default settings

RESET STYLE Resets style options to default settings

SELECT Retrieves data from tables and views

SET LAYOUT Sets layout options to new values

SET SESSION Sets session options to new values

SET STYLE Sets style options to new values

SHOW LAYOUT Displays the values of layout options

SHOW REPORT Displays report formatting commands and the most recent SELECT
command

SHOW SESSION Displays values of session options

SHOW STYLE Displays values of style options

SUBTOTAL Defines subtotals

TOTAL Defines totals

Table R-1. SQLCI Commands Used to Write Reports (page 2 of 2)
HP NonStop SQL/MP Reference Manual—523352-013
R-9

Report Writer
Table R-2. Style and Layout Options for Reports

Option What the Option Defines Default

CENTER_REPORT Is report centered? OFF

DATE_FORMAT Format for dates M2/D2/Y2

DECIMAL_POINT Symbol for decimal point Period (.)

HEADINGS Are headings used? ON

LEFT_MARGIN Left margin 0

LINE_SPACING Number of lines to advance before next
report line

1

LOGICAL_FOLDING Does item of default detail line move to
the next line when it does not fit in
margins?

ON

NEWLINE_CHAR Character to indicate a new line in a
heading

Slash (/)

NULL_DISPLAY Character to represent a null value Question mark (?)

OVERFLOW_CHAR Filler character printed when a value
exceeds the field size

Asterisk (*)

PAGE_COUNT Maximum pages ALL

PAGE_LENGTH Maximum lines per page ALL for terminal
60 for other devices

RIGHT_MARGIN Right margin Device width

SPACE Spaces between columns 2

ROWCOUNT Is the row-count line generated? ON

SUBTOTAL_LABEL Label to print in a break column with
subtotals

Asterisk (*)

TIME_FORMAT Format for time HP2:M2:S2

UNDERLINE_CHAR Character for underlining Hyphen (-)

VARCHAR_WIDTH Maximum characters in a varying-length
print item

80

WINDOW Column position displayed at the left
edge of output device

TAB 1

Table R-3. Report Writer Clauses (page 1 of 2)

Clause What the Clause Specifies

AS Format for a print item

AS DATE/TIME Format for a printed date or time

CONCAT Print items without intervening space

IF/THEN/ELSE Condition for printing items
HP NonStop SQL/MP Reference Manual—523352-013
R-10

Reserved Words
Reserved Words
Table R-5 lists words that are reserved for NonStop SQL/MP. You cannot use these
words as names of constraints, columns (including correlation names), cursors, or
statements, but you can use these words in catalog names; in Guardian names that
identify tables, indexes, views, partitions, and collations; and in host variable names.

NEED Number of lines to keep together on page

PAGE Advance to the next page and optionally start a new page-number
sequence

SKIP Number of lines before next item

SPACE Number of blanks between items

TAB Position of the next item on a line

Table R-4. Report Writer Functions

Function What the Function Returns

COMPUTE_TIMESTAMP Timestamp for specified date and time

CURRENT_TIMESTAMP Timestamp for current date and time

LINE_NUMBER Current line number within a break group, page, or report

PAGE_NUMBER Current page number

Table R-5. Reserved Words (page 1 of 2)

ALL CURSOR IN NOT TABLE

AND INNER NULL TO

ANY DEC INPUT NUMERIC

AS DECIMAL INSERT UNIQUE

ASC DECLARE INT OF UPDATE

AVG DELETE INTEGER OPEN

DESC INTO OPTION VALUES

BEGIN DISTINCT IS OR VIEW

BETWEEN ORDER

BY ESCAPE JOIN WHERE

EXISTS RIGHT WITH

CATALOG KEY ROLLBACK WORK

CHAR FETCH

CHARACTER FOR LEFT SAMPLE

Table R-3. Report Writer Clauses (page 2 of 2)

Clause What the Clause Specifies
HP NonStop SQL/MP Reference Manual—523352-013
R-11

RESET DEFINE Command
These words are reserved for the report writer. You should not use these words as
user-defined names if your site uses the report writer component of SQLCI:

RESET DEFINE Command
RESET DEFINE is an SQLCI command that restores one or more DEFINE attributes in
the working attribute set to their initial settings. (RESET DEFINE is similar to the TACL
command ADD DEFINE.)

attr

is a DEFINE attribute whose value is to be reset to its initial value. For a list of
DEFINE attributes, see DEFINEs on page D-27.

*

resets the DEFINE class to MAP and establishes a working attribute set that
consists of the FILE attribute set to its initial value (which is no value).

Considerations—RESET DEFINE

 For a description of the working attribute set, see SET DEFINE Command on
page S-32.

 If an error occurs when you enter a RESET DEFINE command, the command
does not change the working attribute set.

 Attributes are reset in the order you specify them.

CHECK FROM LIKE SELECT

CLOSE SET

COMMIT GROUP MAX SMALLINT

COUNT MIN SOME

CURRENT HAVING SUM

CURRENT_TIMESTAMP NOT SKIP

IF PAGE SPACE

LINE_NUMBER PAGE_NUMBER TAB

NEED REPORT

RESET DEFINE { attr [, attr] ... } ;
 { * }

Table R-5. Reserved Words (page 2 of 2)
HP NonStop SQL/MP Reference Manual—523352-013
R-12

Example—RESET DEFINE
 When you reset the CLASS attribute, you set the DEFINE class to MAP and
establish a working attribute set consisting of the FILE attribute (set to its initial
value).

 If you reset an attribute that does not belong to the current class, an error message
appears.

Example—RESET DEFINE

This example shows the way RESET DEFINE changes the working attribute set.
Initially, the working attribute set contains attributes for CLASS CATALOG. RESET
DEFINE resets the SUBVOL attribute value. Because the SUBVOL attribute is required
(there is no default value), the attribute is set to no value.

>> SHOW DEFINE *;
 CLASS CATALOG
 SUBVOL \SYS1.$VOL1.PERSNL
>> RESET DEFINE SUBVOL;
>> SHOW DEFINE *;
 CLASS CATALOG
 SUBVOL ??
Current attribute set is incomplete

RESET LAYOUT Command
RESET LAYOUT is an SQLCI report writer command that resets layout options to their
default settings. Layout options affect the way a report appears on screen or on the
printed page.

The layout options and their default settings are:

* resets all options to default settings.

For more information, see entries for specific options.

RESET { [LAYOUT] option [, option] ... } ;
 { LAYOUT * }

CENTER_REPORT OFF

LEFT_MARGIN 0

LINE_SPACING 1

LOGICAL_FOLDING ON

PAGE_COUNT ALL

PAGE_LENGTH ALL (terminal); 60 (other devices)

RIGHT_MARGIN Output device width

SPACE 2

WINDOW TAB 1 (all columns)
HP NonStop SQL/MP Reference Manual—523352-013
R-13

Example—RESET LAYOUT
Example—RESET LAYOUT

This example resets three report writer layout options to their default values:

>> RESET LAYOUT RIGHT_MARGIN, LINE_SPACING, PAGE_LENGTH;

RESET PARAM Command
RESET PARAM is an SQLCI command that clears the values of one or more
parameters.

param-name

specifies a parameter to clear.

*

clears the values of all parameters.

For a description of parameters and their use, see SET PARAM Command on
page S-35.

Considerations—RESET PARAM

 The RESET PARAM command clears the current parameter values. You do not
have to reset a parameter value that you assign using the EXECUTE command
because the assignment applies only to that execution of the command.

 Parameters you set in the command interpreter (with the PARAM command)
before starting SQLCI are reset for your SQLCI session but are not changed in the
command interpreter.

 After you clear a parameter, the parameter has no value. If you execute a
command that refers to the parameter, an error message appears.

Examples—RESET PARAM

 This example clears the values of parameters ?TESTVAL1, and ?TESTVAL2:

>> RESET PARAM ?TESTVAL1, ?TESTVAL2

 Suppose that you use the TACL PARAM command to set the SAL parameter
before starting SQLCI. During your SQLCI session, you set the parameter again.
The RESET PARAM command in this example resets ?ENUM and ?STATE to no
value. The SAL parameter is also set to no value for the SQLCI session, but when
you exit SQLCI, SAL has the value 140,000 for the TACL process. The ?ENUM

RESET { [PARAM] param-name [,param-name] ... } ;
 { PARAM * }
HP NonStop SQL/MP Reference Manual—523352-013
R-14

Examples—RESET PARAM
parameter has no value after the EXECUTE command terminates because the
value is assigned only temporarily.

4> PARAM SAL 140000
5> PARAM
DEVICE^TYPE .2.
SAL .140000.
6> SQLCI
SQL Conversational Interface - T9191D20 - (01JUN93)
COPYRIGHT TANDEM COMPUTERS INCORPORATED 1987-1994

>> SHOW PARAM *;
?DEVICE^TYPE 2
?SAL 140000
>> SET PARAM ?ENUM 557;
 ...
>> SET PARAM ?STATE "CALIFORNIA", ?SAL 45000;
>> SHOW PARAM *;
?ENUM 557
?STATE CALIFORNIA
?SAL 45000
>> EXECUTE FINDSUP USING ?ENUM = 45;
 ...
>> SHOW PARAM *;
?ENUM 557
?STATE CALIFORNIA
?SAL 45000
>> RESET PARAM *;
>> SHOW PARAM *;
>>EXIT

End of SQLCI Session
7> PARAM
SAL .140000.
HP NonStop SQL/MP Reference Manual—523352-013
R-15

RESET PREPARED Command
RESET PREPARED Command
RESET PREPARED is an SQLCI command that resets prepared commands.
Resetting a prepared command is equivalent to deleting it. If you have prepared the
maximum of 20 commands, you can reset a command you no longer need to use to
prepare another command.

command-name

is the name you specified when you prepared the command.

*

resets all prepared commands.

Example—RESET PREPARED

 This example resets a prepared command named EMPIN:

>> RESET PREPARED EMPIN;

RESET REPORT Command
RESET REPORT is an SQLCI report writer command that resets stored report
formatting commands (at the select-in-progress prompt, S>) or resets the most recent
SELECT command and stored report formatting commands (at the standard SQLCI
prompt, >>).

RESET PREPARED { command-name [,command-name] ... } ;
 { * }

 { report-cmd [, report-cmd] ... }
RESET REPORT { * } ;
 { SELECT }

report-cmd is:

 { BREAK [(column [, column] ...)] }
 { BREAK FOOTING [(column [, column] ...)] }
 { BREAK TITLE [(column [, column] ...)] }
 { DETAIL }
 { NAME [(alias [, alias] ...)] }
 { [PAGE] FOOTING }
 { [PAGE] TITLE }
 { REPORT FOOTING }
 { REPORT TITLE }
 { SUBTOTAL [(column [, column] ...)] }
 { TOTAL [(column [, column] ...)] }
HP NonStop SQL/MP Reference Manual—523352-013
R-16

RESET REPORT Command
report-cmd

is the name of a report-formatting command to reset to its default setting, or (if you
specify column or alias with the command name) with which to delete the
specified column name or alias.

You can specify the report-cmd option only at the select-in-progress prompt, S>.

The report formatting commands and their default settings are:

For example, entering “RESET REPORT TITLE, DETAIL;” at the S> prompt
deletes the title for the current report and resets the detail line to the default detail
line.

The keyword BREAK refers to the BREAK ON command. If you delete a break,
you automatically delete the break footings, break titles, and subtotals associated
with that break. For example, entering “RESET REPORT BREAK PARTS;” at the
S> prompt deletes a break set on the PARTS column and any break footings,
break titles and subtotals associated with that break. Other breaks remain in effect.

column

specifies a column to delete from the stored report command. You can specify
column as a column name, an alias, or COL number (which specifies the position
of the column in the select list). column cannot be a detail alias.

*

resets all report formatting commands to their default settings. If entered at the
standard SQLCI prompt (>>), * also resets the most recent SELECT command.

SELECT

deletes the most recent SELECT command from the report definition.

You can specify the SELECT option only at the standard SQLCI prompt, >>.

BREAK No breaks

BREAK FOOTING No break footing

BREAK TITLE No break title

DETAIL Default report detail line

NAME No names

PAGE FOOTING No page footing

PAGE TITLE No page title

REPORT FOOTING No report footing

REPORT TITLE No report title

SUBTOTAL No subtotals

TOTAL No totals
HP NonStop SQL/MP Reference Manual—523352-013
R-17

Consideration—RESET REPORT
Consideration—RESET REPORT

You cannot reset a command that defines an alias or detail alias (such as NAME or
DETAIL) if other current report commands use the alias or detail alias, so the order in
which you reset report commands is significant. For example, if a SUBTOTAL
command refers to a detail alias, you must reset the SUBTOTAL command before you
reset the DETAIL command. (Note that aliases are reset by RESET REPORT NAME,
but detail aliases are reset by RESET REPORT DETAIL.)

Examples—RESET REPORT

 This example uses RESET REPORT at the select-in-progress prompt. SHOW
REPORT commands display the stored report formatting commands before and
after the RESET REPORT. Note that the * option does not affect the SELECT in
effect for the report.

S> SHOW REPORT *;
SELECT * FROM INVENT.ODETAIL ORDER BY PARTNUM;
DETAIL PARTNUM HEADING "Part Number", SPACE 5, QTY_ORDERED;
BREAK ON PARTNUM;
SUBTOTAL QTY_ORDERED;
S> RESET REPORT *;
S> SHOW REPORT *;
SELECT * FROM INVENT.ODETAIL ORDER BY PARTNUM;

 This example uses RESET REPORT at the standard SQLCI prompt. SHOW
REPORT commands display the stored report formatting commands before and
after the RESET REPORT. Note that in this example, unlike the previous one, the *
option deletes both the report formatting options and the SELECT.

>> SHOW REPORT *;
SELECT * FROM INVENT.ODETAIL ORDER BY PARTNUM;
DETAIL PARTNUM HEADING "Part Number", SPACE 5, QTY_ORDERED;
BREAK ON PARTNUM;
SUBTOTAL QTY_ORDERED;
>> RESET REPORT *;
>> SHOW REPORT *;
HP NonStop SQL/MP Reference Manual—523352-013
R-18

RESET SESSION Command
RESET SESSION Command
RESET SESSION is an SQLCI session command that resets SQLCI session options
to default settings.

The session options and their default settings are:

* resets all options to their default settings.

For more information, see SET SESSION Command on page S-39.

Example—RESET SESSION

This example resets the LIST_COUNT and WARNINGS options:

>> RESET LIST_COUNT, WARNINGS;

RESET STYLE Command
RESET STYLE is an SQLCI report writer command that resets style options to their
default settings. Style options affect the appearance of specific report items, such as
underlines, headings, and date and time formats.

The style options and their default settings are:

RESET [SESSION] { option [, option] ... } ;
 { * }

AUTOWORK ON

BREAK_KEY ON

DISPLAY_ERROR ALL

ERROR_ABORT OFF

ERROR_TEXT DETAIL

LIST_COUNT ALL

MANDATORY_REPORT OFF

STATISTICS OFF

WARNINGS ON

WRAP ON

RESET { [STYLE] option [, option] ... } ;
 { STYLE * }

DATE_FORMAT M2/D2/Y2

DECIMAL_POINT .

HEADINGS ON
HP NonStop SQL/MP Reference Manual—523352-013
R-19

Example—RESET STYLE
* resets all style options to their default settings.

For more information, see the entries for individual options.

Example—RESET STYLE

This example resets the DECIMAL_POINT and NEWLINE_CHAR options:

>> RESET DECIMAL_POINT, NEWLINE_CHAR;

RESETBROKEN File Attribute
RESETBROKEN is a file attribute that resets the file-label BROKEN flag for a file.
RESETBROKEN applies to key-sequenced, relative, and entry-sequenced tables and
to indexes. However, you cannot alter the RESETBROKEN attribute for catalog tables.

When you reset the BROKEN flag, it does not invalidate dependent programs.

RIGHT_MARGIN Option
RIGHT_MARGIN is an option of the SQLCI report writer SET LAYOUT command that
sets the right margin for the current report and for all subsequent reports until you reset
the margin.

number

is an integer in the range 1 through 255 that indicates the right most byte position
in the report line. number must be greater than the LEFT_MARGIN layout option.

The default is the width of the output device.

NEWLINE_CHAR /

NULL_DISPLAY ?

OVERFLOW_CHAR *

ROWCOUNT ON

SUBTOTAL_LABEL *

TIME_FORMAT HP2:M2:S2

UNDERLINE_CHAR -

VARCHAR_WIDTH 80

RESETBROKEN

RIGHT_MARGIN number
HP NonStop SQL/MP Reference Manual—523352-013
R-20

Consideration—RIGHT_MARGIN
Consideration—RIGHT_MARGIN

Report lines that extend beyond the margin continue on the next line. For default detail
lines, the point at which the lines break depends on the LOGICAL_FOLDING option.
For other lines, the point at which the lines break depends on the DETAIL command.
For other lines, see LOGICAL_FOLDING Option on page L-53 or DETAIL Command
on page D-47.

Lines might continue on a new line because of the output device width, even if the lines
are within the specified right margin. (Such line continuation is controlled by the WRAP
option.) Output device widths are:

Example—RIGHT_MARGIN

This example sets the right most byte position of the report to 75:

>> SET LAYOUT RIGHT_MARGIN 75;

ROLLBACK WORK Statement
ROLLBACK WORK is a transaction control statement that undoes all database
modifications made to audited objects during the current TMF transaction, releases all
locks on audited objects held by the transaction, and ends the transaction. Without the
AUDITONLY clause, ROLLBACK WORK also releases all locks on nonaudited objects
locked during the transaction.

AUDITONLY

specifies that only locks on audited objects should be released.

If you specify AUDITONLY on a ROLLBACK WORK statement for a transaction
that locked nonaudited objects, you must explicitly close cursors or release locks
on the nonaudited objects by using CLOSE cursor and UNLOCK TABLE or FREE
RESOURCES.

Terminal 80 bytes

Unstructured disk file 80 bytes

Structured disk file Record length set at file creation

Edit file 80 bytes (239 if RIGHT_MARGIN is greater than 80)

Process 132 bytes (255 if RIGHT_MARGIN is greater than 132)

Printer 132 bytes (255 if RIGHT_MARGIN is greater than 132)

ROLLBACK WORK [AUDITONLY]
HP NonStop SQL/MP Reference Manual—523352-013
R-21

Considerations—ROLLBACK WORK
Considerations—ROLLBACK WORK

 TMF transactions begin with BEGIN WORK and end with COMMIT WORK or
ROLLBACK WORK. For more information, see TMF Transactions on page T-6 or
BEGIN WORK Statement on page B-3.

 ROLLBACK WORK returns status information to the SQLCA, so you can use
WHENEVER for processing related errors.

 ROLLBACK WORK is equivalent to:

FREE RESOURCES (an SQL statement)

ABORTTRANSACTION (a procedure call)

Example—ROLLBACK WORK

This example uses ROLLBACK WORK to terminate a transaction without committing
database changes.

The user adds an order for two parts numbered 4130 to the ORDERS and
ODETAIL tables, but discovers that there is no such part number while updating
the INVENT table to decrement the quantity available.

>> BEGIN WORK;
>> INSERT INTO ORDERS VALUES (124, 860323, 860330, 75,
7654);
--- 1 row(s) inserted.
>> INSERT INTO ODETAIL VALUES (124, 4130, 250, 2);
---1 row(s) inserted.
>> UPDATE INVENT.PARTLOC SET QTY_ON_HAND = QTY_ON_HAND - 2
+> WHERE PARTNUM = 4130 AND LOC_CODE = "K43";
--- 0 row(s) updated.
>> ROLLBACK WORK;

ROLLBACK WORK cancels the inserts that occurred during the transaction and
releases the locks held on ORDERS and ODETAIL.
HP NonStop SQL/MP Reference Manual—523352-013
R-22

ROWCOUNT Option
ROWCOUNT Option
ROWCOUNT is an option of the SQLCI SET STYLE report writer command that
causes SQLCI to generate or suppress a line that reports the number of rows returned
as the result of a SELECT.

ON generates the row-count line.

OFF suppresses the row-count line.

The default is ON.

Example—ROWCOUNT

This example shows a simple SELECT with ROWCOUNT ON (the default) and with
ROWCOUNT OFF:

>> SELECT * FROM MYTABLE;
 aaa 122345
 bbb 333333
 ccc 987653
--- 3 row(s) selected.
>> SET ROWCOUNT OFF;
>> SELECT * FROM MYTABLE;
 aaa 122345
 bbb 333333
 ccc 987653
>>

ROWCOUNT { ON }
 { OFF }
HP NonStop SQL/MP Reference Manual—523352-013
R-23

Example—ROWCOUNT
HP NonStop SQL/MP Reference Manual—523352-013
R-24

S
Sample Database

To help users of NonStop SQL/MP become familiar with the product's features, HP
includes a sample database and a sample application on the product site update tape
(SUT). The sample database demonstrates the use of NonStop SQL/MP in a Pathway
transaction processing environment. It includes several host language programs that
use embedded SQL statements to access the sample database. Users can also
access the sample database with SQLCI commands.

The source code, database creation and load files, and installation instructions for the
sample database and application are stored on a file named DOCUMENT on a
subvolume named ZTSQLMSG when NonStop SQL/MP is installed. (The volume
name is specified at installation time by the user who installs NonStop SQL/MP. To
determine the volume name, check with the group that installs NonStop SQL/MP at
your site.) If you set your volume default to the appropriate disk volume, you can use
this command to print the installation instructions:

35> TGAL /IN ZTSQLMSG.DOCUMENT, OUT $S.#printer/

The sample database is used as the basis for many examples in the NonStop SQL/MP
manuals. In the examples, most of the sample database is presented as installed on
three subvolumes—PERSNL, SALES, and INVENT—on a single volume. Each
subvolume contains a catalog and tables relating to a specific operation in the
organization:

One table in the sample data base—the PARTLOC table—can be installed as a
partitioned table. The examples show it as partitioned over three volumes on two
different nodes.

For more information about the sample database or the sample application, see the
DOCUMENT file. For the host language you use for the illustration "Sample NonStop
SQL Database Relations" which shows the relationships between the tables in the
sample database, for more information, see the SQL/MP programming manual.

PERSNL Contains the EMPLOYEE, JOB, and DEPT tables, which hold
personnel data.

SALES Contains the CUSTOMER, ORDERS, ODETAIL, and PARTS tables,
which are used for order data. Also contains the SUPPKANJ table,
which accepts Kanji data for the supplier's name and address.

INVENT Contains the SUPPLIER, PARTSUPP, PARTLOC, and ERRORS
tables, which hold inventory data.
HP NonStop SQL/MP Reference Manual—523352-013
S-1

SAVE Command
SAVE Command
SAVE is an SQLCI command that saves in a file the values of one or more session
attributes in command format. The file can be executed later with an OBEY command.

ALL

saves all the session attributes: environmental parameters, DEFINEs, user-defined
parameters, session options, layout options, style options, current report formatting
commands, and the most recent SELECT command.

ENV

saves the environmental attributes: SYSTEM, VOLUME, CATALOG, OUT, LOG,
and, OUT_REPORT.

DEFINES

saves the current =_DEFAULTS DEFINE as an ALTER DEFINE command and
saves all other current DEFINEs as ADD DEFINE commands.

{ [PARAM] param-name [, param-name] ... }
{ PARAM * }

saves user-defined parameters as SET PARAM commands; param-name is the
name of a user-defined parameter. You can specify a list of parameter names to

SAVE {ALL }
 {ENV }
 {DEFINES }
 { }
 { { [PARAM] param-name [, param-name] ... } }
 { { PARAM * } }
 { }
 { { [LAYOUT] layout-opt [,layout-opt] ... } }
 { { LAYOUT * } }
 { }
 { [SESSION] { session-opt [, session-opt]...}}
 { {* }}
 { }
 { { [STYLE] style-opt [, style-opt] ...} }
 { { STYLE * } }
 { }
 { REPORT { report-cmd [, report-cmd] ... } }
 { { * } }
 { }
 { COMMAND { "command-string"} }
 { { number } }
 { { -number } }

 TO file [(section-name)] [CLEAR] ;
HP NonStop SQL/MP Reference Manual—523352-013
S-2

SAVE Command
save specific parameters or specify an asterisk (*) to save the names and values of
all current parameters.

{ [LAYOUT] layout-opt [, layout-opt] ... }
{ LAYOUT * }

saves the layout options you specify; layout-opt is a single layout option. An
asterisk (*) specifies all layout options. For more information about layout options,
see SET LAYOUT Command on page S-34.

[SESSION] { session-opt [, session-opt] ... }
 { * }

saves the session options you specify; session-opt is a single session option.
An asterisk (*) specifies all session options. For more information about session
options, see SET SESSION Command on page S-39.

{ [STYLE] style-opt [, style-opt] ... }
{ STYLE * }

saves the style options you specify; style-opt is a single style option.STYLE *
specifies all style options. For more information about style options, see SET
STYLE Command on page S-45.

REPORT { report-cmd [, report-cmd] ... }
 { * }

saves the report formatting commands you specify and, if specified, the most
recent SELECT command. report-cmd is one of these commands: BREAK,
BREAK FOOTING, BREAK TITLE, DETAIL, NAME, PAGE FOOTING, PAGE
TITLE, REPORT FOOTING, REPORT TITLE, SELECT, SUBTOTAL, and
TOTAL.REPORT * specifies all these commands.

If you enter multiple BREAK TITLE, BREAK FOOTING, NAME, or SUBTOTAL
commands, all versions are saved. To save a specific version of a command from
the history buffer, enter SAVE COMMAND command-string.

COMMAND {“command-string”}
 {number }
 {-number }

saves commands stored in the history buffer.

command-string

is a character string that specifies the most recent command in the history buffer
that begins with the string.

number

is a positive integer that refers to the ordinal number of a command in the history
buffer.
HP NonStop SQL/MP Reference Manual—523352-013
S-3

Example—SAVE
-number

is a negative integer that indicates the position of a command in the history buffer
relative to the current command.

For more information, see HISTORY Command on page H-5.

TO file

specifies a disk file, process file, or terminal name. If the file does not exist, SQLCI
creates an EDIT file.

section-name

is the simple name of a section header of the form ?SECTION section-name.
SQLCI writes the section header in the line preceding the attribute values you are
saving.

CLEAR

directs SQLCI to clear the disk or the process file before saving the commands. If
you omit this parameter, SQLCI appends the commands to existing text.

You cannot clear individual sections; SQLCI clears the whole file.

The SAVE command is useful for creating an OBEY command file that contains
DEFINEs you use repeatedly or a report definition you have created using the
report options and commands.

Example—SAVE

Suppose that you enter these commands during your SQLCI session:

>> VOLUME \SYS1.$VOL1.INVENT;
>> LOG SUBV2.MAYLOG;
>> SYSTEM \SYS1;
>> ADD DEFINE =EMPLOYEE, CLASS MAP,
+> FILE \SYS1.$VOL1.PERSNL.EMPLOYEE;
>> ADD DEFINE =ORDERS, CLASS MAP,
+> FILE \SYS1.$VOL1.SALES.ORDERS;
>> ADD DEFINE =CAT, CLASS CATALOG,
+> SUBVOL \SYS1.$VOL1.PERSNL;

You want to set up this session environment and add these DEFINEs each time
you execute a particular query. To save the commands, enter:

>> SAVE ENV TO SETUP1 CLEAR;
>> SAVE DEFINES TO SETUP1;

The first command saves the VOLUME, LOG, and SYSTEM commands in the file
SETUP1. The next command appends all the ADD DEFINE commands to
SETUP1. To set up the environment and DEFINEs, enter:

>> OBEY SETUP1;
HP NonStop SQL/MP Reference Manual—523352-013
S-4

Search Conditions
Search Conditions
A search condition is a set of predicates (or other search conditions) combined with
logical operators (AND, OR, or NOT) that specifies criteria for choosing rows from
tables or views.

You can use a search condition in the WHERE clause in a SELECT, DELETE, or
UPDATE statement; in the HAVING clause in a SELECT statement; in the ON clause
in a SELECT statement that involves a join; in the CHECK clause in the CREATE
CONSTRAINT statement; and in the select-statement portion of a subquery or of
the INSERT or CREATE VIEW statement.

NOT

reverses the truth value of the subsequent predicate or search condition.

BETWEEN Comparison predicate, EXISTS, IN, LIKE, NULL, and
Quantified predicate

are predicates that specify conditions that must be satisfied for a row to be
operated on. For more information, see the entries for specific predicate types.

search-condition

is another search condition.

OR

specifies that the search condition is true if either of the surrounding predicates or
search conditions are true.

AND

specifies that the search condition is true only if both the surrounding predicates or
search conditions are true.

[NOT] { p } [{ AND } [NOT] { p }] ...
 { (p) } [{ OR } { (p) }]

p is:

 BETWEEN
 Comparison predicate (=, <>, <, >, <=, or >=)
 EXISTS
 IN
 LIKE
 NULL
 Quantified predicate (ANY, ALL, or SOME)
 search-condition
HP NonStop SQL/MP Reference Manual—523352-013
S-5

Considerations—Search Conditions
Considerations—Search Conditions

 SQL evaluates search conditions in this order: first to last; predicates within
parentheses; NOT, AND, and OR.

 Within a search condition, a reference to a column refers to the value of that
column in the row evaluated by the search condition.

 If a search condition contains a predicate of the form

expression comparison-operator subquery

and the subquery returns no values, the predicate evaluates to null.

If you include a subquery in a search condition, SQL applies the subquery to each
row of the table that is the result of the previous clauses, the uses that result to
evaluate the search condition in relation to a specific row.

 A statement that contains a search condition operates on a row only if that row
satisfies the search condition. For example, in a DELETE statement, any row that
satisfies the search condition specified in the WHERE clause is deleted. In a
SELECT statement, from each row or group of rows that satisfies the search
condition, the columns specified in the select list are returned.

A search condition connected by the OR operator might execute successfully
although it includes a predicate that can evaluate to false or null. If any predicate is
true, the values of the remaining predicates are irrelevant.

 If a search condition contains a predicate of the form

expression comparison-operator subquery

and the subquery returns no values, the predicate evaluates to null.

For example, this predicate evaluates to null because the subquery returns no
value (there is no part number with more than 1500 units in stock):

PARTNUM = (SELECT PARTNUM
 FROM ODETAIL
 WHERE QTY_ORDERED > 1500)

Examples—Search Conditions

 This example searches for values in rows where the quantity is less than 9, the
delivery date is before November 2, 1991 and the order number in the ORDERS
table equals the order number in the ODETAIL table:

QTY_ORDERED < 9 AND DELIV_DATE <= 911101
 AND ORDERS.ORDERNUM = ODETAIL.ORDERNUM
HP NonStop SQL/MP Reference Manual—523352-013
S-6

SECURE Command
 This example searches for values where supplier number in the SUPPLIER table
equals supplier number in the PARTSUPP table, and part number is less than
3000 or equal to 7102:

SUPPLIER.SUPPNUM = PARTSUPP.SUPPNUM
 AND (PARTNUM < 3000 OR PARTNUM = 7102)

SECURE Command
SECURE is an SQLCI utility that changes security, ownership, and some file attributes
for tables, views, collations, SQL programs in Guardian files, and Enscribe files.

SECURE does not change the security or ownership of catalogs, catalog tables, or
SQL programs in OSS files.

qualified-fileset-list

is a qualified fileset list that specifies the SQL objects, SQL programs in Guardian
files, and Enscribe files for which to change security or ownership. For information,
see Qualified Fileset List on page Q-1.

SECURE changes the security you specify for a table or protection view before it
changes the ownership. SECURE changes the security of objects, programs, and
files in the order in which you specify them.

To change the security of a partitioned Enscribe file, you must specify the primary
partition in qualified-fileset-list. SECURE then changes the security for
all partitions.

If SMF is installed on your node, qualified-fileset-list cannot specify any
file or object on a $*.ZYS*. subvolume.

"rwep"

is a four-character string that specifies the new Guardian security for the objects
and files. For more information, see Security on page S-11.

Make sure the security you specify for an SQL object includes read access for
users who have write access.

SECURE qualified-fileset-list [[,] option] ... ;

option is:

 { "rwep" }
 { ALLOWERRORS [ON | OFF | num] }
 { CLEARONPURGE [ON | OFF] }
 { OWNER { group-name.user-name } }
 { { group-number, user-number } }
 { PROGID [ON | OFF] }
 { [NO] LISTALL }
HP NonStop SQL/MP Reference Manual—523352-013
S-7

SECURE Command
If you do not specify a security string, the security of files and objects remains
unchanged.

ALLOWERRORS [ON | OFF | num]

specifies action when errors occur:

If you omit the ALLOWERRORS clause completely, the default is
ALLOWERRORS OFF. If you specify ALLOWERRORS but do not specify an
option, the default is ALLOWERRORS ON.

If a user-defined transaction that includes a SECURE operations is rolled back, the
SECURE operation is terminated regardless of the setting of ALLOWERRORS.

CLEARONPURGE [ON | OFF]

specifies whether to erase the contents of an object or file when the object or file is
purged from disk.

CLEARONPURGE does not apply to collations.

If you omit the CLEARONPURGE option, the file attribute is not changed.

CLEARONPURGE ON is the default if you specify CLEARONPURGE but omit ON
and OFF.

OWNER { group-name.user-name }
 { group-number, user-number }

specifies the Guardian user ID of the user who will be given ownership of the
object or file. For more information about Guardian user IDs, see User IDs on
page S-12.

If you do not specify the OWNER option, the ownership of the object remains
unchanged.

ON Resecure all elements of the fileset list regardless of how many errors
are encountered.

OFF Stop the operation when an error occurs.

num Resecure files and objects until the number of errors is greater than num.

ON Physically delete the data from the disk by overwriting the file space with
binary zeros.

OFF Logically deallocate the disk space but do not physically destroy the
data.
HP NonStop SQL/MP Reference Manual—523352-013
S-8

Considerations—SECURE Command
PROGID [ON | OFF]

determines the process accessor ID of a program file when the program executes.

If you omit the PROGID option, the file attribute is not changed.

PROGID ON is the default if you specify PROGID but omit ON and OFF.

[NO] LISTALL

specifies whether you want SECURE to display the name of each resecured file or
object in this form:

object-type $volume.subvol.name SECURED

object-type is COLLATION, FILE, PROGRAM, PVIEW, SVIEW, or TABLE.

LISTALL is the default. NO LISTALL suppresses the display.

Considerations—SECURE Command

 Authorization and accessibility requirements

To resecure an object or file, you must be the generalized owner of the object or
file. You must also have read and write authority to the catalogs for the objects
being resecured. To alter the security attributes of a program file, you must also
have read authority to the program file.

All partitions, dependent indexes, and dependent protection views for tables being
changed must be accessible when SECURE executes.

 Effect on related objects

Altering the security or ownership of an object can affect related objects. For more
information, see the ALTER commands for specific types of objects (ALTER
TABLE, ALTER VIEW, and so forth).

 Transactions, breaks, and failures

If you use SECURE within a user-defined TMF transaction, all resecuring of
audited objects is reversed if SECURE fails during execution.

If you use SECURE outside of a user-defined TMF transaction, SQL automatically
begins a system-defined transaction for each SQL object you resecure. In this
case, only the resecuring of a single object is undone if SECURE fails.

The SECURE operation is not protected by the TMF subsystem for an Enscribe
file.

ON Set the process accessor ID to the Guardian user ID of the owner of the
program.

OFF Set the process accessor ID to the Guardian user ID of the user who runs
the process.
HP NonStop SQL/MP Reference Manual—523352-013
S-9

Examples—SECURE Command
You can press the Break key to interrupt the SECURE utility. SECURE reports the
last object resecured. If a user-defined TMF transaction is not in progress, the
changes made to the database before you pressed the Break key are committed
and the change in progress at the time you press the key is also committed,
although SECURE does not issue a message confirming the last change. If a
user-defined transaction is in progress, the transaction is rolled back and all
changes are undone.

After pressing the Break key, you can restart the operation by entering the same
command again as shown:

>> SECURE *.*.* FROM CATALOG $VOL1.SUBV1 "NUUU";
>> (press the Break key)
>> SECURE *.*.* FROM CATALOG $VOL1.SUBV1 "NUUU";

You can also use the FC command to repeat the same SECURE command.

Note that restarting a partially-completed SECURE operation from the beginning
can cause errors if the operation changes ownership. You might no longer have
authority to specify ownership for the files whose ownership has already changed.
You can avoid this problem by using the START option in qualified-
fileset-list to restart the operation from the point at which it stopped.

Examples—SECURE Command

 This command resecures all SQL objects from catalog $VOL1.PERSNL located on
subvolume DEPT or JOB so that users on other nodes in the network can read
them but only the owner can write to or purge them:

SECURE (DEPT.*, JOB.*) FROM CATALOG $VOL1.PERSNL, "NUUU";

 This command changes the security and sets the CLEARONPURGE attribute of all
tables, views, and programs from catalog CAT on subvolume SV:

SECURE SV.* FROM CATALOG CAT, "NUUU" CLEARONPURGE ON;

 Each of this SECURE commands uses a different form of a Guardian user ID to
change the owner of a table:

SECURE $VOL1.PERSNL.EMPLOYEE,, OWNER DEPT3.MGR NO LISTALL;
SECURE $VOL1.PERSNL.EMPLOYEE,, OWNER 9,001 NO LISTALL;
HP NonStop SQL/MP Reference Manual—523352-013
S-10

SECURE File Attribute
SECURE File Attribute
SECURE is a Guardian file attribute that corresponds to the security string that controls
Guardian file security for table, index, collation, and protection views.

"rwep"

is a four-character string that specifies the Guardian read, write, execute, and
purge security for an object or file. For more information, see Security on
page S-11.

Considerations—SECURE File Attribute

 To provide user groups with write access to tables, views, indexes, or catalogs, you
must specify read access in addition to write access for those groups.

 A SECURE attribute that permits access to a file from other nodes in the network is
necessary, but not sufficient, to allow users to access the file over the network.
Network users must also be authorized to access the node on which the file
resides in addition to authorized to access that specific file.

Examples—SECURE File Attribute

 This SECURE attribute permits other users on the network to execute the file but
permits only the owner to read, write, or purge the file:

SECURE "OONO"

 This SECURE attribute permits other users on the network to read or update the
file but permits only the owner to purge or execute the file:

SECURE "NNOO"

Security
Authorization to access SQL/MP objects is maintained by the Guardian environment
and checked by Nonstop SQL/MP. Each SQL/MP object has associated security
values that determine who can read, write to, execute, and purge the object.

SQL programs in Guardian files and other Guardian files used with SQL/MP
applications also use the security provided by the Guardian environment. Each
Guardian file has an associated set of security values like those for SQL/MP objects.

SQL/MP objects, SQL programs in Guardian files, and other Guardian files can
optionally use the Safeguard security management facility, a product that provides
security features beyond those of standard Guardian security. The Safeguard

SECURE “rwep”
HP NonStop SQL/MP Reference Manual—523352-013
S-11

User IDs
subsystem can secure SQL/MP objects at the volume or subvolume level and can
secure all other Guardian files at the volume, subvolume, or file level.

SQL programs in OSS files and other OSS files use OSS security, which differs from
Guardian security. A user who runs an SQL program in an OSS file has both an OSS
identity (which determines the user's authorization to access OSS files) and a
corresponding Guardian identity (which determines the user's authorization to access
SQL/MP objects and other Guardian files).

The remainder of this entry describes the general principles of Guardian security as
they relate to access to SQL/MP objects, including access from both Guardian and
OSS SQL/MP programs. For more information about Guardian, Safeguard, and OSS
security, see the Guardian User's Guide, the Safeguard Reference Manual, and the
OSS User's Guide.

User IDs

Each user authorized to log on to a node in a NonStop network is identified by a
Guardian user ID that consists of a Guardian group number and Guardian user number
and that corresponds to a Guardian group name and Guardian user name.

The Guardian user ID is the combination of the group number and user number (not
the user number alone) or the combination of the group name and user name (not the
user name alone). The user ID is normally represented in one of these forms:

A user of a NonStop system must specify a Guardian user ID and an accompanying
password to log on to a system through a TACL process. A user who uses the OSS
environment of a system can also have a different form of user ID for the OSS
environment, but each OSS user ID or alias is associated with a Guardian user ID of
the form just described.

Group Manager and Super ID

Each Guardian group includes one special user ID called the group manager that has
user number 255 and normally (by convention) has the user name MANAGER; for
example:

The group manager can act as the owner of any object or file owned by another
member of the group. Each node has one special user ID called the super ID that has
Guardian group 255 and user number 255. Normally (by convention), both group 255
and user 255 in group 255 are named SUPER; for example:

8,55 Group number, comma, user number

DEVEL.JIM Group name, period, user name

8,255 Typical group manager ID number

DEVEL.MANAGER Typical group manager ID name
HP NonStop SQL/MP Reference Manual—523352-013
S-12

Process Access IDs
The super ID can act as the owner of any object or file on the node. Certain operations
can be performed only by a user logged on with the super ID.

Process Access IDs

Each executing process on a system has a process access ID (PAID) that determines
the SQL/MP objects and Guardian files the process can access. The process access
ID is always a Guardian user ID.

If you work through TACL, the executing TACL process has a process access ID that is
the Guardian user ID you supplied at logon. If you work through an OSS shell, the
executing shell process has a process access ID that is the Guardian user ID you
supplied at logon.

After logon, each process you start normally inherits the processor access ID of the
process that starts it—so processes you start from the TACL process, such as SQLCI
or host language programs (and any processes you start from those processes),
normally inherit the processor access ID that is also the Guardian user ID you supplied
at logon. In this way, your initial logon usually determines the SQL/MP objects and
Guardian files that you can access.

A process does not inherit the processor access ID of the process that starts it if you
execute a program that has the PROGID file attribute set. The PROGID attribute of a
program file specifies that a process started from that program file should use the
Guardian user ID of the owner of the program file as its process access ID, not the
process access ID of the user who starts the process. When this occurs, the Guardian
user ID of the owner of the program file determines the SQL/MP objects and Guardian
files that the program can access, regardless of the user that executes the program.

The process access ID of the process you are executing (with the Security Strings on
page S-14) determines the objects and files you can access with that process.
Therefore, if the SQL documentation says that to perform a certain operation

"you must have authority to ..."

it means that the process access ID of the process you execute must have the
authority. A Group List is associated with a process. Each Guardian user can be a
member of one or more user groups. The Group List is a list of decimal numbers,
specifying the user groups to which the Guardian user belongs. The Group List is
always associated with the creator accessor ID (CAID) of a process, even if the
process is started from a PROGID object file. The Group List is also used (together
with the PAID) to determine the objects and files that you can access with that process.

The owner of an SQL program in a Guardian file can use the ALTER PROGRAM
statement or the SECURE command to set the PROGID attribute of the program file. If
a program is secured with the Safeguard subsystem, the owner can use the Safeguard

255,255 Super ID number

SUPER.SUPER Typical super ID name
HP NonStop SQL/MP Reference Manual—523352-013
S-13

File Ownership
subsystem to set the PROGID attribute. NonStop SQL/MP stores the PROGID
attribute of an SQL program in the PROGRAMS table of the catalog in which the
program is registered and in the file label of the program itself.

File Ownership

Each SQL/MP object or Guardian file is owned by a single Guardian user ID. When an
object or file is created, the owner is the Guardian user ID that corresponds to the
process access ID of the process that created the file. You can change the owner of an
SQL object with an appropriate ALTER command or with the SECURE command.

A generalized owner of an object or file is any user ID that has ownership privileges for
the file. On the node where the file is located, the generalized owner always includes
the user ID that owns the file, the group manager of the group that includes that user
ID, and the super ID. If the owner can purge the file from another node in the network
(as specified with the fourth character of the security string described next), the
generalized owner also includes the same owner user ID on other nodes, the group
manager on other nodes, and the super ID on other nodes.

Security Strings

Each SQL/MP object or Guardian file is associated with a four-character security
string, rwep, that controls access to that object or file:

Each character in the security string can have one of these values:

Local refers to a user logged on to the same node. Remote refers to a user logged on
to a different node in the same network. For example, the security string “OOOO”
specifies that only the local generalized owner of a file can access the file in any way.

r Read access (SELECT)

w Write access (INSERT, UPDATE, or DELETE)

e Execute access (EXECUTE)

p Purge access (DROP)

Value Users Allowed Access

- Local super ID only

O Local owner, local group manager, and local super ID

G Local group member, local owner, and local super ID

A Any local user

U Any member of the owner's user class (local or remote users with the same user
ID), local or remote group manager, and local or remote super ID

C Any member of the owner's community (local or remote users with the same group
number) and local or remote super ID

N Any local or remote user
HP NonStop SQL/MP Reference Manual—523352-013
S-14

Authorization Requirements for SQL Statements
In contrast, the security string “NGNU” specifies that any user on the network can read
or execute the file (the “r” and “e” characters of the security string) but the generalized
owner or a local user with a user ID that has the same Guardian security group as that
of the owner can only write to the file (the “w” character of the security string). Only the
generalized owner can purge the file (the “p” character of the security string). The
generalized owner includes the owner user ID, group manager, and super ID on other
nodes in the network.

Authorization Requirements for SQL Statements

To access an object in a NonStop SQL/MP database, an executing process (an SQLCI
session or a host program) must have a processor access ID with the appropriate
authority based on the security string associated with the object. Different SQL
statements have different authorization requirements.

To determine whether a process can update information in a table, for example,
NonStop SQL/MP checks read and write access (checks the process access ID
against the “rw” characters in the security string for the table). To determine whether a
process can change the definition of a table, NonStop SQL/MP also checks read and
write access for the catalog that describes the table (checks the process access ID
against the “rw,” characters of the security strings for files in the catalog).

Using SQLCOMP to compile an SQL program requires read and purge authority to the
program file; read and write authority to the PROGRAMS, USAGES, and TRANSIDS
tables of the catalog where the program will be registered; and read and write authority
to the USAGES and TRANSIDS catalog tables of any catalog with a description of a
table or view used by the program.

Executing an SQL program requires read and execute authority to the program file.
Executions that require dynamic recompilation also require read authority to any
catalog with a description of a table or view used by the program.

The authorization requirements in SQL/MP statements and SQLCI commands are
described with the specific statement or command entries, but Table S-1 summarizes
requirements for the major SQL statements.

Table S-1. Authorization Requirements for SQL Statements (page 1 of 3)

Statement Authority Required

DCL

LOCK TABLE UNLOCK
TABLE

Read authority to the table or view and to underlying tables of
the view

DDL*

ALTER* Generalized ownership of the object (or for an index, of the
underlying table), program file, or catalog being altered; for a
program, you must also have read and write authority to the
catalogs that describe the program and the objects referenced
in the program
HP NonStop SQL/MP Reference Manual—523352-013
S-15

Authorization Requirements for SQL Statements
COMMENT* Generalized ownership of the table or view (or for an index, of
the underlying table) referenced by the comment

CREATE COLLATION* Read authority for the collation source file or the collation
specified in the LIKE clause and its catalog

CREATE
CONSTRAINT*

Generalized ownership and read authority for the underlying
table

CREATE CATALOG* Write authority for the SQL.CATALOGS table on the node where
the catalog is to reside

CREATE INDEX* Generalized ownership and read and write authority for the
underlying table; also write authority to the USAGES table of
catalogs that describe the underlying table

CREATE TABLE* Read and write authority to the catalogs that describe the table

CREATE VIEW*
(shorthand)

Write authority to the USAGES table of catalogs that describe
the underlying tables or views

CREATE VIEW*
(protection)

Ownership of the underlying table and read and write authority
to that table and all associated indexes unless the view security
specifies read and write authority for super ID only

DROP CATALOG* Read and purge authority to the catalog being dropped; read
and write authority to SQL.CATALOGS

DROP CONSTRAINT*
DROP INDEX*

Generalized ownership of the underlying table

DROP COLLATION*
DROP PROGRAM*
DROP TABLE*
DROP VIEW*

Purge authority to the object being dropped

UPDATE STATISTICS* Generalized ownership of the table for which the statistics are
updated

DML

DELETE
INSERT
UPDATE

Read and write authority to the table or protection view being
deleted or modified; read authority to the tables, protection
views, and underlying tables of shorthand views in subqueries
of the statement

OPEN
FETCH

Read authority to the tables, protection views, and underlying
tables of shorthand views referred to in the SELECT statement
that defines the cursor; write authority, too, if the cursor is FOR
UPDATE

Table S-1. Authorization Requirements for SQL Statements (page 2 of 3)

Statement Authority Required
HP NonStop SQL/MP Reference Manual—523352-013
S-16

Authorization Requirements for SQL Statements
SELECT Read authority to the tables, protection views, and underlying
tables of shorthand views referred to in the statement

INVOKE Read authority to the catalogs that contain the object
descriptions

* All DDL statements require authority to read and write to any catalogs affected by the change in addition to
any other requirements listed previously.

Table S-1. Authorization Requirements for SQL Statements (page 3 of 3)

Statement Authority Required
HP NonStop SQL/MP Reference Manual—523352-013
S-17

SELECT Statement
SELECT Statement
SELECT is a DML statement that retrieves values from tables and views.

SELECT [ALL | DISTINCT] select-list

 [INTO :host-variable [, :host-variable] ...]

 FROM table-ref [, table-ref] ...

 [| WHERE search-cond |]
 [| |]
 [| HAVING search-cond |]
 [| |]
 [| [FOR] { BROWSE | STABLE | REPEATABLE } ACCESS |]
 [| |]
 [| [IN] { SHARE | EXCLUSIVE } MODE |]
 [| |]
 [| GROUP BY { colname } [collate] |]
 [| { colnum } |]
 [| |]
 [| ORDER BY { colname } [ASC[ENDING]] [collate] |]
 [| { colnum } [DESC[ENDING] |]

 [UNION [ALL] select-statement]

 [FOR UPDATE OF column-name [, column-name] ...]

select-list is:

 { * } [{ * }]
 { corr.* } [{ corr.* }]
 { expr } [{ expr }]

table-ref is:

 { table }
 { view } [corr]
 { join-table }

join-table is:

 table-ref [INNER] JOIN table-ref ON search-cond
 [LEFT]

collate is:

 COLLATE { collation | CHARACTER SET }
HP NonStop SQL/MP Reference Manual—523352-013
S-18

SELECT Statement
[ALL | DISTINCT]

specifies whether to retrieve all rows of the intermediate table described by the
FROM clause or only rows that are not duplicates (DISTINCT rows). NULL values
are considered equal for removing duplicates.

The default is ALL.

select-list

specifies the columns to select from the intermediate table described by the FROM
clause:

expr is an SQL expression that is not a subquery. Columns named in expr must
be from tables or views specified in the FROM clause but can include
system-defined primary keys. (Qualify SYSKEY if you want to select the SYSKEY
column from more than one table or view: for example, EMPLOYEE.SYSKEY.)

If you refer to a grouped view in the FROM clause, expr cannot include an
aggregate function on a column of the grouped view. A grouped view is a view
defined with a CREATE VIEW AS clause that contains a GROUP BY or HAVING
clause that is not in a subquery, contains an aggregate function in the select list, or
refers to a grouped view in the FROM clause.

If expr is a single column name or a qualified column name, that column of the
result table is a named column. All other columns are unnamed columns.

The * and corr.* forms of a select-list specification are convenient for use in
SQLCI but should be avoided in programs. Such specifications make the order of
columns in the result table dependent on the order of columns in the current
definition of the referenced tables or views. If columns have been added, the
retrieved values might not be in the order the program is coded to use.

INTO :host-variable [, :host-variable] ...

(allowed in programs only) specifies host variables in which to return the result of a
query.

You can use the IN clause only for operations that are not union operations and
that return no more than one row. (If the query returns more than one row, use a
cursor.) For information on using host variables and handling null values that might
be returned to host variables, see the SQL/MP programming manual for your host
language.

List Item Columns of Intermediate Table Retrieved

* All columns, including SYSKEYs for view

corr.* All columns in the table or view implicitly or explicitly associated with
correlation name corr except the SYSKEY of a table

expr The columns required to evaluate the expression expr
HP NonStop SQL/MP Reference Manual—523352-013
S-19

SELECT Statement
FROM table-ref [, table-ref] ...

is a list of up to 16 tables, views, and join-tables (or equivalent DEFINEs),
each optionally qualified by a correlation name, that specifies the contents of an
intermediate table from which SQL retrieves the columns you specified in
select-list.

If you specify only one table-ref, the intermediate table consists of rows from
that table, view, or join-table. If you specify more than one table-ref, SQL
builds the intermediate table by logically concatenating each row of each table,
view, or join-table in the list with each row of every other table, view, or
join-table in the list. Within the intermediate table, tables and views are in the
order specified in the FROM clause; columns from each table or view are in the
order in which they exist in that table or view.

If table-ref is a grouped view, the view must be the only table-ref in the
FROM clause.

table-ref [INNER] JOIN table-ref ON search-cond
 [LEFT]

specifies a join of a table, view, or join-table with another table, view, or
join-table.

If you specify LEFT JOIN, the table-ref on the right side of the keywords LEFT
JOIN (which is called the inner table of the join) cannot be a join-table or a
shorthand view whose definition is based on a join operation or on a union of
SELECT statements; the table-ref on the left cannot be a shorthand view
whose definition is based on a LEFT JOIN operation or on a union of SELECT
statements.

search-cond is the search condition for the join. Each column in the search
condition must be a column that exists in the intermediate table specified by the
FROM clause. If the search condition contains an expression list, the expression
list must be enclosed in parentheses, as shown:

TABLE1 JOIN TABLE2 ON (A,B) > (10,20)

For more information, see Joins on page J-1.

WHERE search-cond

specifies a search condition to apply to each row of the FROM clause result table.
Each column that you specify in search-condition must be a column in the
FROM clause result table.

INNER joins all rows that satisfy search condition.

LEFT joins all rows that satisfy search condition plus rows from table-ref
that do not.
HP NonStop SQL/MP Reference Manual—523352-013
S-20

SELECT Statement
HAVING search-cond

specifies a search condition to apply to each row of the result table of the previous
clause. The search condition is applied to each group, or (if there is no GROUP BY
clause) to all the rows.

In the search condition, you can specify any column as the argument of a function
(for example, AVG (SALARY)). A column that is not in a function must be, however,
a column in a GROUP BY clause or a column in a table or view specified in an
outer query. For more information about outer queries, see Subqueries on
page S-82.

If the FROM clause specifies a grouped view, you cannot specify a HAVING
clause.

[FOR] { BROWSE | STABLE | REPEATABLE } ACCESS

specifies the access mode for the SELECT.

The default is FOR STABLE ACCESS, which allows concurrent use of the
database, but limits access to a row while the row is processed.

For more information, see Access Options on page A-1.

[IN] { SHARE | EXCLUSIVE } MODE

specifies that SHARE or EXCLUSIVE locks be used on accessed rows of the table
and of the index, if any, through which the accesses occur.

Use SHARE mode when your process reads data but does not modify it.
Specifying STABLE access and SHARE mode ensures greater concurrency.

Use EXCLUSIVE mode when your process reads data and then modifies it with
DELETE or UPDATE. Requesting EXCLUSIVE locks on the SELECT prevents
other processes from acquiring SHARE locks on the accessed rows between the
time of the SELECT and the time of the subsequent DELETE or UPDATE. Such
locks by other processes would prevent your process from escalating its own
SHARE locks to the EXCLUSIVE locks required for a DELETE or UPDATE
operation, causing your process to wait or timeout.

Note that a SELECT locks only the accessed row in the table and the
corresponding row in the index used as the access path for the SELECT. Another
process using an index-only path with STABLE or REPEATABLE access can lock
rows in an index on the table that was not used as the access path for the SELECT
but that is affected by the DELETE or UPDATE. If this operation occurs, your
process waits or times out although you specified EXCLUSIVE. (You can avoid this
scenario by using the LOCK TABLE IN EXCLUSIVE MODE statement to lock the
table and all its indexes, but this prevents other processes from accessing any
portion of the table while the lock is in effect and might not be the best solution to
the problem.)
HP NonStop SQL/MP Reference Manual—523352-013
S-21

SELECT Statement
The IN clause is not allowed for BROWSE ACCESS. In SHARE MODE it is
ignored for cursor SELECT operations.

If you omit the IN clause, SQL uses SHARE until an attempt is made to modify the
data, escalates the lock to EXCLUSIVE.

For more information, see Locking on page L-48.

GROUP BY { colname | colnum }

specifies columns of the result table from the preceding FROM or WHERE clause
that define a set of groups in which each group consists of rows with identical
values in the specified columns.

For example, if you specify AGE, the result table contains one group of rows with
AGE equal to 40 and one group with AGE equal to 50. If you specify AGE and
JOB, the result table contains one group for each different age and job code pair.
When you refer to a grouping column in a search condition or expression, you refer
to a single value because each row in the group contains the same value in the
grouping column.

For grouping, all null values are considered equal to one another. The result table
of a GROUP BY clause can have only one null group.

If the FROM clause specifies a grouped view, you cannot specify a GROUP BY
clause.

colname

is the name of a single column from a table in the FROM clause, optionally
qualified by a table name, view name, or correlation name: for example,
CUSTOMER.CITY.

colnum

is a positive integer that specifies a column by its position in the select-list.
Use colnum to refer to unnamed columns, such as expressions.

In a GROUP BY clause, you cannot use colnum to specify a column that is an
expression that contains a function if the argument of the function is a column of
the FROM clause result table. You can use colnum if the argument is a correlated
reference to a column from an outer query.
HP NonStop SQL/MP Reference Manual—523352-013
S-22

SELECT Statement
COLLATE { collation | CHARACTER SET }

specifies an alternate collating sequence that determines the ordering of rows in a
column specified on a GROUP BY or ORDER BY clause, temporarily overriding
the effect of any collation associated with the column as part of its table definition.

ORDER BY { colname } [ASC[ENDING]] [collate]
 { colnum } [DESC[ENDING]

specifies the order in which to sort the rows of the result table.

colname and colnum are as previously described for the GROUP BY clause, with
these additional restrictions:

 If you specify DISTINCT, colname must be in select-list.

 If you specify a GROUP BY or HAVING clause, the ordering column must also
be a grouping column.

 If an ORDER BY clause applies to a union of SELECT statements, the
ordering column must be explicitly referenced, outside a function or an
expression, in select-list of the leftmost SELECT statement.

ASCENDING and DESCENDING specify the sort order. If you specify the ORDER
BY clause without ASCENDING or DESCENDING, the default is ASCENDING.

Be sure to specify the ORDER BY clause for each column you need ordered.
Otherwise, SQL determines the order of the column and does not guarantee a
specific or consistent order of rows. ORDER BY can reduce performance,
however, so use it only if you require a specific order.

For ordering a result table on a column that can contain null values, a null value is
considered equal to other null values but greater than all other nonnull values.

ORDER BY is valid only for the SELECT part of an INSERT statement or for a
SELECT statement used in a cursor declaration in a host program.

UNION [ALL] select-statement

specifies a set UNION operation between the result table of this SELECT
statement and the result table of another SELECT statement. The select-lists
in the two SELECT statements must have the same number of columns, and
columns in corresponding positions within the select-lists must have
comparable data types (for example, both numeric or both character types).

collation is the name of an existing collation that specifies a collating
sequence and uses the same character set as the
associated column.

CHARACTER
SET

specifies a collating sequence based on the binary value of
characters in the column.
HP NonStop SQL/MP Reference Manual—523352-013
S-23

Considerations—SELECT
The result of UNION is a table that contains rows belonging to either of the two
tables. If you specify UNION ALL, the table contains all the rows retrieved by each
SELECT statement; otherwise, duplicate rows are removed.

The number of columns in the table is the same as the number of columns in each
select-list. The column names in the table are the same as the corresponding
names in the select-list of the leftmost SELECT statement. A column resulting
from the UNION or expressions or constants has the name EXPR. For the
characteristics of data in the individual columns, see Considerations for UNION on
page S-25.

A UNION operation is not allowed with SELECT INTO.

If the UNION of SELECT statements is part of a view definition or a cursor
declaration, the view or cursor cannot be updated.

FOR UPDATE OF column [, column] ...

(only for dynamic SQL statements that are not subqueries) associates a list of
updateable columns with the statement so that a cursor can be declared for the
statement.

Considerations—SELECT

 SELECT requires authority to read all views and tables referred to in the statement,
including the underlying tables of all shorthand views referred to in the statement.

 Queries on audited tables or on audited or mixed views must be performed in a
TMF transaction unless the SELECT statement specifies BROWSE ACCESS. For
more information, see TMF Transactions on page T-6.

 A view can be considered a select specification saved in a catalog. When a view is
referenced in a SELECT statement or a subquery, the select specification that
defines the view is combined with the statement or the subquery. The combination
can cause the SELECT statement or the subquery to be invalid.

If you receive an error message that indicates a problem but your SELECT
statement or subquery appears valid, check the view definition. For example, a
view named AVESAL includes column A defined as AVG(X). A SELECT statement
that contains MAX(A) in its select list is invalid because the select list actually
contains MAX (AVG(X)), and a function cannot have an argument that includes
another function.

To determine if a query using functions and GROUP BY clauses is valid, use
SQLCI to query the view definition in the TEXT column of the VIEWS catalog table,
as shown:

>> SET VARCHAR_WIDTH 225; Sets wide report line

>> SELECT TEXT FROM $v.sv.VIEWS From VIEWS table

+> WHERE VIEWNAME = "view-name"; Fully qualified name in
uppercase letters
HP NonStop SQL/MP Reference Manual—523352-013
S-24

Considerations for UNION
A grouped view is a view defined with a CREATE VIEW AS clause that contains a
GROUP BY or HAVING clause that is not in a subquery, contains an aggregate
function in the select list, or refers to a grouped view in the FROM clause.

A shorthand view whose definition is based on a union of SELECT statements or
that contains a LEFT JOIN operator, cannot participate in another join operation. A
shorthand view whose definition contains any join operation cannot be the inner
table of a LEFT JOIN.

 If you include a GROUP BY clause, the columns you refer to, in expressions in the
select list, must be either grouping columns or arguments of a function. There must
be no more than one row in the result table for each group.

For example, if AGE is not a grouping column, you can refer to AGE only in a
function invocation, such as AVG (AGE). If you do not include a GROUP BY
clause, but you specify a function in the select list, all rows of the result table form
a group. AVG and SUM cause a single value for the table, and COUNT counts all
rows. In this case, the select list can contain only functions because there are no
grouping columns.

If you specify a GROUP BY clause, a function applies to each row of each group.
The result of AVG and SUM is a value for each group. COUNT returns, for each
group, the number of rows in that group.

 Columns containing multibyte characters cannot be displayed on all types of output
devices.

 You can alter the =_SORT_DEFAULTS define to specify a scratch file name, and
certain other options to be used by the SORTPROG process. This technique is
useful if you are selecting data from a large table. For more information, see
=_SORT_DEFAULTS DEFINE on page Z-4 or the FastSort Manual.

Considerations for UNION

 The contributing SELECT statements are called SELECT1 and SELECT2.

 The contributing tables resulting from the SELECT statements are called TABLE1
and TABLE2.

 The table resulting from the UNION operation is called RESULT.

Characteristics of UNION Columns

For columns in the same ordinal position in TABLE1 and TABLE2:

 If both columns contain character strings, the corresponding column in RESULT
contains a character string whose length is equal to the greater of the two
contributing columns.

 If both columns contain variable-length character strings, RESULT contains a
variable-length character string whose length is equal to the greater of the two
contributing columns.
HP NonStop SQL/MP Reference Manual—523352-013
S-25

ORDER BY clause and UNION operator
 If both columns are of exact numeric data types, RESULT contains an exact
numeric value whose precision and scale are equal to the greater of the two
contributing columns.

 If both columns are of approximate (floating point) numeric data types, RESULT
contains an approximate numeric value whose precision is equal to the greater of
the two contributing columns.

 If both columns are of date-time data types, RESULT contains a DATETIME value
whose precision is the most significant start field to the least significant end field
from the ranges of DATETIME fields in the contributing columns. For example, if
the column in TABLE1 shows YEAR TO DAY and the column in TABLE2 shows
MONTH TO MINUTE, the precision of the corresponding column in RESULT is
YEAR TO MINUTE.

 If both columns are of INTERVAL data type, RESULT contains an INTERVAL value
whose range of fields is the most significant start field to the least significant end
field from the ranges of INTERVAL fields in the contributing columns. The range of
INTERVAL fields in RESULT must not contain both year-month and day-time fields.
(The year-month fields are YEAR and MONTH. The day-time fields are DAY,
HOUR, MINUTE, SECOND, and FRACTION.)

 If both columns are described with NOT NULL, RESULT does not allow null
values; otherwise, RESULT allows null values.

These restrictions apply for shorthand views using UNION:

 The view cannot participate in a join operation.

 A SELECT operation on the view cannot specify a GROUP BY or HAVING clause.

 A SELECT operation on the view cannot specify aggregate functions on any view
column.

ORDER BY clause and UNION operator

In a query containing a UNION operator, the ORDER BY clause defines an ordering on
the result of the union. A SELECT statement cannot have an individual ORDER BY
clause.

You can specify an ORDER BY clause only as the last clause following the final
SELECT statement (SELECT2 in this example).The ORDER BY clause in RESULT
specifies the ordinal position of the sort column either by using an integer or by using
the column name from the select list of SELECT1.

 This example on SELECT illustrates the correct usage of ORDER BY:

SELECT A FROM T1 UNION SELECT B FROM T2 ORDER BY A

 This example on SELECT is incorrect, however, because the ORDER BY clause
does not follow the final SELECT:

SELECT A FROM T1 ORDER BY A UNION SELECT B FROM T2
HP NonStop SQL/MP Reference Manual—523352-013
S-26

GROUP BY Clause, HAVING Clause, and the
UNION Operator
 This example on SELECT is also incorrect:

SELECT A FROM T1 UNION (SELECT B FROM T2 ORDER BY A)

Because the subquery (SELECT B FROM T2...) is processed first, the ORDER BY
clause does not follow the final SELECT.

GROUP BY Clause, HAVING Clause, and the UNION Operator

In a query containing a UNION operator, the GROUP BY or HAVING clause is
associated with the SELECT statement that it is a part of (unlike the ORDER BY
clause, which is associated with the result of a union operation). The groups are visible
in the result table of the particular SELECT statement. The GROUP BY and HAVING
clauses cannot be used to form groups in the result of a union operation.

UNION ALL and Associativity

The UNION ALL operation is associative, meaning that these two queries return the
same result:

(SELECT * FROM TABLE1 UNION ALL SELECT * FROM TABLE2)
 UNION ALL SELECT * FROM TABLE3;
SELECT * FROM TABLE1 UNION ALL
 (SELECT * FROM TABLE2 UNION ALL SELECT * FROM TABLE3);

If both the UNION ALL and UNION operators are present in the query, however, the
result depends on the order of evaluation. A parenthesized union of SELECT
statements is evaluated first, from left to right, followed by a left-to-right evaluation of
the remaining union of SELECT statements.

Examples—SELECT

 This SQLCI example retrieves information from the EMPLOYEE table for
employees with a job code greater than 500, and employees in departments with
numbers less than or equal to 3000, displaying the results in ascending order by
job code. No locks are held while the query is processed.

>> SET LIST_COUNT 3;
>> SELECT JOBCODE, DEPTNUM, FIRST_NAME, LAST_NAME, SALARY
+> FROM PERSNL.EMPLOYEE
+> WHERE JOBCODE > 500 AND DEPTNUM <= 3000
+> ORDER BY JOBCODE
+> BROWSE ACCESS;
JOBCODE DEPTNUM FIRST_NAME LAST_NAME SALARY
------- ------- --------------- ----------- ----------
 600 1500 JIMMY SCHNEIDER 26000.00
 600 1500 JONATHAN MITCHELL 32000.00
 900 1000 SUE CRAMER 19000.00
S> LIST NEXT 2;
 900 1500 SUSAN CHAPMAN 17000.00
 900 2000 BILL WINN 32000.00
S> CANCEL;
HP NonStop SQL/MP Reference Manual—523352-013
S-27

Examples—SELECT
 This SQLCI example displays selected rows grouped by job code in ascending
order. The select-list contains only grouping columns and functions because
each group results in one row.

>> SELECT JOBCODE, AVG (SALARY)
+> FROM PERSNL.EMPLOYEE
+> WHERE JOBCODE > 500 AND DEPTNUM <= 3000
+> GROUP BY JOBCODE
+> ORDER BY JOBCODE;
JOBCODE EXPR

------- ---------------------
 600 29000.00
 900 27125.00
--- 2 row(s) selected.

 This SQLCI example uses the HAVING clause to accomplish the same result as
the previous example in an alternative but equally efficient way:

>> SELECT JOBCODE, AVG (SALARY)
+> FROM PERSNL.EMPLOYEE
+> WHERE DEPTNUM <= 3000
+> GROUP BY JOBCODE
+> HAVING JOBCODE > 500
+> ORDER BY JOBCODE;

 This example selects data from more than one table by specifying the table names
in the FROM clause and specifying the condition for selecting rows of the result in
the WHERE clause. The condition is called a join predicate.

This query joins the EMPLOYEE and JOB tables by combining each row of the
EMPLOYEE table with each row of the JOB table; the result is the Cartesian
product of the two tables. The join predicate specifies that any row with equal job
codes is included in the result table. All other rows are eliminated.

>> VOLUME $VOL1.PERSNL;
>> SELECT JOBDESC, FIRST_NAME, LAST_NAME, SALARY
+> FROM EMPLOYEE, JOB
+> WHERE EMPLOYEE.JOBCODE = JOB.JOBCODE AND
+> EMPLOYEE.JOBCODE IN (900, 300, 420);

These logical steps that determine the result of the previous query:

1. Join the tables.

EMPLOYEE Table JOB Table

EMPNUM ... JOBCODE ... SALARY JOBCODE JOBDESC
1 100 175500 100 MANAGER
1 100 175500 200 PROD SUPV
 . .
1 100 175500 900 SECRETARY

568 300 39500 100 MANAGER
568 300 39500 200 PROD SUPV
HP NonStop SQL/MP Reference Manual—523352-013
S-28

Examples—SELECT
568 300 39500 900 MANAGER

2. Drop rows with unequal job codes.

EMPLOYEE Table JOB Table
EMPNUM ... JOBCODE ... SALARY JOBCODE JOBDESC
1 100 175500 100 MANAGER
 . . .
207 420 33000 420 ENGINEER
 . . .
568 300 39500 300 SALESREP

3. Drop rows with job codes not 900, 300 or 420.

EMPLOYEE Table JOB Table
EMPNUM ... JOBCODE ... SALARY JOBCODE JOBDESC
75 300 32000 300 SALESREP
 . . .
178 900 28000 900 SECRETARY
 . . .
207 420 33000 420 ENGINEER
 . . .
568 300 39500 300 SALESREP

4. Process select list, leaving only four columns.

EMPLOYEE Table JOB Table
JOBDESC FIRST_NAME LAST_NAME SALARY
SALESREP TIM WALKER 32000

SECRETARY JOHN CHOU 28000

ENGINEER MARK FOLEY 33000

SALESREP DESIREE EVANS 39500

 This SQLCI example selects from three tables and groups the rows by job code
and (within job code) by department number. Only job codes 300, 420, and 900 are
selected. The minimum and maximum salary for the same job in each department
is computed, and the rows are ordered by maximum salary.

>> VOLUME $VOL.PERSNL;
>> SELECT E.JOBCODE, E.DEPTNUM, MIN (SALARY), MAX (SALARY)
+> FROM EMPLOYEE E, DEPT D, JOB J
+> WHERE E.DEPTNUM = D.DEPTNUM AND E.JOBCODE = E.JOBCODE
+> AND E.JOBCODE IN (900, 300, 420)
+> GROUP BY E.JOBCODE, E.DEPTNUM
+> ORDER BY 4;

 This example presents two ways to select data about orders by customers from
California. The price for the total quantity ordered is computed for each order
number.

>> VOLUME $VOL.SALES;
>> SELECT ORDERNUM, SUM (QTY_ORDERED * PRICE)
+> FROM PARTS P, ODETAIL O
HP NonStop SQL/MP Reference Manual—523352-013
S-29

Examples—SELECT
+> WHERE O.PARTNUM = P.PARTNUM AND ORDERNUM IN
+> (SELECT ORDERNUM FROM ORDERS O, CUSTOMER C
+> WHERE O.CUSTNUM = C.CUSTNUM AND STATE = "CALIFORNIA")
+> GROUP BY ORDERNUM;
>> VOLUME $VOL1.SALES;
>> SELECT ORDERNUM, SUM (QTY_ORDERED * PRICE)
+> FROM PARTS P, ODETAIL O
+> WHERE O.PARTNUM = P.PARTNUM AND ORDERNUM IN
+> (SELECT ORDERNUM FROM ORDERS WHERE CUSTNUM IN
+> (SELECT CUSTNUM FROM CUSTOMER
+> WHERE STATE = "CALIFORNIA"))
+> GROUP BY ORDERNUM;

 This SQLCI example selects the value in the AUDIT column of the FILES catalog
table in the PERSNL catalog. By displaying this column, you can see whether a
table is defined as audited (Y) or nonaudited (N).

>> SELECT AUDIT FROM PERSNL.FILES
+> WHERE FILENAME = "\SYS1.$VOL1.PERSNL.JOB";
AUDIT

Y
--- 1 row(s) selected.

 This SQLCI example uses a table, T, that has columns C (of data type
CHARACTER) and I (of data type INTEGER). There are n possible values of C,
any of which can occur multiple times, but the values of I are unique. The query
returns the percent distribution of any value of C across the entire table.

The SQLCI query and the result:

>> --Print the percents
>> SELECT Y.C, (100.0*COUNT(*))/(COUNT(DISTINCT X.I) *
+> COUNT(DISTINCT X.I))
+> FROM T X, T Y
+> GROUP BY Y.C;
C (EXPR)
-- ---------------------
N1 50.0
N2 16.6

Sample Table T:

C I

-- -

N1 1

N1 4

N1 6

N2 2

N3 3

N3 5
HP NonStop SQL/MP Reference Manual—523352-013
S-30

Examples—SELECT
N3 33.3
--- 3 row(s) selected.

The query joins table T with itself; X and Y are correlation names so that a query
can compare one row of the table with every other row. The GROUP BY Y.C
clause produces sets of n*v values for each distinct C value in which these are
true:

n

is the number of rows in the table.

v

is the number of occurrences of a particular C value.

COUNT(DISTINCT X.I) is n for each group. The second term in the select list
represents this equation:

(n*v)/(n*n) = (v/n)

The SELECT statement displays a distinct value of C together with its percentage
distribution over the table.
HP NonStop SQL/MP Reference Manual—523352-013
S-31

SERIALWRITES File Attribute
SERIALWRITES File Attribute
SERIALWRITES is a Guardian file attribute that specifies whether to write data serially
or in parallel to the two disk devices that make up a mirrored volume. SERIALWRITES
applies to key-sequenced, relative, and entry-sequenced tables and to indexes.

The table default is NO SERIALWRITES.

The index default is its table's value at index creation.

Considerations—SERIALWRITES

 For audited tables and indexes, use NO SERIALWRITES. For nonaudited tables or
indexes, weigh the value of performance versus data reliability. SERIALWRITES
can degrade response time, but it can also improve the reliability of data not
protected by TMF auditing.

 SERIALWRITES tells the system to write one data block at a time to a mirrored
pair of disks. If a system failure occurs, the failure affects only one disk, so the
system uses the good copy of the data block after the failure.

With parallel writes (NO SERIALWRITERS), the system writes to both disks of a
mirrored pair simultaneously; performance is improved, but a system failure can
affect both copies of the block being written.

SET DEFINE Command
SET DEFINE is an SQLCI command that sets a value for one or more DEFINE
attributes in the working attribute set. The working attribute set determines values for
attributes you do not specify in an ADD DEFINE command. (SET DEFINE is similar to
the TACL command SET DEFINE and the OSS command set_define.)

LIKE define

specifies the name of an existing DEFINE to use as a model for the new values of
the working attribute set, optionally modified by attr value pairs that follow the
LIKE clause.

If you use the LIKE clause, you cannot specify the CLASS attribute.

{ SERIALWRITES | NO SERIALWRITES }

SERIALWRITES Selects serial mirror writes

NO SERIALWRITES Selects parallel mirror writes

SET DEFINE { LIKE define } [, attr value] ... ;
 { attr value }
HP NonStop SQL/MP Reference Manual—523352-013
S-32

Considerations—SET DEFINE
attr value

is the name and value of a DEFINE attribute to add to the working attribute set. For
information about DEFINE attributes, see DEFINEs on page D-27.

Considerations—SET DEFINE

 The working attribute set consists of values for the attributes of the current class.
Only one class of attributes can be in the working set at one time.

For example, if you use SET DEFINE to set attribute values for class TAPE and
enter this command, the working set provides values for all attributes except
FILEID:

ADD DEFINE =T, CLASS TAPE, FILEID BACKUP

 Attributes are set in the order they are specified. Because the CLASS attribute
erases the working set, you should set the CLASS attribute first, then set values for
the other attributes. When you include CLASS in a SET DEFINE command, you
establish a new working attribute set in which each attribute has its initial setting.

 If the value of an attribute is a Guardian name or subvolume name, the name is
expanded immediately using the current default node, volume, and subvolume.

 If an error occurs on SET DEFINE, the working attribute set is unchanged.

 An attribute value does not change until you reset it with the RESET DEFINE
command or another SET DEFINE command.

 SET DEFINE checks that the value you enter is valid for the attribute you specify
and that the attribute is valid for the current class. Attribute consistency is not
checked until you issue an ADD DEFINE, ALTER DEFINE, or SHOW command.

 Use the SHOW DEFINE command to display the current working attribute set
before you use a SET DEFINE command.

Example—SET DEFINE

This example, SET DEFINE establishes a working attribute set for CLASS CATALOG.
The ADD DEFINE does not specify any attributes or attribute values, so the working
attribute set is associated with the DEFINE. In this case, the =CAT DEFINE is mapped
to subvolume \SYS1.$VOL1.PERSNL:

SET DEFINE CLASS CATALOG, SUBVOL \SYS1.$VOL1.PERSNL;
ADD DEFINE =CAT;
HP NonStop SQL/MP Reference Manual—523352-013
S-33

SET DEFMODE Command
SET DEFMODE Command
SET DEFMODE is an SQLCI command that enables or disables the use of DEFINEs
in the current SQLCI session. (SET DEFMODE is similar to the TACL command SET
DEFMODE.)

ON

enables the use of DEFINEs. If DEFMODE is ON, you can execute commands that
contain DEFINE names and you can create, modify, or delete DEFINEs, display
information about DEFINES, and propagate existing DEFINEs to any processes
you start from the SQLCI session.

ON is the default.

OFF

disables the use of DEFINEs. With DEFMODE OFF, you cannot execute
commands that contain DEFINE names and you cannot add DEFINEs or
propagate existing DEFINEs to another process. You can modify, delete, and
display information about existing DEFINEs.

Example—SET DEFMODE

This example enables the use of DEFINEs:

>> SET DEFMODE ON;

SET LAYOUT Command
SET LAYOUT is an SQLCI report writer command that sets layout options. Layout
options affect the way a report appears on the screen or printed page.

SET DEFMODE { ON } ;
 { OFF }

SET [LAYOUT] option [, option] ... ;

option is:

 { CENTER_REPORT { OFF | ON } }
 { LEFT_MARGIN number }
 { LINE_SPACING number }
 { LOGICAL_FOLDING { ON | OFF } }
 { PAGE_COUNT { number | ALL } }
 { PAGE_LENGTH { number | ALL } }
 { RIGHT_MARGIN number }
 { SPACE number }
 { WINDOW { TAB number | column } }
HP NonStop SQL/MP Reference Manual—523352-013
S-34

Example—SET LAYOUT
You cannot specify the same option more than once in a single SET LAYOUT
command.

For more information about a specific option, see the entry for that option.

Example—SET LAYOUT

This example sets the left margin for reports at byte position eight and also sets double
spacing:

>> SET LAYOUT LEFT_MARGIN 8, LINE_SPACING 2;

SET PARAM Command
SET PARAM is an SQLCI command that sets values for parameters in your SQLCI
session. SET PARAM overrides parameter values you set before entering SQLCI, but
only for the duration of the SQLCI session.

?param

is the name of the parameter to receive a value. An SQL parameter name is an
SQL identifier preceded by a question mark.

literal

is a numeric or string literal, optionally enclosed in single or double quotation
marks. Enclosing quotation marks are required only for string literals that include
blank or comma characters; they make no difference otherwise. For example, this
SET PARAM commands are equivalent:

SET PARAM ?NUM 9001, ?STR string;
SET PARAM ?NUM "9001", ?STR "string";

Within enclosing quotes of the same type, two quotes are handled as a single
quote. For example, this SET PARAM commands are equivalent:

SET PARAM ?QUOTE " "" ";
SET PARAM ?QUOTE ' " ';

CURRENT_TIMESTAMP

is the Julian timestamp for the current date and time.

SET [PARAM] ?param value [, ?param value]... ;

value is:
 { literal }
 { CURRENT_TIMESTAMP }
 { COMPUTE_TIMESTAMP (date) }
HP NonStop SQL/MP Reference Manual—523352-013
S-35

Considerations—SET PARAM
COMPUTE_TIMESTAMP (date)

is the Julian timestamp for the date and time you specify in date in this form:

{mm/dd/yyyy }
{mm/dd/yyyy hh:nn:ss:mss:uss}

date cannot be an expression.

Considerations—SET PARAM

 SQL determines the data type for a parameter based on how you use the
parameter in an SQL statement. As a result, a literal value you assign to a
parameter might be interpreted differently in different SQL statements.

For example, the string “123” assigned to a parameter might be handled as an
integer, a character string, or an invalid value—depending on whether you use the
parameter in a statement that requires an integer, a character string, or a date-time
value.

Similarly, a parameter that appears to have the value of a string literal with an
associated character set, such as _KANJI”c1c2” (where “c1c2” indicates one
double-byte character) is interpreted as having these value:

For information about the way SQL determines data types for parameters, see
Parameters on page P-11. For information about using the CAST function to
specify a numeric or character data type for a parameter, see CAST Function on
page C-4.

 You cannot use parameters in report formatting commands. A method for using
TACL macros to pass parameters to report formatting commands is described in
the SQL/MP Report Writer Guide.

yyyy Year, from 1 through 9999, 1 to 4 digits

mm Month, from 1 through 12, 1 to 2 digits

dd Day, from 1 through 31, 1 to 2 digits

hh Hour, from 0 through 23, 1 to 2 digits

nn Minute, from 0 through 59, 1 to 2 digits

ss Second, from 0 through 59, 1 to 2 digits

mss Millisecond, from 0 through 999, 1 to 3 digits

uss Microsecond, from 0 through 999, 1 to 3 digits

c1c2 if the data type is CHAR(2) CHAR SET KANJI

_KANJI”c1c2” if the data type is CHAR(12)

_K if the data type is CHAR(2)
HP NonStop SQL/MP Reference Manual—523352-013
S-36

Examples—SET PARAM
Examples—SET PARAM

 In this example, the SELECT statement in the FINDSUP2 file finds suppliers of a
specified part. The suppliers are located in a specified state.

VOLUME $VOL1.INVENT;
SELECT S.SUPPNUM, SUPPNAME FROM SUPPLIER S, PARTSUPP
WHERE S.SUPPNUM = PARTSUPP.SUPPNUM AND
PARTNUM = ?PN AND STATE = ?ST;

Before you can execute the SELECT statement, you must specify the state and
part number with a SET PARAM command, as shown:

>> SET PARAM ?ST TEXAS, ?PN 4103;
>> OBEY FINDSUP2;

You do not have to enclose TEXAS in quotation marks because SQLCI determines
from the STATE column definition that the column has a character data type.

 In these examples, the dates are in timestamp format and the OBEY command file
INSORD contains these commands:

INSERT INTO SALES.ORDERS
VALUES (?ONUM, ?TODAY, ?DDATE, ?REP, ?CUSTNUM);

To insert an order, set the order date to the current day and enter a specific
delivery date using the date conversion functions. The numbers of the order, sales
representative, and customer are entered as numeric literals:

>> SET PARAM ?ONUM 800661, ?TODAY CURRENT_TIMESTAMP,
+> ?DDATE COMPUTE_TIMESTAMP (5/23/1988),
+> ?REP 221, ?CUSTNUM 7654;
>> OBEY INSORD;

These values are inserted in ORDERS:

Suppose that you have set values for some of the parameters of the previous
INSERT command using the PARAM command before starting SQLCI:

4> PARAM ONUM 400410, CUSTNUM 7654
5> SQLCI

ORDERNUM 800661

ORDER_DATE (timestamp for current date and time)

DELIV_DATE (timestamp for 5/23/88)

SALESREP 221

CUSTNUM 7654
HP NonStop SQL/MP Reference Manual—523352-013
S-37

Examples—SET PARAM
Before executing the INSORD OBEY command file, you change the value of the
order number parameter and set values for the other parameters of the INSERT
command:

>> SET PARAM ?ONUM 600480, ?TODAY CURRENT_TIMESTAMP,
+> ?DDATE COMPUTE_TIMESTAMP (7/5/1988), ?REP 221;
>> OBEY INSORD;

These values are inserted in ORDERS:

After setting a different order number and customer number, you execute the
OBEY command file again:

>> SET PARAM ?ONUM 600481, ?CUSTNUM 123;
>> OBEY INSORD;

These values are inserted into ORDERS:

When you exit SQLCI, the values of ?ONUM and ?CUSTNUM are 400410 and
7654, respectively, as set initially by the PARAM command.

ORDERNUM 600480

ORDER_DATE (timestamp for current date and time)

DELIV_DATE (timestamp for 7/5/88)

SALESREP 221

CUSTNUM 7654

ORDERNUM 600481

ORDER_DATE (timestamp for current date and time)

DELIV_DATE (timestamp for 7/5/88)

SALESREP 221

CUSTNUM 123
HP NonStop SQL/MP Reference Manual—523352-013
S-38

SET SESSION Command
SET SESSION Command
SET SESSION is an SQLCI command that sets session options for your SQLCI
session.

You cannot specify the same option more than once in a single SET SESSION
command.

AUTOWORK [ON [AUDITONLY] | OFF]

specifies whether SQLCI should automatically initiate a TMF transaction when you
enter a DML command and how locking works in relation to nonaudited objects
locked during the transaction.

ON [AUDITONLY]

directs SQLCI to start a TMF transaction when you enter a DML command, to
commit the transaction if the command terminates successfully or to roll back
the transaction if the command does not complete successfully, and to release
locks on objects after execution of the command.

If you specify AUDITONLY, SQLCI does not release locks on nonaudited
objects when the transaction is committed or rolled back.

The default when you start SQLCI is AUTOWORK ON (without AUDITONLY).

OFF

directs SQLCI not to start transactions automatically.

SET [SESSION] option [, option] ... ;

option is:

 { AUTOWORK [ON [AUDITONLY] | OFF] }
 { BREAK_KEY { OFF | ON } }
 { DISPLAY_ERROR { MAIN | ALL } }
 { ERROR_ABORT { OFF | ON } }
 { ERROR_TEXT { DETAIL | BRIEF } }
 { LIST_COUNT { number| ALL } }
 { MANDATORY_REPORT { OFF | ON } }
 { STATISTICS { OFF | ON } }
 { WARNINGS { OFF | ON } }
 { WRAP { OFF | ON } }
HP NonStop SQL/MP Reference Manual—523352-013
S-39

SET SESSION Command
BREAK_KEY { OFF | ON }

specifies the SQLCI action when you press the Break key while executing an SQL
command or an OBEY command.

Use OFF if you want to prevent someone from interrupting commands at your
terminal.

The default when you start SQLCI is BREAK_KEY ON.

DISPLAY_ERROR { MAIN }
 { ALL }

controls which errors SQLCI displays when you enter an ERROR command. The
setting you specify stays in effect until you set or reset it, or until you end your
SQLCI session.

The default when you start SQLCI is DISPLAY_ERROR ALL.

ERROR_ABORT { OFF | ON }

specifies the SQLCI action when an error occurs in a non-interactive SQLCI
session or nested OBEY file. The main level of command is not affected when
processing an interactive SQLCI session except for the completing code settings:

The default when you start SQLCI is ERROR_ABORT OFF.

ERROR_ABORT can be toggled between the ON and OFF settings within a
session as required:

OFF Return control to the previous Break key owner (type PAUSE to resume
SQLCI later)

ON Retain control (the IN file must be a terminal)

MAIN Display first error from most recent command only

ALL Display all errors and warnings from the command

OFF Continue after error

ON Terminate immediately when an error is encountered

Session Type ERROR_ABORT OFF ERROR_ABORT ON

Interactive OK=0 OK=0

Session Warning=0 Warning=0

Error=0 OK=0

Noninteractive OK=0 OK=0

Session Warning=1 Warning=1

Error=2 Error = abend = 5
HP NonStop SQL/MP Reference Manual—523352-013
S-40

SET SESSION Command
ERROR_TEXT { DETAIL | BRIEF }

specifies the default information SQLCI displays when you enter an ERROR
command. You can override the ERROR_TEXT option with the ERROR command.

The default when you start SQLCI is ERROR_TEXT DETAIL.

LIST_COUNT { number | ALL }

specifies how many rows of data from a SELECT command to display before a
pause.

The default when you start SQLCI is LIST_COUNT ALL.

MANDATORY_REPORT { OFF | ON }

specifies whether SQLCI should print a report even if the associated query returns
zero rows. This option has no effect when the associated query returns one or
more rows.

The default when you start SQLCI is MANDATORY_REPORT OFF.

STATISTICS { OFF | ON }

specifies whether to display statistics after each DDL, DML, or DCL command
executes.

The default when you start SQLCI is STATISTICS OFF.

For a description of the statistics displayed, see DISPLAY STATISTICS Command
on page D-52.

DETAIL Display error text, cause, effect, and suggestions for recovery

BRIEF Display only the error text

number Display number rows

ALL Display all the rows of the result table

OFF Do not print a report when the query does not return any rows. This is the
default.

ON Print a report even if the query does not return any rows. The report
format uses current report settings. In addition, the report contains the
message “--- No rows selected.” when the query does not return any
rows.

OFF Do not display statistics

ON Display statistics
HP NonStop SQL/MP Reference Manual—523352-013
S-41

Considerations—SET SESSION
WARNINGS { OFF | ON }

specifies whether to display warning messages. (SQLCI always displays error
messages.)

The default when you start SQLCI is WARNINGS ON.

WRAP { OFF | ON }

specifies whether SQLCI output lines that exceed the output device width are
truncated or continued on the next line.

The default when you start SQLCI is WRAP ON.

Output device widths are:

Considerations—SET SESSION

 You can set up your SQLCI session environment by including the
sqlci-command option when you start SQLCI. For example, you might create an
OBEY command file named PROFILE that contains these commands:

VOLUME $VOL1.SALES;
CATALOG SALES;
SET SESSION AUTOWORK OFF, BREAK_KEY OFF;
LOG SQLCILOG;

Then you can prepare your environment quickly by entering this command:

SQLCI OBEY PROFILE;

This starts an SQLCI session, sets the current default volume and subvolume to
$VOL1.SALES, sets the current catalog to SALES, turns off the AUTOWORK and
BREAK_KEY session options, and begins logging session input and output to the
file SQLCILOG.

OFF Do not display warning messages

ON Display warning messages

OFF Continue (wrap around) to the next line

ON Truncate the line if it does not fit

Terminal 80 bytes

Unstructured Disk File 80 bytes

Structured File Record length of file

Edit File 80 bytes; 239 if RIGHT_MARGIN > 80

Process (for example,
Spooler collector)

132 bytes; 255 if RIGHT_MARGIN > 132

Printer 132 bytes; 255 if RIGHT_MARGIN > 132
HP NonStop SQL/MP Reference Manual—523352-013
S-42

Considerations—SET SESSION
 SQLCI responds to the Break key based on the setting of the BREAK_KEY
session option:

The previous owner is usually the process from which you started the SQLCI
session. You can resume execution of the SQL or OBEY command.

An SQL command is a DDL, DML, DCL, PREPARE or EXECUTE command. If one
of these commands is rolled back, SQLCI uses ROLLBACK WORK to terminate
the current transaction and displays a message. The compiled form of the DDL or
DML command is discarded. The next time you execute the command, SQLCI
prepares it again and consequently causes a delay.

A DDL command that is not executing in a user-defined TMF transaction might
complete before you press the Break key. To determine whether the command
completed, you must examine the database. For example, you can use the FILES
command to determine whether an object you were dropping when you pressed
the Break key still exists. If you enter STOP sqlci-process-id at the command
interpreter prompt, TMF rolls back the current TMF transaction. Changes to
audited objects are undone, but changes to nonaudited objects are not undone.

 An interactive SQLCI does not terminate after an error in the main level of input
despite ERROR_ABORT being set to ON. The main level of SQLCI input is the file
specified by the SQLCI run command IN, INV, or INLINE options, or implied by
their absence.

Interactive processing includes:

 A user's home terminal TACL process

 SQLCI / IN file, OUT file,.../

Executing Command
BREAK_KEY
ON

BREAK_KEY
OFF

BREAK_KEY
ON or OFF

SQL commands Command rolls
back; SQLCI
prompts.

Control returns
to previous
owner.

OBEY command Command
terminates;
SQLCI prompts.

Control returns
to previous
owner.

FC command Command
terminates and
SQLCI prompts;
BREAK_KEY
has no effect.

Other SQLCI commands
(whether or not within
user-defined transaction)

Command
terminates;
control returns to
previous owner;
BREAK_KEY
has no effect.
HP NonStop SQL/MP Reference Manual—523352-013
S-43

Examples—SET SESSION
where file is an interactive device; typically a terminal (device type 6) or a
process (device type 0)

 SQLCI /INLINE/

 SQLCI /INV variable, OUTV variable/

The use of TACL INLINE and INV/OUTV are special cases of a process device
type classification.

Non-interactive processing includes:

 SQLCI /IN file,.../

where file is any disk file or non-interactive device

 Any nested OBEY file

Examples—SET SESSION

 To set the AUTOWORK option to OFF, enter:

>> SET AUTOWORK OFF;

To set AUTOWORK to ON and specify the AUDITONLY option, enter:

>> SET AUTOWORK ON AUDITONLY;

 To protect an update operation, you can disable the Break key before running the
OBEY command file ORDUPDT. The commands in this file update the ORDERS
table. If you press the Break key, SQLCI returns control to the command interpreter
until you type PAUSE to resume your operation.

>> SET BREAK_KEY OFF;
>> OBEY ORDUPDT;
(Break key is pressed.)
5> PAUSE

 Suppose that the BREAK_KEY option is ON. During a TMF transaction that
updates the price of each part in the PARTS table by 5 percent, you press the
Break key. SQLCI rolls back the transaction.

>> SET BREAK_KEY ON;
>> BEGIN WORK;
>> UPDATE INVENT.PARTS SET PRICE = PRICE * 1.O5;
 (Break key is pressed.)
*** ERROR [10088] Command terminated by BREAK

 To set the DISPLAY_ERROR option to MAIN, enter:

>> SET DISPLAY_ERROR MAIN;

 To set the ERROR_TEXT option to BRIEF, enter:

>> SET ERROR_TEXT BRIEF;
HP NonStop SQL/MP Reference Manual—523352-013
S-44

SET STYLE Command
To direct SQLCI to display ten rows at a time, enter:

>> SET LIST_COUNT 10;
>>

To enable the display of statistics and disable continuation of text to the next line,
enter:

>> SET STATISTICS ON, WRAP OFF;

SET STYLE Command
SET STYLE is an SQLCI report writer command that sets style options. Style options
affect the appearance of specific report items, such as underlines, headings, and date
and time formats.

The default settings are:

* resets all style options to their default settings.

SET [STYLE] option [, option] ... ;

option is:

 { DATE_FORMAT date-format }
 { DECIMAL_POINT { "." | "," }}
 { HEADINGS { ON | OFF } }
 { NEWLINE_CHAR "character" }
 { NULL_DISPLAY "character" }
 { OVERFLOW_CHAR "character" }
 { ROWCOUNT { ON | OFF } }
 { SUBTOTAL_LABEL "label" }
 { TIME_FORMAT time-format }
 { UNDERLINE_CHAR "character" }
 { VARCHAR_WIDTH number }

DATE_FORMAT M2/D2/Y2

DECIMAL_POINT period (.)

HEADINGS ON

NEWLINE_CHAR slash (/)

NULL_DISPLAY question mark (?)

OVERFLOW_CHAR asterisk (*)

ROWCOUNT ON

SUBTOTAL_LABEL *

TIME_FORMAT HP2:M2:S2

UNDERLINE_CHAR hyphen (-)

VARCHAR_WIDTH 80
HP NonStop SQL/MP Reference Manual—523352-013
S-45

Consideration—SET STYLE
For information about a specific option, see the entry for that option.

Consideration—SET STYLE

You cannot specify the same option more than once in a single SET STYLE command.

Example—SET STYLE

This example activates report headings and specifies an asterisk as the character to
display for null values:

>> SET STYLE HEADINGS ON, NULL_DISPLAY "*";

SETSCALE Function
SETSCALE is a function that specifies the scale of a host variable to SQL. You can
use SETSCALE in SQL statements in C, Pascal, or TAL programs.

You use SETSCALE to store scaled values (such as prices) in a database, retrieve
database values into host variables in the program, or reference values in the
database for comparison operations. The scale information is valid only in the context
of the SQL statement; the program must handle scaling for host language statements.

:host-var

is an integer variable in a host language program.

[INDICATOR] :ind-var

specifies an indicator variable associated with the host variable.

scale

is an integer that specifies the scale of host-var. The values allowed depend on
the size of host-var, :

Consideration—SETSCALE

SETSCALE directs SQL to use host-var in the context of SQL statements as if
host-var were declared with a scale of scale.

If the value in host-var is entered into the database through an INSERT or UPDATE,
the host language program must assign a value that allows for the scale to host-var.

SETSCALE (:host-var [[INDICATOR] :ind-var], scale)

2-byte integers 0 through 5 decimal digits

4-byte integers 0 through 10 decimal digits

8-byte integers 0 through 18 decimal digits
HP NonStop SQL/MP Reference Manual—523352-013
S-46

Examples—SETSCALE
For example, if the program is representing a price of $123.45, the program should
assign 12345 to host-var and use SETSCALE to specify a scale of two.

If the value is being retrieved from the database through a SELECT operation, SQL
assigns a value that allows for the scale to host-var. For example, if SQL is storing
123.45, the value 12345 is returned to host-var when the program specifies
SETSCALE with a scale of two in the SELECT statement.

To use SETSCALE in an expression, you must apply SETSCALE to each operand
individually rather than to the result of the expression. For example, this expression
adds two prices with a scale of two decimal places:

SETSCALE (:PRICE1, 2) + SETSCALE (:PRICE2, 2)

Examples—SETSCALE

 This C program fragment uses SETSCALE with an INSERT to create a new row
with the value 98.34 in the PARTS.PRICE column after storing the value in host
variable :HV1. The value is multiplied by 100 for storing as a whole number.

HV1 = 9834;
EXEC SQL INSERT INTO =PARTS (PRICE)
 VALUES (SETSCALE (:hv1, 2));

 This C program fragment uses SETSCALE with UPDATE to change a value in the
PARTS.PRICE column to $158.34. The value is multiplied by 100 and stored in
host variable :HV2.

HV2 = 15834;
EXEC SQL UPDATE PARTS SET PARTS.PRICE = SETSCALE (:hv2, 2)
 WHERE PARTS.PARTDESC = "DISK CONTROLLER";

 This C program fragment uses SETSCALE with SELECT to retrieve the value for a
disk controller from the PARTS.PRICE column and stores the value in host variable
:HV3. The value has a scale of two.

EXEC SQL SELECT PARTS.PRICE INTO SETSCALE (:HV3, 2)
 FROM =PARTS
 WHERE PARTS.PARTDESC = "DISK CONTROLLER";

 This C program fragment uses SETSCALE with SELECT to retrieve the part
description for the part with a price of $999.50. The price value is stored in host
variable :HV4 and supplied to SQL in the search condition. The retrieved value is
stored in host variable :HVSTORE.

HV4 = 99950;
EXEC SQL SELECT PARTS.PARTDESC INTO :HVSTORE
 FROM =PARTS
 WHERE PARTS.PRICE = SETSCALE (:hv4, 2);
HP NonStop SQL/MP Reference Manual—523352-013
S-47

Shorthand View
Shorthand View
A shorthand view is a view derived from one or more tables or views by joining tables
or views, by projecting columns, by restricting rows, or by a combination of these
actions. Shorthand views can be read, but cannot be updated or secured.

SHOW CONTROL Command
SHOW CONTROL is an SQLCI command that displays the current values of options
set by the CONTROL EXECUTOR, CONTROL QUERY, and CONTROL TABLE
statements.

Example—SHOW CONTROL

>> SHOW CONTROL;

Current Environment

CONTROL TABLE ORDERS TABLELOCK OFF
CONTROL TABLE ORDERS TIMEOUT 10.00 SECONDS
CONTROL TABLE ORDERS SEQUENTIAL UPDATE ON
CONTROL TABLE ORDERS SYNCDEPTH 1
CONTROL TABLE ORDERS MDAM ON
CONTROL TABLE ORDERS MDAM USE 3 KEY COLUMNS
CONTROL TABLE ORDERS MDAM ACCESS DENSE

SHOW DEFINE Command
SHOW DEFINE is an SQLCI command that displays all or part of the working
attributes set. (SHOW DEFINE is similar to the TACL command SHOW DEFINE and
the OSS command show_define.)

attr

displays the attribute you specify and its value. You can specify any attribute that is
legal for the current class. (If you do not know the current class, specify CLASS.)

*

displays all attributes in the working attribute set and their values. Optional
attributes that have no current value are not displayed.

SHOW CONTROL ;

SHOW DEFINE [attr] ;
 [*]
HP NonStop SQL/MP Reference Manual—523352-013
S-48

Consideration—SHOW DEFINE
Consideration—SHOW DEFINE

If you do not specify an attribute or an asterisk, SHOW DEFINE displays all attributes
with a current value and warns you to specify values for required attributes without
current values.

Attributes whose values violate consistency rules are flagged with an asterisk (*).

Examples—SHOW DEFINE

 This example displays the CLASS attribute from the working attributes set:

>>SHOW DEFINE CLASS;
 CLASS MAP

 This example displays the current set of working attributes. In the example, no
value is currently assigned to the FILE attribute. You must supply a value for the
FILE attribute to add a DEFINE because the working attribute set does not provide
a default value.

>>SHOW DEFINE *;
 CLASS MAP
 FILE ??

Current attribute set is incomplete

SHOW DEFMODE Command
SHOW DEFMODE is an SQLCI command that displays the current DEFMODE setting.
(SHOW DEFMODE is similar to the TACL command SHOW DEFMODE.) DEFMODE
is an attribute of a process that controls whether you can create DEFINEs from the
process and whether DEFINEs are propagated when the process starts another
process. For more information, see DEFINEs on page D-27.

Example—SHOW DEFMODE

This example displays the current DEFMODE:

>>SHOW DEFMODE ;
Defmode ON

SHOW DEFMODE ;
HP NonStop SQL/MP Reference Manual—523352-013
S-49

SHOW LAYOUT Command
SHOW LAYOUT Command
SHOW LAYOUT is an SQLCI report writer command that displays the values of the
current layout options. Layout options affect the way a report appears on a terminal
screen or printed page.

* displays all layout options.

For information about a specific option, see the entry for that option.

Example—SHOW LAYOUT

This example displays the current margin and line-spacing values:

>> SHOW LAYOUT LEFT_MARGIN, RIGHT_MARGIN, LINE_SPACING;
LEFT_MARGIN 5
RIGHT_MARGIN 80
LINE_SPACING 2

SHOW PARAM Command
SHOW PARAM is an SQLCI command that displays the current parameter values.

name

identifies the parameter you want to display.

*

displays the values of all parameters.

SHOW { [LAYOUT] option [, option] ... } ;
 { LAYOUT * }

option is:

 { CENTER_REPORT }
 { LEFT_MARGIN }
 { LOGICAL_FOLDING }
 { PAGE_COUNT }
 { PAGE_LENGTH }
 { RIGHT_MARGIN }
 { SPACE }
 { WINDOW }

SHOW { [PARAM] name [, name] ... } ;
 { PARAM * }
HP NonStop SQL/MP Reference Manual—523352-013
S-50

Examples—SHOW PARAM
Examples—SHOW PARAM

 This example displays two parameter values:

>> SHOW PARAM ?PNUM, ?ST;
?PNUM 4103
?ST TEXAS

 This example displays the value of every currently defined parameter:

>> SHOW PARAM *;

SHOW PREPARED Command
SHOW PREPARED is an SQLCI command that displays prepared commands.

command-name

is the name you specified for the command when you prepared it.

*

displays all the currently prepared commands.

Example—SHOW PREPARED

This example displays a prepared command named SELALLCU:

>> SHOW PREPARED SELALLCU;
select * from sales.customer
>>

SHOW PREPARED { command-name [, command-name] ... } ;
 { * }
HP NonStop SQL/MP Reference Manual—523352-013
S-51

SHOW REPORT Command
SHOW REPORT Command
SHOW REPORT is an SQLCI report writer command that displays the current
SELECT statement and the current report formatting commands.

* displays the SELECT and all report formatting commands.

For information about a specific command, see the entry for that command. (The
command listed as BREAK refers to the BREAK ON command.)

Example—SHOW REPORT

This example displays the current report title and page footer:

>> SHOW REPORT TITLE, PAGE FOOTING;
REPORT TITLE "ORDER DETAILS" CENTER;
PAGE FOOTING TAB 50, "Page ", PAGE_NUMBER AS I3;

SHOW REPORT { { command } [, command] ... } ;
 { * }

command is:

 { BREAK }
 { BREAK FOOTING }
 { BREAK TITLE }
 { DETAIL }
 { NAME }
 { PAGE FOOTING }
 { PAGE TITLE }
 { REPORT FOOTING }
 { REPORT TITLE }
 { SELECT }
 { SUBTOTAL }
 { TOTAL }
HP NonStop SQL/MP Reference Manual—523352-013
S-52

SHOW SESSION Command
SHOW SESSION Command
SHOW SESSION is an SQLCI command that displays the values of the current
session options.

* displays all session options.

For an explanation of each session option, see SET SESSION Command on
page S-39.

Example—SHOW SESSION

This example displays the current values of all options:

>> SHOW SESSION *;

Current SESSION Option Values

AUTOWORK ON
BREAK_KEY OFF
DISPLAY_ERROR MAIN
ERROR_ABORT OFF
ERROR_TEXT DETAIL
LIST_COUNT 10
MANDATORY_REPORT ON
STATISTICS OFF
WARNINGS ON
WRAP OFF

SHOW [SESSION] { option [, option] ... } ;
 { * }

option is:

 { AUTOWORK }
 { BREAK_KEY }
 { DISPLAY_ERROR }
 { ERROR_ABORT }
 { ERROR_TEXT }
 { LIST_COUNT }
 { MANDATORY_REPORT }
 { STATISTICS }
 { WARNINGS }
 { WRAP }
HP NonStop SQL/MP Reference Manual—523352-013
S-53

SHOW STYLE Command
SHOW STYLE Command
SHOW STYLE is an SQLCI report writer command that displays the current style
options. Style options affect the appearance of specific report items, such as
underlines, headings, and date and time formats.

* displays all style options.

For information about a specific option, see the entry for that option.

Example—SHOW STYLE

This example displays the current setting for three style options:

>> SHOW STYLE NEWLINE_CHAR, OVERFLOW_CHAR, UNDERLINE_CHAR;
NEWLINE_CHAR @
OVERFLOW_CHAR *
UNDERLINE_CHAR _

Similarity Checks
A similarity check is a comparison made by SQL to determine whether two objects (or
the compile-time and execution time version of the same object) are sufficiently similar
that a serial execution plan compiled for one is also an operable plan for the other.
(SQL does not perform similarity checks for objects referenced in parallel execution
plans.)

You can reduce recompilation time for an application by directing the SQL compiler to
recompile only plans that are actually inoperable, not merely invalid. If you do so, the
SQL compiler uses similarity checks to determine whether certain invalid plans (those
that are invalid because objects they reference have been changed or redefined) are
actually operable plans.

SHOW { [STYLE] option [, option] ... } ;
 { STYLE * }

option is:

 { DATE_FORMAT }
 { DECIMAL_POINT }
 { HEADINGS }
 { NEWLINE_CHAR }
 { NULL_DISPLAY }
 { OVERFLOW_CHAR }
 { ROWCOUNT }
 { SUBTOTAL_LABEL }
 { TIME_FORMAT }
 { UNDERLINE_CHAR }
 { VARCHAR_WIDTH }
HP NonStop SQL/MP Reference Manual—523352-013
S-54

General Rules for Similarity
Similarity checks work by comparing information stored in a program file at explicit
compilation time with information current at recompilation time.

During an explicit recompilation, the SQL compiler uses similarity checks to
differentiate between invalid and inoperable plans if you specify COMPILE
INOPERABLE PLANS.

During an automatic recompilation, the SQL executor uses similarity checks to
differentiate between invalid and inoperable plans if you specified CHECK
INOPERABLE PLANS when you last explicitly compiled the program.

General Rules for Similarity

Only tables, protection views, and collations can be similar. A table can be similar to
another table, a protection view can be similar to another protection view, and a
collation can be similar to another collation. No object other than a table, protection
view, or collation is ever considered similar to another object (even an object of the
same type) for the purposes of a similarity check.

A table or protection view compared to a compile-time table or protection view in a
similarity check must have its SIMILARITY CHECK option set to ENABLE.(When you
create a table or view, the default is SIMILARITY CHECK DISABLE, but you can
specify SIMILARITY CHECK ENABLE with the CREATE TABLE, CREATE VIEW,
ALTER TABLE, or ALTER VIEW statements.)

The value of the SIMILARITY CHECK option for a table or protection view affects only
that table or view, not views defined on that table or view.

Similarity Between Protection Views

A protection view referenced at execution time (or recompilation time) is similar to the
protection view used at compilation time if the protection view referenced at execution
time has the SIMILARITY CHECK option enabled and if both protection views

 Have a similar underlying table

 Project the same columns from the underlying table

 Have the same column names

 Have the same selection expression (determined by a binary comparison of the
parsed, internal representation of the two selection expressions)

Similarity Between Tables

A table referenced at execution time (or recompilation time) is similar to the table used
at compilation time if the table referenced at execution time has the SIMILARITY
CHECK option enabled and if the tables are the same, except in these aspects:

 These characteristics can differ:

 Table names and table statistics
HP NonStop SQL/MP Reference Manual—523352-013
S-55

Similarity Between Tables
 Data within the tables

 Column headings and help text

 Catalog where the table is registered

 Comments on columns, constraints, indexes, or tables

 Number of partitions and partitioning key ranges

 Key tags (or values) for indexes

 Creation and redefinition timestamps

 These file attributes can differ:

The AUDIT file attribute can also differ unless the program includes a statement
that performs a DELETE or UPDATE set operation on a nonaudited table with a
SYNCDEPTH of 1.

 The number of indexes can differ, but all indexes used in the execution plan must
exist for both tables.

 The table referenced at execution time can have more columns than the table
referenced at compile time if the common columns have identical attributes and if
the statement that references the table is not one of these:

 An INSERT statement that does not explicitly specify names of columns into
which to insert values.

 A statement that uses unqualified column names in a way that becomes
ambiguous because of the additional columns.

 A statement that uses a SELECT list containing an asterisk, unless the asterisk
is of the form COUNT (*).

Tables referenced in statements such as these can be similar:

SELECT COUNT (*) FROM table;
SELECT columnx FROM tablea WHERE
 columny relational-op (SELECT COUNT(*) FROM tableb);

ALLOCATE LOCKLENGTH SECURE

AUDITCOMPRESS MAXEXTENTS SERIALWRITES

BUFFERED NOPURGEUNTIL TABLECODE

CLEARONPURGE OWNER VERIFIEDWRITES

EXTENT (primary and
secondary)
HP NonStop SQL/MP Reference Manual—523352-013
S-56

Similarity Between Collations
Tables referenced in the position of tablea in this statement can be similar, but
tables referenced in the position of tableb in this statements can never be
similar:

SELECT columnx FROM tablea
 WHERE EXISTS SELECT [DISTINCT] * FROM tableb;
SELECT tableb.*, tablea.x FROM tableb, tablea;

Similarity Between Collations

Collations that are explicitly referenced in an SQL query are similar only if they are
equal. SQL uses the procedure CPRL_COMPAREOBJECTS_ to determine
equivalence of collations.

Displaying the Similarity Check Attribute

Information on the similarity check for a table can be retrieved from the catalog where
the table is registered. To display this information, enter This SQLCI query:

Select tablename,similaritycheck from catalog.tables
 where tablename like "% TABLENAME%";

TABLENAME must be uppercase.

SLACK File Attribute
SLACK is a file attribute that specifies the minimum percentage of space to leave for
future insertions when loading data and index blocks. SLACK applies only to
key-sequenced files and to indexes.

percent

is an integer from 0 to 99 that specifies the percent of empty space to leave in
each data and index block during loading.

The default is 15 percent.

Purpose of SLACK

 SLACK specifications are usually between 15 and 25 percent.

 Specifying a larger than normal SLACK value when a file is initially loaded and
many more inserts are expected can improve performance by reducing the number
of block splits required when inserts occur.

 For a file expected to have little activity, you can save disk space by specifying a
smaller than normal SLACK value.

SLACK percent
HP NonStop SQL/MP Reference Manual—523352-013
S-57

SPACE Option
SPACE Option
SPACE is an option of the SQLCI report writer SET LAYOUT command that specifies
the default number of spaces between columns of report print items. Each space
occupies a single byte position, regardless of the character set in use.

number

is an integer in the range 0 through 255 that specifies the default number of spaces
between print items.

The default is 2.

Considerations—SPACE

 If you specify the SPACE clause on the DETAIL command, the value you specify
overrides the value of the SPACE layout option for that detail line.

 SQL does not print spaces before or after a string literal in a report unless you
specify a heading for the report column that includes the string literal. If you specify
a heading, SQL prints the default number of spaces before and after the string
literal.

Examples—SPACE

 This example demonstrates that SQL does not print spaces before or after a string
literal unless the report column that includes the string literal has a heading:

>> SET LIST_COUNT 0;
>> SELECT * FROM PERSNL.JOB;
S> DETAIL JOBCODE, "***", JOBDESC;
S> LIST NEXT 4;
JOBCODE JOBDESC
------- ------------------
 100***MANAGER
 200***PRODUCTION SUPV
 250***ASSEMBLER
 300***SALESREP
S> DETAIL JOBCODE, "***" HEADING " ", JOBDESC;
S> LIST FIRST 4;
JOBCODE JOBDESC
------- --- ------------------
 100 *** MANAGER
 200 *** PRODUCTION SUPV
 250 *** ASSEMBLER
 300 *** SALESREP

SPACE number
HP NonStop SQL/MP Reference Manual—523352-013
S-58

SQL Directive
 This example uses the SPACE layout option to change the default number of
spaces between columns. The content of the report (not the spacing) is the same
as in the previous example.

>> SET LAYOUT SPACE 5;
>> SET LIST_COUNT 0;
>> SELECT * FROM PERSNL.JOB;
S> LIST NEXT 4;
JOBCODE JOBDESC
------- ------------------
 100 MANAGER
 200 PRODUCTION SUPV
 250 ASSEMBLER
 300 SALESREP

SQL Directive
The SQL directive indicates to a host language compiler that a program contains SQL
statements.

For more information about the SQL directive, see the SQL/MP programming manual
for your host language.

SQL Identifiers
An SQL identifier can contain up to 30 letters (A through Z or a through z), digits (0
through 9), or underscore (_) characters. The first character must be a letter. SQL
ignores case in SQL identifiers; for example, employee and EMPLOYEE are
equivalent.

SQL identifiers are used as column, constraint, correlation, cursor, parameter, and
statement names and cannot be the same as any keyword reserved for SQL
statements. For a list of reserved SQL keywords, see Reserved Words on page R-11.

Valid SQL identifiers are:

 ColumnName
 MONTH3ORDERS
 second_low_value
 EMPLOYEE
 ORD_DATE
 THE_END_
HP NonStop SQL/MP Reference Manual—523352-013
S-59

SQLCI
SQLCI
SQLCI, the SQL/MP conversational interface, executes commands and SQL
statements entered interactively at a terminal or through a command file. SQLCI is
useful for ad hoc queries and reports, for testing SQL statements before adding them
to programs, for comparing the relative efficiency of different versions of a query, and
for database administration tasks such as defining and modifying the structure of the
database.

SQLCI provides many commands that are not available in embedded SQL programs
but also accepts almost any statement that you can include in an embedded SQL
program. A few SQL statements have options that are not allowed in SQLCI (or options
that are allowed only in SQLCI); these are noted in the description of the statement.

For a summary of commands unique to SQLCI, see SQLCI Commands on page S-63,
and Report Writer on page R-7. For a list of SQL statements you can use in programs
or in an SQLCI session, see Statements on page S-73.

An SQLCI Session

You start an SQLCI session with the command interpreter SQLCI command and end
an SQLCI session with an EXIT command. During a session, SQLCI prompts you to
enter SQLCI statements or SQLCI commands with one of these prompts:

>> The standard prompt. Enter any SQLCI command or SQL statement except
CANCEL, LIST, or a report formatting command.

+> The continuation prompt. Continue the SQLCI command or SQL statement
from the previous line or enter a semicolon to end it.

S> The select-in-progress prompt. Enter a LIST, CANCEL, report formatting
command, or one of the other SQLCI commands allowed while a SELECT is
in progress. You can also press RETURN, which is equivalent to LIST 1.

D> The dedicated-operation-in-progress prompt. Enter a CONTINUE statement
to commit or roll back the operation, or enter any SQLCI command except
ADD DEFINE, ALTER DEFINE, CATALOG, DELETE DEFINE, EXIT, SET
DEFMODE, SYSTEM, VOLUME, or a utility command or DDL statement on
the object of the dedicated operation.

.. The FC command prompt. For information, see Considerations—FC on
page F-1.
HP NonStop SQL/MP Reference Manual—523352-013
S-60

The SQLCI Command
Within an SQLCI session, the tasks you perform are affected by these session
attributes:

The SQLCI Command

The SQLCI command is a TACL implied run command that starts an SQLCI session. In
the OSS environment, you can invoke the SQLCI command by preceding it with the
gtacl command. For more information about SQLCI and OSS, see Considerations—
SQLCI on page S-62.

IN in-file

specifies the file from which SQLCI reads your commands; in-file is a valid
Guardian name for a local or remote file. You can specify a disk file, a device such
as a terminal, or a process. If you do not specify an IN file, SQLCI uses the same
IN file as the command interpreter—usually the home terminal.

Environment The files to use for SQLCI output, logging, and reports; the
default node, volume, subvolume, and catalog

DEFINEs DEFINEs that associate an actual file or object with a logical
name used in a command or statement

Session Options Options set by the SET SESSION command that control the
response to the Break key, automatic creation of TMF
transactions, the amount of SELECT information displayed
before a pause, the display of execution statistics for DML
statements, the display of errors and warnings, and the
wrapping of text

Layout Options Options set by the SET LAYOUT command that define the
layout of information displayed after a SELECT

Style Options Options set by the SET STYLE command that determine the
style of report elements such as date and time formats and the
underline character

Parameters Parameter values set by the SET PARAM command to
substitute for parameter names when a command or statement
executes

Prepared
Commands

Commands compiled during an SQLCI session for execution
later in the session

Report Commands Report formatting commands and the most recent SELECT
command entered. SQLCI saves these commands
automatically during your session. You can display, delete, or
fix and reexecute these commands with SHOW, RESET, or FC.

SQLCI [/ [IN in-file] [, OUT list-file] [, NOWAIT]
 [, run-option] ... /] [sqlci-command ;] ...
HP NonStop SQL/MP Reference Manual—523352-013
S-61

Considerations—SQLCI
OUT list-file

specifies the file to which SQLCI writes or displays prompts, messages, listings of
data, and so forth; list-file is a valid Guardian name for a local or remote file.
You can specify a disk file, terminal, process, magnetic tape, line printer, or spooler
collector. If you do not specify an OUT file, SQLCI uses the same OUT file as the
command interpreter—usually the home terminal.

If an existing file contains data, SQLCI appends its output to the existing
information.

NOWAIT

specifies that the command interpreter should not wait while SQLCI runs, but it
should return a command input prompt after sending the startup message to
SQLCI. If you omit this option, the command interpreter pauses while SQLCI runs.

With NOWAIT, you should include SET BREAK_KEY OFF as an sqlci-command
option. This strategy prevents SQLCI from taking control from another process
when you press the Break key.

run-option

is an option of the RUN command, which is described in the TACL Reference
Manual.

sqlci-command

is any SQLCI command. You must terminate each SQLCI command with a
semicolon (;), as shown in the command description. After executing the
commands you enter with this option, SQLCI starts reading from the IN file.

Considerations—SQLCI

 TMF must be enabled while you run SQLCI.

 In the OSS environment, you can start an SQLCI session by using the gtacl
command. For example, this command begins an interactive SQLCI session:

gtacl -p sqlci

To end the SQLCI session and return to the OSS prompt, use the SQLCI EXIT
command. You can also start an SQLCI session, execute SQLCI commands, and
return to the OSS prompt by using the gtacl command with the -c option, as in this
example:

gtacl -c "sqlci; fileinfo; exit;"

For more information about using the gtacl command in the OSS environment, see
the Open System Services Shell and Utilities Reference Manual or enter this
command at the OSS prompt:

man gtacl
HP NonStop SQL/MP Reference Manual—523352-013
S-62

Example—SQLCI
 You can set up your SQLCI session environment by including the
sqlci-command option when you start SQLCI. For example, you might create an
OBEY command file named PROFILE that contains these commands:

VOLUME $VOL1.SALES;
CATALOG SALES;
SET SESSION AUTOWORK OFF, BREAK_KEY OFF;
LOG SQLCILOG;

Then you can prepare your environment quickly by entering the:

SQLCI OBEY PROFILE;

This command starts an SQLCI session, sets the current default volume and
subvolume to $VOL1.SALES, sets the current catalog to SALES, turns off the
AUTOWORK and BREAK_KEY session options, and begins logging session input
and output to the file SQLCILOG.

Example—SQLCI

This is an example of a simple SQLCI session started from a TACL prompt to set up
tables for testing. Commands entered by the user are shown in lowercase.

157>SQLCI
SQL Conversional Interface - T9191D30
COPYRIGHT TANDEM COMPUTERS INCORPORATED 1987-1994
>>volume mycat;
>>create table test1 (a int, b char (3));
--- SQL operation complete.
>>create table test2 (x datetime year to minute,
+> y national character varying (30),
+> z int, primary key z);
--- SQL operation complete.
>>exit

SQLCI Commands
SQLCI commands are free-format: spaces are not significant except within character
strings or numbers. Commands can contain up to 132 characters per line and can be
in uppercase, lowercase, or mixed case.

Each SQLCI command (in addition to each SQL statement entered through SQLCI)
must be terminated by a semicolon. You can include several commands on the same
line as long as each one is terminated by a semicolon.

You can continue any command over multiple lines, breaking that command at any
point except within a word, a numeric literal, or a multicharacter operator (for example,
>=). Except when breaking a string literal, you do not have to enter a continuation
symbol (&).

Table S-2 on page S-64 summarizes the major SQLCI commands. (SQLCI commands
used primarily for report writing are summarized separately in the entry REPORT
HP NonStop SQL/MP Reference Manual—523352-013
S-63

SQLCI Commands
WRITER. SQL statements—most of which you can use in SQLCI—are summarized
separately in the entry STATEMENTS.)

Table S-2. Summary of SQLCI Commands (page 1 of 4)

Command Action

CANCEL Command Cancels the current SELECT

CATALOG Command Selects a different default catalog

CLEANUP Command Purges damaged SQL objects

CONVERT Command Generates commands to convert Enscribe files to SQL tables

COPY Command Copies data into an Enscribe file or SQL table, adding to existing
data

CREATE SYSTEM
CATALOG Command

Creates the system catalog when NonStop SQL/MP is first installed

DELETE DEFINE
Command

Deletes DEFINEs

DISPLAY
STATISTICS
Command

Displays statistics for a recently compiled DML statement

DISPLAY USE OF
Command

Displays a list of SQL objects that depend on a specified object

DOWNGRADE
CATALOG Command

Downgrades catalogs to an older version

DOWNGRADE
SYSTEM CATALOG
Command

Downgrades the system catalog to an older version

DROP SYSTEM
CATALOG Command

Deletes the system catalog

DUP Command Duplicates files or objects

EDIT Command Invokes the EDIT text editor

ENV Command Displays attributes of the current SQLCI session

ERROR Command Displays error text

EXIT Command Ends an SQLCI session

FC Command Edits and reexecutes a previously entered command

FILEINFO Command Lists physical characteristics of collations, files, indexes, programs,
tables, and views

FILENAMES
Command

Displays names of files and tables that match a specified pattern

FILES Command Displays names of files and tables on a subvolume

FUP Command Invokes the File Utility Program

HELP Command Displays information about NonStop SQL/MP
HP NonStop SQL/MP Reference Manual—523352-013
S-64

SQLCI Commands
HISTORY Command Displays recently executed commands

INFO DEFINE
Command

Displays attributes and values associated with DEFINEs

INITIALIZE SQL
Command

Prepares a node to run SQL

INVOKE Directive
and Command

Generates a record description of a table or view

LIST Command Displays rows returned by a SELECT

LOAD Command Loads data into an Enscribe file or SQL table, overwriting existing
data

LOG Command Starts or ends session logging

MODIFY CATALOG Modifies node names in SQL catalogs on the local node

MODIFY LABEL Modifies node numbers in file labels on the local node

MODIFY REGISTER
Command

Registers a user-defined catalog in the local system catalog

OBEY Command Executes commands from a file

OUT Command Specifies or closes the output file

PAGE FOOTING
Command

Specifies text for the bottom of each page

PAGE TITLE
Command

Specifies text for page title

PERUSE Command Invokes the PERUSE utility program

PURGE Command Purges objects or files

PURGEDATA
Command

Erases data from files or tables

REPORT FOOTING
Command

Specifies text for the end of a report

REPORT TITLE
Command

Specifies text for the main title of a report

RESET DEFINE
Command

Clears DEFINE values

RESET LAYOUT
Command

Resets layout options

RESET PARAM
Command

Clears parameter values

RESET PREPARED
Command

Resets prepared commands

Table S-2. Summary of SQLCI Commands (page 2 of 4)

Command Action
HP NonStop SQL/MP Reference Manual—523352-013
S-65

SQLCI Commands
RESET REPORT
Command

Resets report formatting commands

RESET SESSION
Command

Resets session options

RESET STYLE
Command

Resets style options

SAVE Command Writes values of the commands and session attributes to a file

SECURE Command Changes the owner or security for a file or table

SET DEFINE
Command

Sets a value for a DEFINE

SET DEFMODE
Command

Enables or disables DEFINEs

SET LAYOUT
Command

Sets values for layout options

SET PARAM
Command

Sets values for parameters referred to in SQLCI commands

SET SESSION
Command

Sets session options

SET STYLE
Command

Sets style options

SHOW CONTROL
Command

Displays control options

SHOW DEFINE
Command

Displays the set of working attributes for creating DEFINEs

SHOW DEFMODE
Command

Displays the current DEFMODE setting

SHOW PARAM
Command

Displays parameter values

SHOW PREPARED
Command

Displays prepared commands

SHOW REPORT
Command

Displays report formatting commands and the most recent SELECT
statement

SHOW SESSION
Command

Displays the session options

SHOW STYLE
Command

Displays current style options

SYSTEM Command Changes the default node

TEDIT Command Invokes the PS Text Edit text editor

Table S-2. Summary of SQLCI Commands (page 3 of 4)

Command Action
HP NonStop SQL/MP Reference Manual—523352-013
S-66

SQLCODE
For more information about a specific SQLCI command, see the entry for that
command.

SQLCODE
SQLCODE is a variable in a host program to which SQL returns status information.

For more information about SQLCODE, see the SQL/MP programming manual for your
host language.

SQLCOMP Command
The SQLCOMP command starts the SQL/MP compiler from a TACL process in the
Guardian environment. You use SQLCOMP to SQL-compile Guardian host language
programs that contain embedded SQL statements.

For information about SQLCOMP, see the SQL/MP programming manual for your host
language.

Standards Conformance
NonStop SQL/MP complies most closely with Entry Level SQL as described in
ANSI X3.135-1992 and ISO/IEC 9075:1992. NonStop SQL/MP also includes some
features from Intermediate and Full Level ANSI/ISO SQL in addition to special HP
extensions to the SQL language.

The remainder of this entry summarizes the exceptions and extensions to the
standard.

Exceptions to Conformance With Entry Level SQL 1992

This list summarizes the major ways in which NonStop SQL/MP does not conform to
ANSI/ISO Entry Level SQL:

 Catalog, schema, table, view, and collation names

UPGRADE
CATALOG Command

Upgrades catalogs to a newer version of NonStop SQL/MP

UPGRADE SYSTEM
CATALOG Command

Upgrades the system catalog to a newer version of NonStop
SQL/MP

VERIFY Command Checks the consistency and validity of object definitions in catalogs
and file labels; lists invalid programs

VOLUME Command Changes the default volume or subvolume

! Command Reexecutes a previous command

Table S-2. Summary of SQLCI Commands (page 4 of 4)

Command Action
HP NonStop SQL/MP Reference Manual—523352-013
S-67

Exceptions to Conformance With Entry Level SQL
1992
NonStop SQL/MP does not have the concept of a catalog or schema equivalent to
those of ANSI/ISO SQL. However, the SQL/MP concept of a catalog is similar to
that of an ANSI/ISO SQL schema in many respects.

SQL/MP table, view, and collation names differ from table, view, and collation
names in ANSI/ISO SQL. ANSI/ISO SQL table, view, and collation names are of
the form:

catalog.schema.table

SQL/MP table names are Guardian names, which allow a node and disk
specification where ANSI/ISO SQL allows catalog. Guardian names also allow
what NonStop SQL/MP calls a catalog where ANSI/ISO SQL allows schema.

 Security

The ANSI/ISO SQL security model differs overall from the Guardian security model
(including the optional Safeguard security product) used by NonStop SQL/MP.
Because of the differences in the model, NonStop SQL/MP does not implement
table privileges (SELECT, INSERT, UPDATE, DELETE, and REFERENCES),
column privileges (UPDATE and REFERENCES), or the USER value.

ANSI/ISO SQL defines authorization with the GRANT and REVOKE statements.
NonStop SQL/MP uses the ALTER statements and the SECURE command.

 Constraints

ANSI/ISO SQL allows you to define a unique constraint when you create a table or
to provide a UNIQUE qualifier on a column definition. To achieve a unique
constraint in NonStop SQL/MP, you specify a unique column as the primary key of
a table or create a unique index on a column.

NonStop SQL/MP does not allow you to qualify a constraint name with a catalog
and schema name.

NonStop SQL/MP does not support the FOREIGN KEY table constraint or the
REFERENCES column constraint.

 Views

ANSI/ISO SQL allows you to update a view if the query that defines the view can
be updated. NonStop SQL/MP defines two types of views: protection views that
can be updated and shorthand views that cannot be updated.

ANSI/ISO SQL allows you to create views on views. NonStop SQL/MP allows you
to create views on shorthand views, but not on protection views.

ANSI/ISO SQL provides a SELECT DISTINCT clause on the CREATE VIEW
statement and allows a WHERE clause in a view definition to refer to columns that
are not in the select list. NonStop SQL/MP does not provide such a clause.

 Statement atomicity and transaction definition
HP NonStop SQL/MP Reference Manual—523352-013
S-68

Exceptions to Conformance With Entry Level SQL
1992
ANSI/ISO SQL provides both statement atomicity (all changes made during a
multirecord operation are canceled if an error occurs during the operation) and
implicit transaction beginnings.

In NonStop SQL/MP, audited tables have equivalent protection for a TMF
transaction but not for a single statement. You must explicitly begin each
transaction within a program, and you must explicitly begin any multistatement
transactions entered through SQLCI.

NonStop SQL/MP protects audited tables by requiring DML statements within
programs to occur within explicitly defined transactions; however, NonStopSQL/MP
also allows you to create nonaudited tables that are not protected even within
transactions.

 Updates

ANSI/ISO SQL allows a positioned UPDATE on any updateable cursor. NonStop
SQL/MP requires a FOR UPDATE clause on the UPDATE WHERE CURRENT
statement for a positioned UPDATE.

 Other features

NonStop SQL/MP does not include these features:

 Delimited identifiers

 Explicit naming of select list elements

 Module language

 SQLSTATE status codes

 Updateable primary keys

 DECIMAL columns declared without explicit lengths

 Language embeddings for Ada, FORTRAN, and PL/1
HP NonStop SQL/MP Reference Manual—523352-013
S-69

SQL/MP Features From Intermediate Level SQL
1992
SQL/MP Features From Intermediate Level SQL 1992

NonStop SQL/MP includes these features from Intermediate Level ANSI/ISO SQL,
although the specific implementation of the features does not always conform exactly
to the implementation described in the ANSI/ISO standard:

 DATETIME, NATIONAL CHARACTER, and VARCHAR data types

 The ability to add and drop constraints

(ANSI/ISO SQL provides ALTER TABLE ADD CONSTRAINT and ALTER TABLE
DROP CONSTRAINT statements. NonStop SQL/MP provides a similar capability
with the CREATE CONSTRAINT and DROP CONSTRAINT statements.)

 The CURRENT_TIMESTAMP function and the functionality of the
CURRENT_DATE, CURRENT_TIME, and EXTRACT functions

(NonStop SQL/MP includes a CURRENT function and date-time field specifications
in expressions that provide functionality equivalent to CURRENT_DATE,
CURRENT_TIME, and EXTRACT.)

 The CAST function for parameters

 The ALTER TABLE ADD COLUMN statement

 The DROP TABLE and DROP VIEW statements

 Case-insensitive identifiers

 INNER JOIN and LEFT OUTER JOIN operators

(NonStop SQL/MP uses the keywords LEFT JOIN instead of LEFT OUTER JOIN
for this operator.)

 Multiple built-in character sets (partial support only)

 Dynamic SQL, including:

 Use of host variables for statement and cursor names

 PREPARE, EXECUTE, and EXECUTE IMMEDIATE statements

 DESCRIBE and DESCRIBE INPUT statements

 USING DESCRIPTOR and USING clauses on OPEN CURSOR

 RETURNING clause on the EXECUTE and INSERT

 Subqueries in comparison predicates that have GROUP BY and HAVING clauses
or FROM clause references to grouped views

 UNION and UNION ALL in view definitions and subqueries

 ANSI/ISO SQL allows you to set the Isolation Level for a transaction to READ
UNCOMMITTED, READ COMMITTED, REPEATABLE READ, or SERIALIZABLE.
The default is SERIALIZABLE.
HP NonStop SQL/MP Reference Manual—523352-013
S-70

SQL/MP Features From Full Level SQL 1992
NonStop SQL/MP has access options that are similar to ANSI/ISO Isolation Levels.
You can set the access option for an individual DML statement (but not for an
entire transaction) to BROWSE, STABLE, or REPEATABLE. The default, STABLE,
is equivalent to the ANSI/ISO Isolation Level READ COMMITTED.

Note that what SQL/MP calls access options are not related to the ANSI/ISO
Access Mode for a transaction. NonStop SQL/MP has no equivalent for Access
Mode.

SQL/MP Features From Full Level SQL 1992

NonStop SQL/MP includes these features from Full Level ANSI/ISO SQL, although the
specific implementation of the features does not always conform exactly to the
implementation described in the ANSI/ISO standard:

 DATETIME extensions (arbitrary precision for seconds)

 CREATE COLLATION and DROP COLLATION statements

 The ability to add and drop single-table assertions

(ANSI/ISO SQL provides CREATE ASSERTION and DROP ASSERTION
statements. NonStop SQL/MP provides a similar capability for single-table
assertions with CREATE CONSTRAINT and DROP CONSTRAINT statements.)

SQL/MP Extensions to SQL 1992

NonStop SQL/MP provides these extensions to ANSI/ISO SQL:

 Additional data types:

 LARGEINT (64-bit integers) and PIC data types

 UNSIGNED/SIGNED option for numeric data types

 Additional table features:

 Ascending or descending order for user-defined primary keys

 System-generated primary keys

 Clustering keys

 Distributed tables

 System default values for columns

 Key-sequenced, entry-sequenced, and relative file types

 Partitioned tables

 Nonaudited tables

 Other Guardian file attributes for tables

 Additional DDL statements:
HP NonStop SQL/MP Reference Manual—523352-013
S-71

SQL/MP Extensions to SQL 1992
 CREATE INDEX

 ALTER {TABLE | INDEX | COLLATION | PROGRAM | VIEW}

 DROP {INDEX | PROGRAM}

 COMMENT ON

 HELP TEXT

 UPDATE STATISTICS

 Additional DCL statements and data control directives:

 LOCK TABLE

 UNLOCK TABLE

 FREE RESOURCES

 CONTROL TABLE

 CONTROL EXECUTOR

 CONTROL QUERY

 Additional functions:

 CONVERTTIMESTAMP

 DATEFORMAT

 DAYOFWEEK

 EXTEND

 JULIANTIMESTAMP

 SETSCALE

 UPSHIFT

 Predicates can have multiple values (for example, a, b < 10, 20)

 SHARE and EXCLUSIVE lock modes let you share or restrict access to locked
data.

 Objects referred to in SQL statements can be reassigned to different objects at run
time by using DEFINEs.

 The WHENEVER directive includes an SQLWARNING option and allows a CALL
statement.
HP NonStop SQL/MP Reference Manual—523352-013
S-72

Statements
Statements
SQL/MP statements define SQL objects and catalogs, manipulate data within those
objects and catalogs, and control various aspects of the processes that perform the
data definition and manipulation you specify in the statements.

A single SQL/MP statement can contain up to 32,767 single-byte characters, including
spaces. A tab is considered the same as a space in SQL/MP statements.

You can enter and execute most SQL/MP statements either from SQLCI or from an
embedded SQL program. (SQLCI commands, in contrast to SQL/MP statements, can
be entered only from SQLCI.)

Each SQL statement must end with a terminator that is not shown in the statement
description because it depends upon the host language. The terminator for SQL
statements in SQLCI, C, Pascal, and TAL is a semicolon (;). The terminator in COBOL
is END EXEC.

For more information about entering SQL statements in SQLCI, see SQLCI on
page S-60 and SQLCI Commands on page S-63. For general information about
embedded SQL programs, see Embedded SQL on page E-2 or, for more information,
see the SQL/MP programming manual for a specific language.

Table S-4 on page S-77 summarizes the SQL/MP statements and directives. (A
directive is a statement that gives instructions to a compiler.) Statements that can be
used only in programs are indicated with an asterisk (*) following the statement name.
For more information about a specific statement listed in the summary, see the entry
for that statement.

Table S-3. Summary of SQL Statements

Command Action

ALTER CATALOG Statement Alters security for a catalog

ALTER COLLATION Statement Renames or alters security for a collation

ALTER INDEX Statement Renames, adds, or drops partitions, or alters security or
other attributes of an index

ALTER PROGRAM Statement Renames or alters security of an SQL program in a
Guardian file

ALTER TABLE Statement Renames, alters security or file attributes, or enables or
disables similarity checks for a table. Also adds columns
to a table and adds, drops, or moves partitions of a table.

ALTER CATALOG Statement Alters security for a catalog

ALTER COLLATION Statement Renames or alters security for a collation

ALTER INDEX Statement Renames, adds, or drops partitions, or alters security or
other attributes of an index

* Can be used only in program
HP NonStop SQL/MP Reference Manual—523352-013
S-73

Statements
ALTER PROGRAM Statement Renames or alters security of an SQL program in a
Guardian file

ALTER TABLE Statement Renames, alters security or file attributes, or enables or
disables similarity checks for a table. Also adds columns
to a table and adds, drops, or moves partitions of a table.

ALTER VIEW Statement Renames, alters security, or enables or disables
similarity checks for a view. Also adds columns to a view.

BEGIN DECLARE SECTION
Directive *

Begins a section in a host program for declaring
variables known to SQL

BEGIN WORK Statement Starts a TMF transaction

CLOSE Statement * Closes a cursor

COMMENT Statement Writes a comment about an SQL object to a catalog

COMMIT WORK Statement Commits all database changes made during the current
TMF transaction and frees resources

CONTINUE Statement Directs SQL to commit or cancel a DDL operation ready
for its final phase

CONTROL EXECUTOR
Directive

Enables or disables parallel processing of queries

CONTROL QUERY Directive Specifies details of plans for queries, including when
names are resolved, whether hash joins are permitted,
and whether to optimize response time for returning few
or many rows

CONTROL TABLE Directive Specifies performance-related options for accesses to a
table or view, including access path, join method, and
many other options

CREATE CATALOG Statement Creates a catalog

CREATE COLLATION
Statement

Creates a collation

CREATE CONSTRAINT
Statement

Creates a constraint for a table

CREATE INDEX Statement Creates an index on a base table

CREATE TABLE Statement Creates a base table

CREATE VIEW Statement Creates a view

DECLARE CURSOR Statement
*

Defines a cursor

DELETE Statement Deletes rows from a table or view

DESCRIBE Statement * Returns information about output variables of prepared
statements

Table S-3. Summary of SQL Statements

Command Action

* Can be used only in program
HP NonStop SQL/MP Reference Manual—523352-013
S-74

Statements
DESCRIBE INPUT Statement * Returns information about input variables of prepared
statements

DROP Statement Drops a catalog, collation, constraint, index, table, view,
or SQL program in a Guardian file

END DECLARE SECTION
Directive *

Ends a section in a host program for declaring variables
known to SQL

EXECUTE Statement Executes a compiled statement

EXECUTE IMMEDIATE
Statement *

Executes an SQL statement contained in a host variable

FETCH Statement * Retrieves a row from a cursor

FREE RESOURCES Statement Closes cursors and releases locks held by a process

GET CATALOG OF SYSTEM
Statement

Retrieves the name of a local or remote system catalog

GET VERSION Statement Retrieves the version of a specific SQL object, catalog,
or system

GET VERSION OF PROGRAM
Statement

Retrieves the PCV, PFV, or HOSV of an SQL program

HELP TEXT Statement Specifies help text for a column of a table or view

INCLUDE SQLCA Directive * Declares an area in a host program to receive run-time
status information

INCLUDE SQLDA Directive * Declares an area in a host program to receive
information about input and output variables for dynamic
SQL statements

INCLUDE SQLSA Directive * Declares an area in a host program to receive execution
statistics for DML statements

INCLUDE STRUCTURES
Directive *

Specifies the structure version for INCLUDE SQLCA,
INCLUDE SQLSA, and INCLUDE SQLDA directives

INSERT Statement Inserts a row into a table or view

INVOKE Directive and
Command

Generates a record description of a table or view

LOCK TABLE Statement Locks a table (or the underlying tables of a view) and
associated indexes

OPEN Statement * Opens a cursor

PREPARE Statement Compiles a DDL, DML, DCL, or DSL statement for later
execution by EXECUTE

RELEASE Statement * Deallocates memory for a dynamic SQL statement
referred to through a host variable

Table S-3. Summary of SQL Statements

Command Action

* Can be used only in program
HP NonStop SQL/MP Reference Manual—523352-013
S-75

Statements
ROLLBACK WORK Statement Undoes all database modifications made to audited
objects during the current TMF transaction and releases
all locks held by the transaction

SELECT Statement Retrieves data from tables and views

SQL Directive Indicates to a host language compiler that a program
contains SQL statements

UNLOCK TABLE Statement Releases locks held on nonaudited tables or views

UPDATE Statement Updates values in columns of a table or view

UPDATE STATISTICS
Statement

Updates statistics about the contents of a table and its
indexes

WHENEVER DIRECTIVE * Specifies action to take when errors, warnings, or no-
row-found conditions occur in a program

Table S-3. Summary of SQL Statements

Command Action

* Can be used only in program
HP NonStop SQL/MP Reference Manual—523352-013
S-76

Static SQL
Static SQL

Static SQL is a form of embedded SQL in which SQL statements are coded directly
into a host language source program.

Static SQL statements begin with EXEC SQL and end with one of these statement
terminators:

Unlike dynamic SQL statements, which can be constructed during program execution,
static SQL statements must be coded directly in the host language program before
compilation.

You can code static SQL statements to refer to different data bases during different
executions by specifying table and view names with DEFINEs and using CONTROL
QUERY to request execution-time name resolution, but the SQL statements
themselves remain unchanged (“static”) from execution to execution.

For more information about using static SQL, see the SQL/MP programming manual
for one of the host languages.

This is an example of a static SQL statement from a COBOL program:

EXEC SQL
 SELECT LAST_NAME, EMPNUM INTO :LNAME, :EMPNUM
 FROM EMPLOYEE WHERE DEPTNUM = 200
END-EXEC.

This is an example of a static SQL statement from a C, Pascal, or TAL program:

EXEC SQL
 SELECT LAST_NAME, EMPNUM INTO :LNAME, :EMPNUM
 FROM EMPLOYEE WHERE DEPTNUM = 200;

Table S-4. Summary of SQL Statements

Command Action

* Can be used only in program

; Occurs in C, Pascal, and TAL programs

END-EXEC. Occurs in COBOL programs
HP NonStop SQL/MP Reference Manual—523352-013
S-77

Statistics
Statistics
SQL has an UPDATE STATISTICS statement you can use to collect and save statistics
on columns and tables. The SQL compiler uses these statistics to determine the
selectivity of predicates, indexes, and tables. Because selectivity directly influences the
cost of access plans and regular collection of statistics, it increases the likelihood that
SQL will choose efficient access plans.

A NonStop SQL/MP installation should follow these rules for updating statistics:

 Do not use the UPDATE STATISTICS statement until you use FILEINFO with the
STATISTICS option to see if performance problems are caused by fragmentation.
By using FILEINFO, you should be able to determine if the performance is being
impeded by fragmentation of blocks in a table. In that case, running UPDATE
STATISTICS and recompiling the queries does not help. You should first reload the
table online, by using the FUP RELOAD command.

 Determine the effect of UPDATE STATISTICS on production queries first. In an
SQLCI session, issue a BEGIN WORK command and then issue UPDATE
STATISTICS. Use EXPLAIN to see if the new statistics would give you the correct
query plan. The UPDATE STATISTICS and EXPLAIN commands should be issued
within a transaction so that the UPDATE STATISTICS operation can be backed out
easily if necessary.

 Specify the NORECOMPILE option in the UPDATE STATISTICS statement so that
dependent programs are not invalidated. By default, an UPDATE STATISTICS
operation invalidates dependent programs. Even if UPDATE STATISTICS is
executed within a transaction that can be backed out, if the NORECOMPILE option
is omitted, dependent programs are still invalidated because program file labels
are not audited. Updates to program file labels are not backed out.

Storage Management Foundation (SMF)
The SMF subsystem is an optional HP product. SMF simplifies name, storage, and file
management with logical files, virtual volumes, and storage pools. On any SMF node,
logical files, virtual volumes, and storage pools can coexist with conventional Guardian
files and volumes. In the context of SMF, conventional Guardian files and volumes are
called direct files and direct volumes.

With SMF, SQL objects can be either direct or logical files. A logical file is a file that
resides on a virtual volume; a virtual volume is actually a process that uses a pool of
physical volumes for storage. When you create an SQL object on a virtual volume, the
object is a logical file, and you always refer to it by logical name. The object can be
located on any physical volume in the storage pool for the virtual volume you specify;
SMF automatically determines the best location.
HP NonStop SQL/MP Reference Manual—523352-013
S-78

Considerations—SMF
Considerations—SMF

 Most SQL CREATE and ALTER statements have either syntax changes or
considerations for SMF. Syntax changes consist of a new option, PHYSVOL, which
allows you to place an SQL object on a particular physical volume associated with
the specified virtual volume. Some SQL/MP utility commands are also affected, as
are temporary table and file placement.

See also:

 On physical volumes, subvolumes named ZYS* are reserved for SMF. Do not
attempt to create objects or files on subvolumes named in this format.

 If you specify a logical file name in a FILEINFO, DETAIL command, the
corresponding physical file name is displayed. Similarly, if you execute FILEINFO,
DETAIL for a physical file, its corresponding logical name is displayed.

ALTER CATALOG Statement DROP SYSTEM CATALOG Command

ALTER COLLATION Statement DUP Command

ALTER INDEX Statement FILEINFO Command

ALTER PROGRAM Statement FILENAMES Command

ALTER TABLE Statement GOAWAY Command

ALTER VIEW Statement INVOKE Directive and Command

CLEANUP Command LOAD Command

CONVERT Command Parallel Index Loading

COPY Command PARTITION Clause

CREATE CATALOG Statement PURGE Command

CREATE COLLATION Statement PURGEDATA Command

CREATE CONSTRAINT Statement Qualified Fileset List

CREATE INDEX Statement SECURE Command

CREATE SYSTEM CATALOG
Command

Temporary Tables

CREATE TABLE Statement UPGRADE CATALOG Command

CREATE VIEW Statement VERIFY Command

DISPLAY USE OF Command =_SORT_DEFAULTS DEFINE

DOWNGRADE CATALOG Command =_SQL_EXE_USE_SWAPVOL DEFINE

DROP Statement =_SQL_TM_node_vol DEFINE
HP NonStop SQL/MP Reference Manual—523352-013
S-79

String Functions
String Functions
You can use string functions in expressions that involve columns defined with
character data types. You can use a string function anywhere an arithmetic expression
is allowed.

NonStop SQL/MP provides these string functions:

For more information, see the descriptions of specific functions and Character
Expressions on page C-14.

String Literals
A string literal represents a series of characters and consists of that series of
characters surrounded by double or single quotation marks, optionally preceded by a
clause that specifies the character set associated with the characters.

_ISO88591 ... _KSC5601

associates a character set with the string literal.

The character set is one of the single-byte character sets ISO 8859/1 through ISO
8859/9 or one of the double-byte character sets Kanji or KSC5601. For more
information about character sets, see Character Sets on page C-17.

SUBSTRING Extracts a substring from a given string.

POSITION Searches for a given character pattern in a character string. If
the pattern is found, SQL returns the position of the pattern.

OCTET_LENGTH Returns the length of a character string in bytes.

CHAR_LENGTH Returns the number of characters in a string.

TRIM Removes leading or trailing characters from a character string.

[_ISO88591]
[_ISO88592]
[_ISO88593]
[_ISO88594]
[_ISO88595]
[_ISO88596]
[_ISO88597] { 'string' }
[_ISO88598] { "string" }
[_ISO88599]
[_KANJI]
[_KSC5601]
[_UNKNOWN]
[N]
HP NonStop SQL/MP Reference Manual—523352-013
S-80

Considerations—String Literals
_UNKNOWN

specifies that data in the string literal belongs to an unknown character set.
Specifying UNKNOWN is equivalent to omitting the character set specification.
NonStop SQL/MP handles the data as if it were 8-bit data.

N

associates the system default multibyte character set with the string literal. (Kanji is
the standard system default multibyte character set, but the default can be different
at your site. For more information, see Multibyte Character Sets on page M-44)

string

is a series of single-byte or double-byte characters.

Considerations—String Literals

 As indicated in the syntax diagram, you must enclose string literals in either single
(') or double (") quotation marks, although the value of the string literal does not
include the quotation marks. To specify the delimiter character within the literal, use
two consecutive quotation marks.

 A string literal can be as long as a character column. For limits on data length, see
Limits on page L-6.

 To specify a long string literal in SQLCI, separate the literal into several smaller
string literals and use line-continuation characters (&) to connect them.

In host programs, rules for breaking string literals across lines depend on the
language being used.

 In string comparisons, lowercase letters are not equivalent to the corresponding
uppercase letters.

 Strings associated with double-byte character sets must contain an even number
of bytes. An error occurs if such a string contains an odd number of bytes.

 You should not mix single-byte and double-byte characters in the same string, but
NonStop SQL/MP does not prevent you from doing so.

 NonStop SQL/MP does not perform data validation to ensure that characters in a
string literal belong to the character set associated with the string literal. For
example, this string literal is valid:

_KANJI"abcdef"
HP NonStop SQL/MP Reference Manual—523352-013
S-81

Examples—String Literals
Examples—String Literals

 This string literals do not have an associated character set:

"This is an ordinary literal."
"This literal contains "" a quotation mark."
"This SQLCI literal is" &
" in three parts, " &
"specified over three lines"
'1234.56'
_UNKNOWN"abc^&*"

 This string literals have associated character sets. The first is associated with a
single-byte character set, and the second and third are associated with double-
byte character sets. The third is associated with either KANJI or KSC5601,
depending on the default national character data type in effect on the node.

_ISO88594'SMITH, JOHN'
_KANJI"c1c2c3c4c5c6"
N"c1c2c3c4c5c6c7c8c9"

Subqueries
A subquery is a special form of the SELECT statement that selects only for
comparison. You can specify a subquery in a comparison, EXISTS, IN, or qualified
predicate of a search condition.

For the complete syntax and rules for the elements and clauses of a subquery, see
SELECT Statement on page S-18. For examples that use subqueries, see Comparison
Predicate on page C-58 or EXISTS Predicate on page E-12.

(SELECT [ALL | DISTINCT] { expression }
 { * }
 { correlation-name.* }
 { table-name.* }
 { view-name.* }

 FROM table-ref [, table-ref] ...

 [WHERE search-condition]

 [HAVING search-condition]

 [[FOR] { BROWSE | STABLE | REPEATABLE } ACCESS]

 [IN { SHARE | EXCLUSIVE } MODE]

 [GROUP BY column-name [, column-name]] ...

 [UNION [ALL] select-statement])
HP NonStop SQL/MP Reference Manual—523352-013
S-82

Considerations—Subqueries
Considerations—Subqueries

 A SELECT statement that contains a subquery is called an outer query. The
subquery within the SELECT is called an inner query. The differences between
a SELECT statement and a subquery are:

 A subquery is always enclosed in parentheses.

 A subquery returns a result table of one column.

 A SELECT statement can retrieve values to place in a cursor or host variable.
A subquery searches for values to use in comparisons. The comparisons
determine whether a search condition is satisfied.

 The INTO clause of a SELECT statement cannot be associated with a
subquery in a cursor declaration. Therefore, the subquery cannot be used to
retrieve values for host variables.

 A SELECT statement can specify a list of elements to select. A subquery can
specify only a single column or expression. You can, however, specify an
asterisk or a correlation name followed by an asterisk if the subquery occurs in
an EXISTS predicate or if the FROM clause refers to a single table (or view)
consisting of a single column.

 A subquery cannot contain an ORDER BY clause.

 If a subquery is not part of an EXISTS, IN, or quantified predicate, and the
subquery evaluates to more than one row, a run-time error occurs.

 If a subquery contains references to an outer query, the subquery might be
evaluated repeatedly. This type of subquery is called a correlated
subquery, discussed later in this subsection.

 An outer query (a main SELECT statement) can have up to 15 levels of nested
subqueries.

Subqueries within the same ON, WHERE, or HAVING clause are at the same
level. For example, this query has one level of nesting:

SELECT * FROM TABLE1
 WHERE A = (SELECT P FROM TABLE2 WHERE Q = 1)
 AND B = (SELECT X FROM TABLE3 WHERE Y = 2)

A subquery within the WHERE clause of another subquery defines a new level, so
this query has two levels of nesting:

SELECT * FROM TABLE1
 WHERE A = (SELECT P FROM TABLE2
 WHERE Q = (SELECT X FROM TABLE3
 WHERE Y = 2))

 In the search condition of a subquery, you can refer to columns of any table or view
defined in an outer query. Such a reference is called an outer reference. A
subquery containing an outer reference is called a correlated subquery.
HP NonStop SQL/MP Reference Manual—523352-013
S-83

SUBSTRING Function
Each time an outer query selects and evaluates a row, the outer reference is
visible as a new value to the correlated subquery. The correlated subquery
operates on the new value to test its own search condition, so the correlated
subquery executes whenever the outer query selects a new row, which leads to
reduced performance.

If you refer to a column name that occurs in more than one outer query, you must
qualify the column name with the correlation name of the table or view to which it
belongs. The correlation name is known to other subqueries at the same level or to
inner queries but not to outer queries.

If you use the same correlation name at different levels of nesting, an inner query
uses the name from the nearest outer level. SQL checks the FROM clause of the
subquery first, then its outer query, and so forth, until it determines the applicable
table or view.

SUBSTRING Function
The SUBSTRING function extracts a substring out of a given string.

character-string

specifies the source string from which to extract the substring.

start-position

specifies the starting position within character-string, in number of
characters, at which to start extracting the substring.start-position must be a
value with an exact numeric data type and a scale of 0; otherwise, SQL returns an
error.

{ SUBSTRING (character-string FROM start-position }
{ [FOR substring-len]) }

 where character-string is:

 { string-literal }
 { column-name }
 { param-name }
 { host-var-name }
 { UPSHIFT function }
 { character-expression }

 start-position and substring-length are:

 { numeric-literal }
 { column-name }
 { param-name }
 { host-var-name }
 { expression }
HP NonStop SQL/MP Reference Manual—523352-013
S-84

Considerations—SUBSTRING Function
substring-length

specifies the number of characters to extract from character-string.
substring-length must be a value of exact numeric data type with a scale of
zero; otherwise, SQL returns an error. substring-length must be greater than
or equal to zero.

Considerations—SUBSTRING Function

 The data types of substring-length and start-position must be numeric;
otherwise, SQL returns an error.

 If the sum of start-position and substring-length is greater than the
length of the character string, SQL returns the substring from start-position to
the end of the string.

 If the sum of start-position and substring-length is less than zero, SQL
returns an empty string (“”).

 If start-position is greater than the length of the character string, SQL returns
an empty string (“”).

 If you do not specify substring-length, SQL returns all characters starting at
start-position and continuing until the end of character-string.

 The resulting substring is always of type VARCHAR, with the same collating
sequence and character set as the source character string. If the source character
string is an upshifted CHAR or VARCHAR string, the result is an upshifted
VARCHAR type.

 The resulting collating sequence and character set are the same as that of the
string operand, character-string.

 If character-string, start-position, or substring-length is a null
value, the result is null.

Examples—SUBSTRING Function

 This example returns “John”:

SUBSTRING("Robert John Smith" FROM 8 FOR 4)

 This example returns “John Smith”:

SUBSTRING("Robert John Smith" FROM 8)

 This example returns “Robert John Smith”:

SUBSTRING("Robert John Smith" FROM 1 FOR 17)

 This example returns “John Smith”:

SUBSTRING ("Robert John Smith" FROM 8 FOR 15)
HP NonStop SQL/MP Reference Manual—523352-013
S-85

SUBTOTAL Command
 This example returns “”:

SUBSTRING ("Robert John Smith" FROM -5 FOR 2)

 This example returns “Ro”:

SUBSTRING ("Robert John Smith" FROM -2 FOR 5)

 This example produces an empty string, “”, which is different than a null value for
the result:

SUBSTRING("Robert John Smith" FROM 8 FOR 0)

SUBTOTAL Command
SUBTOTAL is an SQLCI report writer command that specifies columns to subtotal and
when to print the subtotals. SUBTOTAL returns you to the first SELECT output row.

column

identifies a column to subtotal. column must be a column with a numeric data type
from the current detail line that is not an IF/THEN/ELSE column.You can specify it
as a column name, an alias, a detail alias, or COL number (which specifies the
position of the column in the select list).

OVER break-col

specifies that the subtotal prints when the data value of the named break column
changes. break-col must be a break column specified in a BREAK ON
command, but you can specify it as a column name, an alias, a detail alias, or COL
number (which specifies the position of the column in the select list).

If you omit the OVER clause, subtotals print when the value in any currently
defined break column changes.

Considerations—SUBTOTAL

 You must enter a BREAK ON command to define break columns you specify in a
SUBTOTAL command. The BREAK ON command does not have to precede the
SUBTOTAL command, but you must enter it before you list the report.

 When you enter a SUBTOTAL command for a specific break column, it replaces
any existing SUBTOTAL command for that break column. If you enter a
SUBTOTAL command without the OVER clause, it replaces any previous
SUBTOTAL command without an OVER clause.

 A subtotal prints immediately beneath the print item it subtotals, and the subtotal
value prints in the same display format as the print item. (When you specify a print
item in a DETAIL command, check that the display format in the AS clause allows

SUBTOTAL column [, column] ... [OVER break-col] ;
HP NonStop SQL/MP Reference Manual—523352-013
S-86

Examples—SUBTOTAL
enough room for the subtotal. If the subtotal is too large for its display format, the
field is filled instead with overflow characters.)

Subtotals print on three lines: the first line contains underline characters (see
UNDERLINE_CHAR Option on page U-1), the second line contains the subtotal
value, and the third line is blank.

To identify the break group for the subtotal, the report writer prints a subtotal label
(see SUBTOTAL_LABEL Option on page S-88) under the break column. If the
label does not fit in the break column, the label is truncated. An asterisk is the
default subtotal label.

If the subtotal column is the same as the break column, both the subtotal label and
the subtotal value must print under that column. If the column is wide enough to
accommodate both the label and the value, both are printed; otherwise, the label is
truncated and can be entirely overwritten by the subtotal value.

 In calculating subtotals, the report writer uses the maximum format for the item's
data type and the same scale as the item to be subtotaled. In unusual cases (such
as when an expression contains an item multiplied by an extremely small fractional
value) this strategy can cause numeric overflow.

Specifying small numeric values in exponential notation (for example,
.0000246615 E0 instead of .0000246615) can prevent overflow by causing the
report writer to use a floating-point format for such calculations.

Examples—SUBTOTAL

 This example selects data ordered by the value in column ORDERNUM, then
generates a subtotal for the expression used as column 3 whenever the value of
ORDERNUM changes:

>> SET LIST_COUNT 0;
>> SELECT ORDERNUM, PARTNUM, (QTY_ORDERED * UNIT_PRICE)
+> FROM SALES.ODETAIL ORDER BY ORDERNUM;
S> BREAK ON ORDERNUM;
S> SUBTOTAL COL 3 OVER ORDERNUM;

 This example selects data ordered by the values in columns DEPTNUM and
JOBCODE, and then generates subtotals for salaries and bonuses for each job
code. (The example uses an asterisk as the default subtotal label. To learn how to
change the default subtotal label, see SUBTOTAL_LABEL Option on page S-88.)

>> SET LIST_COUNT 0;
>> SELECT DEPTNUM, JOBCODE, SALARY, SALARY*.025
+> FROM PERSNL.EMPLOYEE ORDER BY DEPTNUM, JOBCODE;
S> DETAIL DEPTNUM, JOBCODE, SALARY AS F15.2, COL 4 AS F12.2
+> HEADING "BONUS";
S> BREAK ON DEPTNUM, JOBCODE;
S> SUBTOTAL SALARY, COL 4;
S> LIST ALL;
HP NonStop SQL/MP Reference Manual—523352-013
S-87

SUBTOTAL_LABEL Option
The report looks like this:

DEPTNUM JOBCODE SALARY BONUS
------- ------- --------------- ------------
 1000 100 137000.10 3425.00
 --------------- ------------
 * 137000.10 3425.00
 500 25000.75 625.02
 29000.00 725.00
 50000.00 1250.00
 --------------- ------------
 * 104000.75 2600.02
 --------------- ------------
* 260000.85 6500.02
 1500 100 90000.00 2250.00
 --------------- ------------
 * 90000.00 2250.00
 600 26000.00 650.00
 32000.00 800.00
 --------------- ------------
 * 58000.00 1450.00
 900 17000.00 425.00
 --------------- ------------
 * 17000.00 425.00
 --------------- ------------
* 165000.00 4125.00

SUBTOTAL_LABEL Option
SUBTOTAL_LABEL is an option of the SQLCI report writer command SET STYLE.
SUBTOTAL_LABEL specifies a label to print in a break column on the same line as a
subtotal.

label

is a character string to use as a label. label consists of 0 to 255 single-byte
characters or 0 to 127 double-byte characters. The default is * (asterisk).

Considerations—SUBTOTAL_LABEL

 The report writer uses the same subtotal label for all groups. The label prints in the
break column associated with the subtotal and is truncated if it does not fit. For
more information and for a sample report with subtotal labels, see SUBTOTAL
Command on page S-86.

 If you do not want subtotal labels to print, specify an empty string (“”) in the
SUBTOTAL_LABEL command.

SUBTOTAL_LABEL "label"
HP NonStop SQL/MP Reference Manual—523352-013
S-88

Example—SUBTOTAL_LABEL
Example—SUBTOTAL_LABEL

This command defines a subtotal label:

>> SET STYLE SUBTOTAL_LABEL "@";

SUM Function
SUM is a function that computes the sum of a set of numbers.

The type of the result depends on the type of the argument. If the argument is an exact
numeric type, the result is LARGEINT. If the argument type is FLOAT, REAL, or
DOUBLE PRECISION, the result is DOUBLE PRECISION.

The scale of the result is the same as the scale of the argument. If the argument has
no scale, the result is truncated.

[ALL] expression

specifies a numeric or INTERVAL expression that indicates the set of values to
sum.

The expression must include a value from each row of the result table (that is, at
least one column from the result table) and cannot include the COUNT, MAX, MIN,
or AVG functions, or another SUM function, as shown:

SUM (SALARY)
SUM (PARTCOST * QTY_ORDERED)

ALL is an optional keyword that does not change the meaning of the clause. SQL
uses all rows (whether or not you specify ALL) unless you use the DISTINCT
clause, described next.

DISTINCT column

specifies a set of distinct column values to average from each row of the result
table.The column cannot be a column from a view that corresponds to an
expression in the view definition.

If you specify DISTINCT in more than one SUM function in the same statement,
the functions must reference the same column.

Considerations—SUM

 SUM is evaluated after eliminating all null values from the aggregate set. If the
result set is empty, SUM returns a null value.

SUM { ([ALL] expression) }
 { (DISTINCT column) }
HP NonStop SQL/MP Reference Manual—523352-013
S-89

Example—SUM
 A host variable that receives the result of the SUM function must have an indicator
variable to handle a possible null value. (For more information about using
indicator variables, see the SQL/MP programming manual for your host language.)

Example—SUM

To compute the total value of parts in the current inventory (the sum of each value in
the PRICE column multiplied by the corresponding value in the QTY_AVAILABLE
column), type this:

>> SELECT SUM (PRICE * QTY_AVAILABLE) FROM SALES.PARTS;
(EXPR)

83052750.00
--- 1 row(s) selected.

Super ID
The super ID is a Guardian user ID with group number 255 and user number 255. The
super ID is intended for system maintenance and administration and has many special
privileges.

The super ID can read, write to, execute, and purge any object on the local node. The
super ID can also resecure and alter attributes of objects on the local node.

A super ID on one node in a network does not have super ID privileges on other nodes
in the network. Most super ID privileges require being directly logged on the local node
as the super ID. However, a super ID with a remote password (not a logon password)
to another node has group manager privileges (generalized owner privileges) for
objects and files secured so that their owner can purge them remotely.

Syskeys
A SYSKEY, or system-defined primary key, is a primary key defined by SQL rather
than by the user.

Tables stored in relative and entry-sequenced files or in key-sequenced files without a
user-defined primary key have a primary key defined by SQL and stored in a column
named SYSKEY.

SQL adds the SYSKEY column to the table definition for you; you do not supply it.
SYSKEY is the first column in the table, and its data type depends on the organization
of the file, as shown:

File Organization SYSKEY Data Type SYSKEY Value

Entry-sequenced INTEGER UNSIGNED 4-byte record address

Key-sequenced LARGEINT SIGNED 8-byte unique number

Relative INTEGER UNSIGNED 4-byte record number
HP NonStop SQL/MP Reference Manual—523352-013
S-90

Syskeys
When you insert a record in a table stored in an entry-sequenced file or in a
key-sequenced file with a SYSKEY column, the file system automatically generates a
value for the SYSKEY column. You cannot supply the value.

When you insert a record in a table stored in a relative file, you can specify a record
number for the SYSKEY value. If you do not specify a value, the file system supplies a
record number. The SYSKEY column cannot contain a null value.

Because a SYSKEY is defined by the system when a record is inserted, an SQLCI
LOAD or SQLCI COPY of a table with a SYSKEY (or a clustering key, which uses a
SYSKEY) changes the SYSKEY value for the records in the target table. Any previous
SYSKEY values stored in other tables no longer point to the correct row after such an
SQLCI LOAD or SQLCI COPY operation. Moving a partition does not change the
SYSKEY values, although the MOVE operation includes a LOAD operation.

You cannot update values in the SYSKEY column of any table, but you can use the
SELECT statement to query SYSKEY values. If SYSKEY is provided in the value list or
for a query, the value range allowed is 0 through 4,294,963,199 (for a 4-byte SYSKEY
column).

The catalog description of a table with a SYSKEY reflects the presence of the SYSKEY
column, but SQL does not return the value of the SYSKEY column unless a query
explicitly selects that column. For example, this SELECT statement would not display
SYSKEY values:

SELECT * FROM table-name

If a view definition explicitly includes the SYSKEY column of a table, however, a
SELECT * on the view does return SYSKEY values.

You cannot partition key-sequenced tables that use SYSKEY as the primary key.

Note. A FUP RELOAD does not modify the SYSKEY value of the rows in a table.
HP NonStop SQL/MP Reference Manual—523352-013
S-91

System Catalog
System Catalog
Each node on a network has one special catalog called the system catalog.

The system catalog contains the same tables as other catalogs on the node, but
includes one additional table, the CATALOGS table, that lists all catalogs on the node.
For more information, see CATALOGS Table on page C-11.

The system catalog is established during the installation of NonStop SQL/MP. By
default, it is located on volume $SYSTEM and subvolume SQL, although you can
specify a different volume and subvolume at installation time if necessary. (The
CATALOGS table is always located on subvolume SQL on the same volume as the
system catalog.)

These statements can operate on the system catalog:

ALTER CATALOG

CREATE SYSTEM CATALOG

DOWNGRADE SYSTEM CATALOG

DROP SYSTEM CATALOG

GET CATALOG OF SYSTEM (returns location)

GET VERSION OF CATALOG

UPGRADE SYSTEM CATALOG

However, the ALTER CATALOG statement does not affect the system catalog
CATALOGS table. You must alter that table with the ALTER TABLE statement.

If you have appropriate authorization, you can also use other SQL statements to
operate on individual tables within the system catalog. For more information, see
Catalogs on page C-8.
HP NonStop SQL/MP Reference Manual—523352-013
S-92

SYSTEM Command
SYSTEM Command
SYSTEM is an SQLCI session command that selects a node to be the current default
node for the SQLCI session.

node

is the name of a node to be the current default.If you omit node, SQL uses the
node on which SQLCI is executing.

Considerations—SYSTEM

 The default stays in effect only for the SQLCI session. When you return to TACL,
the TACL default is used.

 These commands are not equivalent:

>> SYSTEM \local-node;
>> SYSTEM ;

The first command shown causes the network restrictions on file-name lengths to
take effect; the second command does not. For information on network file-name
lengths, see the Expand Network Management Guide.

 SYSTEM sets the node name qualifier in the =_DEFAULTS DEFINE. (You can also
change to a different default node by using the ALTER DEFINE =_DEFAULTS
command and changing the node specified for the VOLUME attribute.)

Example—SYSTEM

This command makes \SYS1 the default node:

>> SYSTEM \SYS1;

SYSTEM [\node] ;
HP NonStop SQL/MP Reference Manual—523352-013
S-93

System DEFINEs
System DEFINEs
A system DEFINE is a DEFINE used in HP NonStop system software to identify
system defaults or configuration information.

Each system DEFINE name begins with an equal sign and an underscore (=_). This
special prefix is reserved for system DEFINE names. (Do not create DEFINE names
that begin with an equal sign and an underscore unless specifically directed to do so in
HP documentation.)

SQL uses these system DEFINEs:

For more information about a specific system DEFINE, see the entry for that DEFINE.

=_AUDSERV_XSWAP_node Specifies a swap volume for the audit fix-up process
on node

=_DEFAULTS Sets defaults for Guardian name expansion

=_SORT_DEFAULTS Specifies defaults for FastSort operations

=_SQL_CMP_EVENT Directs SQL to log SQL compiler event messages to
a file or home terminal

=_SQL_CMP_EVENT_NO0 Suppresses logging of SQL compiler event
messages to $0

=_SQL_cmp_node Identifies files for components of the SQL/MP
software

=_SQL_EXE_USE_SWAPV
OL

Directs SQL to allocate temporary tables for serial
plans on the swap volume for the process

=_SQL_MSG_node Sets file for SQL message text

=_SQL_RECGEN_node Specifies an alternate location for the FastSort
record generator

=_SQL_TM_node_vol Directs SQL to use another disk for temporary tables
normally allocated on the specified volume;
optionally opens the tables with SYNCDEPTH 1
instead of 0
HP NonStop SQL/MP Reference Manual—523352-013
S-94

T
TABLECODE File Attribute

TABLECODE is a file attribute that assigns a numeric code to a table, index, or
collation. TABLECODE applies to key-sequenced, relative, and entry-sequenced files
and to indexes.

A table code is a numeric code chosen by the user to categorize files. The table code
appears in the TABLES and INDEXES catalog tables.

In output from the FILEINFO command and in contexts other than SQL, a table code is
referred to as a file code.

code>

is an integer value from 0 to 99 or from 1000 to 65535 that specifies the file code.

Values from 100 to 999 are reserved for use by HP.

Values from 571 to 599 are reserved for use by NonStop SQL/MP.

The table default is TABLECODE 0.

The index default is its table's value at index creation.

Tables
A table is a logical representation of data in a database in which a set of records is
represented as a sequence of rows, and the set of fields common to all records is
represented by columns. The intersection of a row and column represents the data
value of a particular field in a particular record.

All data in a NonStop SQL/MP database is stored in tables. Each table is described in
an SQL/MP catalog and stored in a physical file in the Guardian environment of a
system.

The description of a table includes the name of the table, the name of each column of
the table, the type of data you can store in each column of the table, and other
information about the table, including the physical characteristics of the file that stores
the table.

In some descriptions of SQL, tables are referred to as base tables to distinguish them
from views, which are logical tables.

This approach shifts the processing time for opening objects to the beginning of
program execution. The processing time is not counted from the time when the
individual statements that require the objects are processed. After an object is opened,
it stays open until the program is stopped.

TABLECODE code
HP NonStop SQL/MP Reference Manual—523352-013
T-1

TABLES Table
By default, SQL automatically opens partitions of tables and indexes as they are
needed. You can, however, use the CONTROL TABLE statement with the OPEN ALL
option to open all indexes and base partitions of a table the first time a partition is
accessed.

For more information about tables, see CREATE TABLE Statement on page C-154.

TABLES Table
The TABLES table is a catalog table that contains information about tables, views, and
collations. It contains a row for each table, view, and collation in the catalog, including
itself and other catalog tables.

Table T-1 describes the contents of the TABLES table.

Note. Use the CONTROL TABLE OPEN ALL statement with the OPEN ALL option only if all
these are true:

 All open activities must occur when the program starts (add a dummy call to the cursor
during initialization).

 The object containing the cursor eventually accesses all partitions.

 The plan for the cursor is not a parallel plan.

Table T-1. The TABLES Table (page 1 of 2)

Column Name Data Type Description

1 TABLENAME* CHAR(34) Name of table, view, or collation

2 TABLETYPE CHAR(2) TA if table
VI if view
CP if collation

3 TABLECODE SMALLINT
UNSIGNED

Code for type of table. Codes 100-999
indicate reserved for HP use. Other numbers
are values of the TABLECODE file attribute

4 COLCOUNT SMALLINT
SIGNED

Number of columns in table or view

5 GROUPID SMALLINT
UNSIGNED

Group number of owner's user ID

6 USERID SMALLINT
UNSIGNED

User number of owner's user ID

7 CREATETIME LARGEINT
SIGNED

Julian timestamp from table creation

8 REDEFTIME LARGEINT
SIGNED

Julian timestamp from alteration that
invalidated dependent programs (updated by
UPDATE STATISTICS)

9 SECURITYVECTOR CHAR(4) Security string for table, view, or collation
HP NonStop SQL/MP Reference Manual—523352-013
T-2

TEDIT Command
The columns TABLENAME through SECURITYVECTOR (1 through 9) were created in
version 1. The columns SECURITYMODE through OBJECTVERSION (10 through 11)
were added in version 300. Column SIMILARITYCHECK (12) was added at version
310.

Guardian names in the TABLES table are fully qualified and use uppercase characters.

TEDIT Command
TEDIT is an SQLCI command that invokes the PS Text Edit editor.

tedit-command-line

is one or more TEDIT commands, as described in the PS Text Edit Reference
Manual.

If you specify more than one command, you must use a semicolon between
commands and enclose tedit-command-line in quotation marks, as shown:

TEDIT "QUERY6; LASTPAGE";

Example—TEDIT

This example invokes TEDIT from SQLCI:

>> TEDIT;

10 SECURITYMODE CHAR(1) S if Safeguard security
G if Guardian security

11 OBJECTVERSION SMALLINT
UNSIGNED

Version of table, view, or collation

12 SIMILARITYCHECK VARCHAR(3
0)

ENABLED if similarity check is allowed,
DISABLED if not

* Indicates primary key

TEDIT [tedit-command-line] ;

Table T-1. The TABLES Table (page 2 of 2)

Column Name Data Type Description
HP NonStop SQL/MP Reference Manual—523352-013
T-3

Temporary Tables
Temporary Tables
SQL creates temporary tables as needed according to these rules:

 If a query involves a join operation, SQL creates a temporary table on the volume
on which the outermost table in the join resides. If the table is partitioned, SQL
creates a temporary table on the volume on which the specified partition resides.

 If a query involves a hash join or a hash grouping, SQL creates temporary files on
the program swap volume.

 If a query requires a sort operation but does not use FastSort, SQL creates any
temporary tables used for the sort on the volume on which the table being sorted
resides. If the table is partitioned, SQL creates any temporary table on the same
partition as the partition being sorted.

 If SQL uses FastSort to sort a table, FastSort’s SORTPROG process creates a
temporary file on the SORTPROG scratch volume.

To redirect temporary tables created by SQL, use the =_SQL_TM_node_vol DEFINE.

To redirect temporary tables created by SORTPROG, use the =_SORT_DEFAULTS
DEFINE.

If SMF is installed on your node, temporary table placement for serial plans is
unchanged. For example, if the outermost table in a join resides on a virtual volume,
SQL creates a temporary table on the same virtual volume. However, for parallel plans
SQL places temporary tables only on physical volumes. Virtual volumes are never
candidates for temporary tables SQL creates during a parallel operation.

TIME_FORMAT Option
TIME_FORMAT is an option of the SQLCI report writer SET STYLE command that
defines a default print format for items specified with AS TIME *.

time-format

is a format to use as the default format for print items specified with AS TIME *. For
information about how to specify formats, see AUDIT File Attribute on page A-74.

The default format is HP2:M2:S2.

Example—TIME_FORMAT

This example sets a new default time format:

>> SET STYLE TIME_FORMAT "HB:M2:S2:C2:T3";

TIME_FORMAT “time-format”
HP NonStop SQL/MP Reference Manual—523352-013
T-4

TIME Data Type
An example of this format is:

3:45:20:16:033

TIME Data Type
Data of type TIME represents a time of day according to a 24-hour clock. Values of
data type TIME are equivalent to values of data type DATETIME declared:

DATETIME HOUR TO SECOND

For more information, see DATETIME Data Type on page D-15.

Example—TIME Data Type

These literals are of data type TIME in (respectively) default, USA, and European
format:

TIME "13:40:05"
TIME "1:40:05 PM"
TIME "13.40.05"

For more information, see Date-Time Literals on page D-10.

TIMESTAMP Data Type
Data of type TIMESTAMP represents a date according to the Gregorian calendar and a
time of day according to a 24-hour clock. Values of data type TIMESTAMP are
equivalent to values of data type DATETIME declared as:

DATETIME YEAR TO FRACTION(6)

For more information, see DATETIME Data Type on page D-15.

Example—TIMESTAMP Data Type

These literals are of data type TIMESTAMP in (respectively) default, USA, and
European format:

TIMESTAMP "1990-01-22:13:40:05.55"
TIMESTAMP "01/22/1990 01:40:05.55 PM"
TIMESTAMP "22.01.1990 01.13.05.55 PM"

For more information, see Date-Time Literals on page D-10.
HP NonStop SQL/MP Reference Manual—523352-013
T-5

TMF Transactions
TMF Transactions
The TMF subsystem simplifies the task of maintaining data consistency for a
distributed database being updated by concurrent transactions.

A TMF transaction (a set of database changes that must be completed as a group) is
the basic recoverable unit if a failure or transaction interruption occurs. TMF
transactions can be defined during an SQLCI session or in a host program. The typical
order of events is:

1. Transaction is started.

2. Database changes are made.

3. Transaction is committed.

If, however, the changes cannot be made or the user does not want to complete the
transaction, the transaction can be aborted so the database is rolled back to its original
state.

Transaction Control Statements

The statements in this table control TMF transactions.

Statements that control TMF transactions can be used from SQLCI or coded in an
application.

For the TMF subsystem, the statements for each function are equivalent. Error
processing, however, depends on the language of the statement.

User-Defined and System-Defined Transactions

TMF transactions you define are called user-defined transactions. In some
cases, NonStop SQL/MP defines transactions for you. These transactions are called
system-defined transactions. System-defined transactions and the operations
that cause them are discussed in later sections.

Function Language Transaction Control Statement

Start SQL/MP
COBOL
C, Pascal, TAL
SCREEN COBOL

BEGIN WORK
ENTER TAL BEGINTRANSACTION
BEGINTRANSACTION
BEGIN-TRANSACTION

Commit SQL/MP
COBOL
C, Pascal, TAL
SCREEN COBOL

COMMIT WORK
ENTER TAL ENDTRANSACTION
ENDTRANSACTION
END-TRANSACTION

Abort SQL/MP
COBOL
C, Pascal, TAL
SCREEN COBOL

ROLLBACK WORK
ENTER TAL ABORTTRANSACTION
ABORTTRANSACTION
ABORT-TRANSACTION
HP NonStop SQL/MP Reference Manual—523352-013
T-6

Rules for DDL and DML Statements
To ensure that several statements either execute successfully or not at all, you can
define one transaction consisting of several statements by using the BEGIN WORK
and COMMIT WORK statements. You can abort a transaction with the ROLLBACK
WORK statement.

COMMIT WORK and ROLLBACK WORK perform the FREE RESOURCES operation
along with transaction control. COMMIT WORK is equivalent to this sequence:

FREE RESOURCES (SQL statement)

ENDTRANSACTION (procedure call)

ROLLBACK WORK is equivalent to:

FREE RESOURCES (SQL statement)

ABORTTRANSACTION (procedure call)

Rules for DDL and DML Statements

These rules apply to DDL statements in transactions:

 A DDL statement always executes within a TMF transaction or as a series of
system-defined TMF transactions.

 Some DDL statements on audited tables can execute within a user-defined
transaction. Other DDL statements on audited tables, and all DDL statements on
nonaudited tables, cannot execute within a user-defined transaction.

DDL statements that cannot execute in a user-defined transaction automatically
execute in a system-defined transaction or a series of system-defined transactions. An
error occurs if you include these statements in user-defined transactions.

Whether a DDL statement on an audited table can execute within a user-defined
transaction depends on the statement and on the options you specify on the statement.
If a statement cannot be used within a user-defined transaction, the entry for that
statement says so.

These rules apply to DML statements in transactions:

 DML statements in audited tables, views of audited tables, and mixed views must
be performed within a TMF transaction except when reading data with BROWSE
ACCESS.

 If deadlock occurs, the statement receives error 73 and is canceled; the
transaction continues.

Note. The TMF subsystem works only on audited objects, so a transaction does not protect
operations on nonaudited objects. The simplest approach is to make all tables audited. Audited
is the default.
HP NonStop SQL/MP Reference Manual—523352-013
T-7

Rules for SQLCI
Rules for SQLCI

In SQLCI, you do not have to define your own TMF transactions or directly secure
locks on data. By setting the AUTOWORK session option, you can specify
system-defined transactions or user-defined transactions.

 AUTOWORK ON

If you set AUTOWORK to ON, all data in SQL operations is automatically accessed
within a TMF transaction. By default, SQL obtains locks to guarantee a specific
level of data consistency. You can control the level of data consistency by
overriding the defaults provided by the locking mechanism.

SQL defines a transaction or a series of transactions for each DDL statement and
for each DML statement. A TMF transaction does not affect DML operations on
nonaudited objects, however.

The COPY, PURGE, and SECURE utilities also execute within a TMF transaction
or series of transactions when they operate on audited SQL objects.

 AUTOWORK OFF

If you set AUTOWORK to OFF, you can define your own TMF transaction for
statements that can execute within a user-defined transaction. You must define a
transaction for DML operations on audited tables.

SQLCI automatically defines a transaction or series of transactions for a DDL
statement unless a user-defined transaction is in effect.

Rules for Host Programs

 In a host program, you do not have to define a TMF transaction for a DDL
statement, but if the statement can execute within a user-defined transaction, you
can do so if necessary. (SQL automatically starts a system-defined transaction or
series of transactions for a DDL statement on an audited table that occurs outside
a user-defined transaction, ending the final transaction for the statement when the
DDL statement finishes.)

In a host program, however, you must define a TMF transaction for a DML
statement that operates on an audited object.

 Typically, only one TMF transaction at a time is in progress for an application.

 Either the requester or the server can start the transaction. Any program in a
program unit can start the transaction.

 A context-free server should close its cursors and free locks on nonaudited tables
before replying to the requester.

 If a host program executes a DDL statement on audited objects within a
user-defined TMF transaction, the DDL operation is performed as part of the
user-defined TMF transaction. If the operation terminates successfully, the host
program determines whether to commit or abort the transaction. In contrast, if the
HP NonStop SQL/MP Reference Manual—523352-013
T-8

TOTAL Command
DDL operation terminates with an error and the operation was partially performed,
the system automatically aborts the user-defined TMF transaction.

 DDL statements that operate on nonaudited tables cannot execute when a
user-defined TMF transaction is in progress.

 A DML statement access option should provide transaction consistency and
concurrency appropriate for your application and the environment in which it runs.

 When your program updates both audited and nonaudited tables in a TMF
transaction, remember that only the audited tables are protected against
inconsistency by TMF.

For example, suppose that a transaction updates two audited tables, A and C, and
an unaudited table, B. Within the transaction, your program updates tables A and
B, detects an error when attempting to update table C, and aborts the transaction.
TMF undoes the changes to table A, but the changes to table B remain, making the
database inconsistent.

TOTAL Command
TOTAL is an SQLCI report writer command that specifies columns in a report for which
to calculate and print totals. TOTAL returns you to the first SELECT output row.

column

identifies a column to total. The column must be a column with a numeric data type
from the current detail line and cannot be an IF/THEN/ELSE column. You can
specify column as a column name, an alias, a detail alias, or COL number (which
specifies the position of the column in the select list).

Considerations—TOTAL

 Only one TOTAL command is in effect at a time. When you enter a TOTAL
command, it replaces the previous TOTAL command.

 A total prints immediately beneath the print item it totals and uses the same display
format as the print item.

When you specify a print item in a DETAIL command, make sure the display
format in the AS clause allows enough room for the total. If the total is too large for
its display format, the field is filled with overflow characters instead of a total.

To include a date-time value in an AS clause, use JULIANTIMESTAMP to convert
it to a Julian timestamp.

To define a sufficiently large total field for an INTERVAL total (which cannot use an
AS clause), specify a heading wide enough for the largest total value you expect.

TOTAL column [, column] ... ;
HP NonStop SQL/MP Reference Manual—523352-013
T-9

Examples—TOTAL
Totals require three report lines: two for underline characters (see
UNDERLINE_CHAR Option on page U-1) and one for the totals.

 In calculating totals, the report writer uses the maximum format for the item's data
type and the same scale as the item to be totaled. In unusual cases (such as when
an expression contains an item multiplied by an extremely small fractional value),
this strategy can cause numeric overflow.

Specifying small numeric values in exponential notation (for example,
.0000246615 E0 instead of .0000246615) can prevent overflow by causing the
report writer to use a floating-point format for such calculations.

Examples—TOTAL

 This example selects data, specifies a detail line, and specifies a column to total:

>> SELECT * FROM PERSNL.EMPLOYEE WHERE DEPTNUM = 3000;
S> DETAIL EMPNUM, SALARY;
S> TOTAL SALARY;

The output might look like:

EMPNUM SALARY
------ -----------
 1 175500.00
 ...

 489075.00

 This example selects data, uses NAME to assign names to the last two columns in
the report, and then specifies totals for those columns:

>> SELECT PARTNUM, AVG(QTY_ORDERED),
AVG(UNIT_PRICE*QTY_ORDERED)
+> FROM SALES.ODETAIL
+> GROUP BY 1
+> ORDER BY 1;
S> NAME COL 2 AVGORD;
S> NAME COL 3 AVGPR;
S> TOTAL AVGORD, AVGPR;

The output might look like:

PARTNUM AVGORD AVGPR
------- ------------------- --------------------
 ...
 7102 55 687.50
 7301 3 4807.99
 ------------------- --------------------
 ------------------- --------------------
 1480 55683.59
HP NonStop SQL/MP Reference Manual—523352-013
T-10

TRANSIDS Table
TRANSIDS Table
The TRANSIDS table is a catalog table used to prevent multiple DDL operations from
being executed on the same catalog at the same time under the same TMF
transaction. Table T-2 describes the contents of the TRANSIDS table.

The TRANSIDS table was created in version 1.

TRIM Function
The TRIM function removes leading and trailing characters from a character string.

trim-type

specifies whether characters are to be trimmed from the leading end (LEADING),
trailing end (TRAILING), or both ends (BOTH) of the character string. If you omit
trim-type, the default is BOTH.

Table T-2. TRANSIDS Table

Column Name Data Type Description

1 TRANSID* LARGEINT
SIGNED

TMF transaction ID under which currently executing
DDL operation that uses this catalog is being
performed

2 SYSNUMBER SMALLINT
SIGNED

Node number of catalog manager process executing
the DDL statement

3 PROCESSNAME CHAR(6) Process name of catalog manager process
executing the DDL statement

* Indicates primary key

TRIM ([[trim-type] [trim-char]
 FROM] character-string)

 where trim-type is:

 { LEADING }
 { TRAILING }
 { BOTH }

 trim-char and character-string are:

 { string-literal }
 { column-name }
 { param-name }
 { host-var-name }
 { UPSHIFT function }
 { character-expression }
HP NonStop SQL/MP Reference Manual—523352-013
T-11

Consideration—TRIM Function
trim-char

specifies the character to be trimmed from the string. The data type of trim-char
must be CHARACTER with a maximum length of 1. If you omit trim-char, SQL
trims blanks (“ “) from the string.

character-string

specifies the string from which to trim characters.

Consideration—TRIM Function

The result is always of type VARCHAR, with the same collating attributes as the source
character-string. If the source character string is an upshifted CHAR or
VARCHAR string, the result is an upshifted VARCHAR type. The TRIM character and
the character string to be trimmed should have the same or comparable collations and
identical character sets. Otherwise, SQL returns an error.

Examples—TRIM Function

 This example returns “Robert”:

TRIM (" Robert ")

 This example uses a table created:

CREATE TABLE NAMES (FIRST_NAME CHAR(15), LAST_NAME CHAR(15))
INSERT INTO NAMES VALUES ("Robert", "Smith")

 To retrieve “Robert Smith” without extra blanks, you could use the TRIM operator:

TRIM (TRAILING " " FROM FIRST_NAME) || " " || TRIM
(LAST_NAME)

For more information about the concatenation operator (||), see Character
Expressions on page C-14.

 You can also use the TRIM function to perform a LIKE comparison with
fixed-length host variables:

CREATE TABLE T (A CHAR(10))
INSERT INTO T VALUES ("ROBERT")
INSERT INTO T VALUES ("ROMEO")
INSERT INTO T VALUES ("JOHN")
SELECT A FROM T WHERE TRIM(A) LIKE :host_var
HP NonStop SQL/MP Reference Manual—523352-013
T-12

U
UNDERLINE_CHAR Option

UNDERLINE_CHAR is an option of the SQLCI report writer SET STYLE command that
specifies the character to use for underlining.

Underline characters print below headings and above subtotals and totals.

character

is a printable, single-byte character to use for underlining. The default is -
(hyphen).

Example—UNDERLINE_CHAR

This example changes the underline character to the equal sign:

>> SET STYLE UNDERLINE_CHAR "=";

A heading appears as:

ORDERNUM
==========

UNLOCK TABLE Statement
UNLOCK TABLE is a DCL statement that releases locks owned by SQLCI or by a host
program on a nonaudited table or on underlying nonaudited tables of a view.

UNLOCK TABLE does not affect audited tables. (Ending a TMF transaction unlocks an
audited table. For more information, see TMF Transactions on page T-6.)

name

is the name of a table or view to unlock.

Considerations—UNLOCK TABLE

 To unlock a table, you must have authority to read the table. To unlock a view, you
must have authority to read the tables underlying the view.

 Always follow an UNLOCK TABLE statement with a CONTROL TABLE statement
with the TABLELOCK ENABLE option, as shown in the examples. The CONTROL
TABLE statement provides information at compile time, unlike the UNLOCK TABLE
statement, which is in effect only at execution time.

UNDERLINE_CHAR "character"

UNLOCK TABLE { name }
HP NonStop SQL/MP Reference Manual—523352-013
U-1

Examples—UNLOCK TABLE
When you specify the default value, TABLELOCK ENABLE, the executor can
determine at run time whether a table lock is necessary. This strategy increases
concurrency for statements that do not require a table lock, such as those
statements that need only a few row locks.

 A host program cannot execute an UNLOCK TABLE statement if the program has
a cursor open on the table or view with STABLE or REPEATABLE access. Close
the cursor with a CLOSE or FREE RESOURCES statement before you execute
UNLOCK TABLE statement.

Examples—UNLOCK TABLE

 This example locks and unlocks a nonaudited table from an SQLCI session in
which the AUTOWORK AUDITONLY is ON:

>> VOLUME $VOL1.PERSNL;
>> LOCK TABLE JOB IN EXCLUSIVE MODE;
--- SQL operation complete
>> DELETE FROM JOB WHERE JOBCODE
+> NOT IN (SELECT DISTINCT JOBCODE FROM EMPLOYEE);
--- 8 row(s) deleted.
 ...
>> UNLOCK TABLE JOB;
--- SQL operation complete

 This example locks and unlocks a nonaudited table from a program:

EXEC SQL
 LOCK TABLE SALES.PARTS IN EXCLUSIVE MODE;
EXEC SQL
 CONTROL TABLE SALES.PARTS TABLELOCK ON;
 ...
EXEC SQL
 UNLOCK TABLE SALES.PARTS;
EXEC SQL
 CONTROL TABLE SALES.PARTS TABLELOCK ENABLE;
HP NonStop SQL/MP Reference Manual—523352-013
U-2

UPDATE Statement
UPDATE Statement
UPDATE is a DML statement that updates rows of a table or protection view.

name

is the name (or an equivalent DEFINE) of the table or protection view to update.
name cannot be the name of a catalog table.

col

is the name of the column to update. You cannot qualify the column name, repeat a
column name, or specify the column of a primary key or clustering key.

exp

is an SQL expression that specifies a value for the column. exp can be a literal,
the keyword NULL (which indicates a null value), a host variable (possibly with an
indicator variable to specify a null value), or a parameter, but its data type
(including character set, if any) must be the same as that associated with the
column.

exp cannot include a subquery or an aggregate function, but it can refer to any
column in the row, including the SYSKEY column. (If exp refers to the column
being updated, SQL uses the prior value to evaluate the expression and determine
the new value.)

WHERE search-cond

specifies a search condition for selecting rows to update. Subqueries within
search-cond cannot refer to the table or view being updated. For more
information, see Search Conditions on page S-5.

[FOR] { STABLE | REPEATABLE } ACCESS

specifies the degree of consistency required while rows are compared to the
search condition; affects the type of locks SQL uses in the execution plan for the
UPDATE and the degree of concurrency for other applications:

UPDATE { name } SET col = exp [, col = exp] ...

 [[| WHERE search-cond |]]
 [[| |]]
 [[| [FOR] {STABLE } ACCESS |]]
 [[| {REPEATABLE} |]]
 []
 [WHERE CURRENT OF cursor]

STABLE specifies stable consistency; SQL uses locks of short duration.

REPEATABLE specifies repeatable consistency; SQL uses locks of long
duration.
HP NonStop SQL/MP Reference Manual—523352-013
U-3

Considerations—UPDATE
The default is REPEATABLE.

For a detailed discussion of both STABLE and REPEATABLE, see Access Options
on page A-1.

WHERE CURRENT OF cursor

(for use in programs only) specifies a host-program cursor to identify the row to be
updated. The cursor must be positioned at a single row to be updated and not
between rows.

For static SQL programs, each column to be updated must appear in the FOR
UPDATE clause of the cursor declaration. For dynamic SQL programs, each
column to be updated must appear in the FOR UPDATE clause of the SELECT
that defines the cursor.

You cannot specify WHERE CURRENT OF cursor when using parallel execution.

Considerations—UPDATE

 UPDATE requires authority to read and write to the table or view being updated
and authority to read any table or view specified in subqueries of the search
condition.

You cannot use UPDATE to update a catalog table.

 Rows must be locked to be updated. The condition that identifies the row to be
updated determines the locking protocol for the update. If a cursor identifies the
row, the ACCESS option of DECLARE CURSOR determines the locking protocol;
if a WHERE clause identifies the row, the access option in the UPDATE statement
determines the locking protocol.

 Each updated row must satisfy the assertions of the table or underlying table of the
view. An updated row from a protection view created with the WITH CHECK
OPTION must satisfy the view selection criteria. (The selection criteria are
specified in the WHERE clause of the AS select-statement clause in the
CREATE VIEW statement.) No column updates occur unless all these conditions
are satisfied.

 Rows are updated in sequence. If an error occurs, SQL returns an error message
and stops updating the table or view.

When the UPDATE finishes successfully, SQL reports the number of times rows
were updated during the operation.

Under certain conditions, updating a table with indexes causes SQL to update the
same row more than once, causing the number of updates that SQL reports to be
higher than the actual number of rows changed. The data in the table is correct
and the message correctly reports the number of times rows were updated. This
behavior (a variation of the “Halloween problem” described in computer science
literature) occurs when all these are true:
HP NonStop SQL/MP Reference Manual—523352-013
U-4

Considerations—UPDATE
 The optimizer chooses the alternate index as the access path.

 The index columns in the equal-predicate are not changed by the update.

 Another index column of the same index is updated to a higher value (if the
column is stored in ASCENDING order, or a lower value if the column is stored
in DESCENDING order).

 For a fixed-length character column, an update value shorter than the column
length is padded with single-byte ASCII blanks (HEX20) to fill the column.

For a varying-length character column, an update value is not padded; its length is
the length of the value specified. In an entry-sequenced table, a value that updates
a varying-length character column must be the same length as the value it
replaces.

 For information on buffering UPDATE operations, see CONTROL TABLE Directive
on page C-77.

 These guidelines apply specifically to using the UPDATE statement in host
programs:

 A TMF transaction must be in progress if you use the WHERE CURRENT OF
clause to update an audited table or view. The same TMF transaction must
include the OPEN cursor, FETCH, and UPDATE operations.

 When using an SQL cursor in a host language program, an UPDATE WHERE
CURRENT operation provides a performance benefit over a stand-alone
UPDATE operation. Updating through a cursor uses virtual sequential block
buffering (VSBB) unless another cursor or a stand-alone UPDATE or DELETE
operation for the same table is used within the same process.

Use an UPDATE WHERE CURRENT operation instead of a stand-alone
operation to access a table (directly or through a view) within the same process
whenever possible. Using a stand-alone operation or another cursor to access
a table (directly or through a view) within the same process invalidates VSBB.
Invalidating VSBB can degrade performance substantially.

 SQL returns these values to the SQLCODE variable after a DELETE:

The SQLCA records the number of rows updated.

0 The UPDATE succeeded

100 No rows satisfied the search condition

> 0 A warning was issued

< 0 An error occurred; the UPDATE did not complete
HP NonStop SQL/MP Reference Manual—523352-013
U-5

Examples—UPDATE
Examples—UPDATE

 This example updates a single row of the ORDERS table that contains information
about order number 200038 and changes the delivery date:

>> UPDATE SALES.ORDERS SET DELIV_DATE = 880522
+> WHERE ORDERNUM = 200038;
--- 1 row(s) updated.

 This example updates several rows of the CUSTOMER table:

>> UPDATE SALES.CUSTOMER SET CREDIT = "A1"
+> WHERE CUSTNUM IN (21, 3333, 324);
--- 3 row(s) updated.

 This example increases the salary of each employee working for a department
located in San Francisco. The subquery is evaluated for each row of the DEPT
table and returns department numbers for departments located in San Francisco.

>> VOLUME $VOL1.PERSNL;
>> UPDATE EMPLOYEE SET SALARY = SALARY * 1.1
+> WHERE DEPTNUM IN (SELECT DEPTNUM FROM DEPT
+> WHERE LOCATION = "SAN FRANCISCO");

 Suppose that you want to change an employee's number. The employee is the
manager of a department. Because EMPNUM is a primary key of the EMPLOYEE
table, you must delete the employee's record and insert a record with the new
number.

You must also update the DEPT table to change the MANAGER column to the
employee's new number. To ensure that all your changes take place (or that none
of them do), you should perform the operation as a TMF transaction, as shown:

>> VOLUME $VOL.PERSNL;
>> BEGIN WORK;
>> DELETE FROM EMPLOYEE WHERE EMPNUM = 23;
--- 1 row(s) deleted.
>> INSERT INTO EMPLOYEE
+> VALUES (50, "JERRY", "HOWARD", 1000, 100, 137000.10);
--- 1 row(s) inserted.
>> UPDATE DEPT SET MANAGER = 50 WHERE DEPTNUM = 1000;
--- 1 row(s) updated.
>> COMMIT WORK;
HP NonStop SQL/MP Reference Manual—523352-013
U-6

UPDATE STATISTICS Statement
UPDATE STATISTICS Statement
UPDATE STATISTICS is a DDL statement that updates the statistics stored in the
catalog for the specified table. SQL does not automatically update statistics; you must
execute this statement to have current statistics in your catalog.

ALL

requests updated statistics for all columns in the table.

If you do not specify ALL, statistics are updated only for columns that make up the
primary or clustering key of the table and columns specified in any index on the
table.

table

is the name of the table for which to update statistics.

RECOMPILE | NO RECOMPILE

specifies whether to invalidate program files that use the table affected by the
UPDATE STATISTICS operation:

RECOMPILE is the default behavior. SQL uses the RECOMPILE option if you do
not specify either option.

Only recompiled programs can take advantage of the new statistics. Invalidating
programs forces recompilation unless the programs were compiled with the
CHECK INOPERABLE PLANS option. SQL automatically recompiles an invalid
program at execution time (unless you specified options to restrict recompilation
when you originally compiled it), but you need to explicitly recompile each program
to revalidate it.

If you specify RECOMPILE, you might want to use VERIFY to display the names of
invalid programs. See VERIFY Command on page V-2.

SIMPLE | PROBABILISTIC

specifies whether to compute statistics using a new internal algorithm, called
PROBABILISTIC, or the algorithm used in previous RVUs of NonStop SQL/MP,
called SIMPLE.

UPDATE [ALL] STATISTICS FOR TABLE table

 [RECOMPILE] [SIMPLE] [EXACT]
 [NO RECOMPILE] [PROBABILISTIC] [SAMPLE n BLOCKS]

RECOMPILE invalidates program files, but if table has SIMILARITY
CHECK ENABLED, does not invalidate files compiled with
CHECK INOPERABLE PLANS.

NO RECOMPILE does not invalidate the program files.
HP NonStop SQL/MP Reference Manual—523352-013
U-7

Considerations—UPDATE STATISTICS
The PROBABILISTIC algorithm is designed to give more accurate results than the
previous (SIMPLE) algorithm. Moreover, when you specify the PROBABILISTIC
option, SQL computes statistics in parallel on partitioned tables; SQL operates in
parallel on each partition in a table.

If you specify the PROBABILISTIC option, SQL ignores the EXACT and SAMPLE
n BLOCKS options. With the PROBABILISTIC algorithm, SQL always reads every
row in the table. If you specify the SIMPLE option, SQL uses either the EXACT or
the SAMPLE n BLOCKS option, depending on which you specify.

The default option is the SIMPLE algorithm.

In future product version updates (PVUs) of NonStop SQL/MP, SQL might switch to
the PROBABILISTIC option as the default option. When this change is
incorporated, an UPDATE STATISTICS statement that has no options specified will
no longer use the SIMPLE algorithm, but instead use the PROBABILISTIC
algorithm. At present, if you want to use the PROBABILISTIC algorithm, you must
specify the PROBABILISTIC option in your UPDATE STATISTICS statements in
embedded SQL or OBEY command files.

EXACT | SAMPLE n BLOCKS

specifies whether to compute statistics by reading each row in each partition of the
table (EXACT) or to compute statistics by sampling n blocks of each partition in the
table (SAMPLE n BLOCKS) and extrapolating from that sample. The value n must
be greater than zero.

If you do not specify either option, SQL computes statistics based on reading all
rows in partitions smaller than 1000 blocks and reading approximately 500 blocks
from partitions of 1000 blocks or more. (In the latter case, SQL reads a larger
sample if less than 3 percent of the total values have been sampled and 97
percent or more of the sampled values are distinct.)

Considerations—UPDATE STATISTICS

 To update statistics for a table, you must be the generalized owner of the table.
You must also have authority to read the table and to write to the catalogs that
describe the table.

Only one DDL statement can operate on a given SQL object (or partition of an SQL
object) at a time. An error occurs if you attempt to execute an UPDATE
STATISTICS statement while another process is executing a DDL operation on the
same object. The specific error depends on the DDL operation involved and the
phase of the operation at which the conflict occurs. For more information, see
Concurrency on page C-65.

 UPDATE STATISTICS collects and saves these statistics:

 Date and time UPDATE STATISTICS was last run on the table

 Number of rows in the table
HP NonStop SQL/MP Reference Manual—523352-013
U-8

Considerations—UPDATE STATISTICS
 Byte address of the end-of-file of the table

(The number of bytes indicates the space used by the table.)

 Percent of blocks that contain rows (nonempty blocks)

 Number of index levels for the indexes on the table

(Each level represents a disk access operation required to retrieve data.)

 Number of unique entries in each column

(All null entries count as one unique entry, just as with other values.)

 Second highest value in each column

(Ignores null values; uses highest nonnull value if number of unique entries is
three or fewer.)

 Second-lowest value in each column

(Ignores null values; uses lowest nonnull value if number of unique entries is
three or fewer.)

Except for row count, statistics are for the entire table (not for individual
partitions as in earlier PVUs of NonStop SQL/MP). Note that the second-
highest and second-lowest values reflect the column values of the entire table,
rather than of a single partition. The unique entry count is the unique entry
count for the entire table divided by the number of partitions in the table.

UPDATE STATISTICS does not erase statistics already in the catalog that are
unaffected by the current update. For example, if an UPDATE STATISTICS
statement follows an UPDATE ALL STATISTICS statement for the same table,
the statistics remain unchanged for the columns that are not part of an index or
the primary key or clustering key.

When a table or a table partition is empty, UPDATE STATISTICS uses default
values to update items for which it does not have actual values and returns
warning 1404. UPDATE STATISTICS always enters the current timestamp in
the STATISTICSTIME column of the BASETABS catalog table, whether or not
other statistics are available.

These statistics are used by the SQL compiler in selecting a strategy for an
execution plan. If the structure, contents, or indexes of the table have changed,
or if you experience a degradation in performance, use UPDATE STATISTICS
to update the information about the table in the catalog. You should also
recompile your programs. With up-to-date information, the SQL compiler can
choose the best path for queries on the table.

 Before executing UPDATE STATISTICS, determine whether the table is
fragmented (that is, whether the pages have a large amount of unused space). At
the command interpreter prompt, use the FILEINFO command with the
STATISTICS option to check the table. If the average percent of slack is large, use
HP NonStop SQL/MP Reference Manual—523352-013
U-9

Examples—UPDATE STATISTICS
SQLCI LOAD or FUP RELOAD to reorganize the table before updating the
statistics.

 UPDATE STATISTICS momentarily locks the definition of the table in the catalog
during the operation, but not the table itself; the statement uses BROWSE
ACCESS.

 All partitions of a table must be available for SQL to generate accurate statistics,
not just the partition specified in the UPDATE STATISTICS statement.

If any partitions are unavailable when you run UPDATE STATISTICS, SQL
issues a warning, skips the unavailable partitions, and updates statistics for the
remaining partitions using default values for the unavailable partitions. If this
occurs, you should rerun UPDATE STATISTICS with all partitions as soon as
possible.

If a partitioned table does not have statistics (that is, if you have never
executed UPDATE STATISTICS for that table) and one of the partitions is not
available when you execute SELECT or another DML operation on the table,
SQL returns a warning and a file-system error even if the query does not
retrieve any rows from the unavailable partition. The warning does not occur
for very small tables, but you can prevent it from occurring at all by executing
UPDATE STATISTICS at least once for any partitioned table.

 When your table has many partitions—for example, 100—you might want to avoid
putting the UPDATE STATISTICS statement in a user-defined TMF transaction.
With many partitions, the UPDATE STATISTICS operation might take so long that
TMF might have too little log file space to perform all the logging required by other
TMF transactions at the time.

If no user-defined TMF transaction is in progress when UPDATE STATISTICS
executes, SQL starts several for the operation but does not include scanning the
table for information within a transaction. Because UPDATE STATISTICS uses
BROWSE ACCESS to scan the table, the results are approximate.

 To see current statistics, use the SELECT statement to retrieve the information
from the catalog tables. For example, the second-highest value of a column is
stored in the COLUMNS table. The STATISTICSTIME column of the BASETABS
table contains the time that statistics for the table were last updated, stored as a
timestamp in Greenwich mean time.

For more information about the information stored in the catalog, see CATALOGS
Table on page C-11 or the entry for a specific catalog table.

Examples—UPDATE STATISTICS

 This example updates all statistics for a table named PARTLOC on the current
default volume and subvolume without invalidating the associated programs:

UPDATE ALL STATISTICS FOR TABLE PARTLOC NO RECOMPILE;
HP NonStop SQL/MP Reference Manual—523352-013
U-10

UPGRADE CATALOG Command
 This example updates statistics for columns in the primary key or in indexes for a
table named STUDENTS, directing SQL to calculate the statistics based on the
contents of the first 300 blocks in each partition:

UPDATE STATISTICS FOR TABLE STUDENTS SAMPLE 300 BLOCKS;

UPGRADE CATALOG Command
UPGRADE CATALOG is an SQLCI utility command that converts catalogs to a newer
version so the catalogs can register objects associated with a newer version of the
SQL/MP software.

catalogs

specifies the catalogs to upgrade. It can be a single catalog name, a type
CATALOG DEFINE name, or a name that specifies multiple catalogs by including
these wild-card characters:

For example, these names specify multiple catalogs:

Catalogs specified by catalogs can be either local or remote, but cannot be
system catalogs. (Use UPGRADE SYSTEM CATALOG to convert a system
catalog.)

The default is the current default catalog.

If SMF is installed on your node, catalogs cannot specify any catalog on a
$*.ZYS*. subvolume.

TO version

specifies the catalog format version for the upgraded catalog.

You can express version as an integer (2, 300, 310, 315, 320, 325, or 330) or as
a string (A011, A300, A310, A315, A320, A325, or A330), but the version you

UPGRADE CATALOG[S] [catalogs] [TO version] ;

? matches any single character

* matches 0 to 8 characters

MYCAT? matches MYCAT1, MYCAT2, and MYCATX (and possibly others),
but not MYCAT48

$DATA.* matches all catalogs on volume $DATA

=APPCAT matches the catalog specified by the =APPCAT DEFINE

(MYCAT?,
=APPCAT)

matches MYCAT1, MYCAT2, MYCATX, (and possibly others) and
the catalog specified by =APPCAT

$*.* matches all catalogs on the current default node except the system
catalog
HP NonStop SQL/MP Reference Manual—523352-013
U-11

Considerations—UPGRADE CATALOG
specify must be newer than the current version of the catalogs you specify with
catalogs. In addition, version must not specify a version newer than the
version of the SQL/MP software executing UPGRADE CATALOG or newer than
the version of the SQL/MP software running on the node of the catalog being
upgraded.

The default is the version of the SQL/MP software installed on the node on which
the catalogs reside, or the version of the SQL/MP software executing UPGRADE
CATALOG, whichever is older.

For more information about NonStop SQL/MP product versions, see Versions on
page V-6 or the SQL/MP Version Management Guide.

Considerations—UPGRADE CATALOG

 To upgrade a catalog, you must be a generalized owner of the catalog. You must
also have authority to write to the CATALOGS table in the system catalog.

UPGRADE CATALOG requires exclusive access to the catalogs being upgraded.
Other processes cannot access the catalogs during the upgrade. The upgrade fails
if another process has one of the tables in the catalogs open when you execute
UPGRADE CATALOG. In addition, all indexes, views, and programs registered in
the catalogs must be available for read access.

For performance reasons, SQLCI sometimes keeps catalog files open for five
minutes after the SQLCI command or statement that uses them finishes. This
strategy can interfere with a subsequent UPGRADE CATALOG operation in the
SQLCI session. If such interference occurs, exit SQLCI and start a new SQLCI
session.

 Unless UPGRADE CATALOG executes within a user-defined transaction, an error
that causes the upgrade of one catalog specified in catalogs to fail does not
necessarily cause the upgrades of other catalogs specified in catalogs to fail.
(Use GET VERSION if you want to check the version of a specific catalog.)

 UPGRADE CATALOG invalidates any program that refers to a catalog table in the
upgraded catalogs, but does not invalidate a program merely because it is
registered in an upgraded catalog or because it accesses objects registered in an
upgraded catalog.

Examples—UPGRADE CATALOG

 This example converts the current default catalog to the same version as the
current SQL/MP software:

>> UPGRADE CATALOG;

 Either of these commands converts the catalog on subvolume $VOL.SVOL to
version 320:

>> UPGRADE CATALOG $VOL.SVOL TO 320;
>> UPGRADE CATALOG $VOL.SVOL TO A320;
HP NonStop SQL/MP Reference Manual—523352-013
U-12

UPGRADE SYSTEM CATALOG Command
 This example converts all catalogs (except the system catalog) on the current
default node to the same version as the current SQL/MP software:

>> UPGRADE CATALOGS $*.*;

UPGRADE SYSTEM CATALOG Command
UPGRADE SYSTEM CATALOG is an SQLCI utility command that allows a user with
super ID authority to convert the system catalog on the local node to support a newer
version of NonStop SQL/MP.

TO version

specifies the catalog format version for the upgraded system catalog.

You can express version as an integer (2, 300, 310, 315, 320, 325, or 330) or as
a string (A011, A300, A310, A315, A320, A325, or A330), but the version you
specify must be greater than the current version of the catalogs you specify with
catalogs. In addition, version must not be the product version of the SQL/MP
software installed on the node.

The default is the version of the SQL/MP software installed on the node.

For more information about NonStop SQL/MP product versions, see Versions on
page V-6 or the SQL/MP Version Management Guide.

Considerations—UPGRADE SYSTEM CATALOG

 Only the local super ID can execute UPDATE SYSTEM CATALOG.

UPGRADE SYSTEM CATALOG requires exclusive access to the system catalog
being upgraded. Other processes cannot access the system catalog during the
upgrade. The upgrade fails if other processes have the system catalog open when
you issue the UPGRADE SYSTEM CATALOG command. In addition, all indexes,
views, and programs registered in the system catalog must be available for read
access.

 UPGRADE CATALOG invalidates any program that refers to a table in the system
catalog, but does not invalidate a program merely because it is registered in the
system catalog or because it accesses objects registered in the system catalog.

Example—UPGRADE SYSTEM CATALOG

This example upgrades the system catalog on the local system to version 315:

>> UPGRADE SYSTEM CATALOG TO 315;

UPGRADE SYSTEM CATALOG [TO version] ;
HP NonStop SQL/MP Reference Manual—523352-013
U-13

UPSHIFT Function
UPSHIFT Function
UPSHIFT is a function that upshifts single-byte characters. UPSHIFT can appear in a
select list, an ON clause, a WHERE clause, a HAVING clause, a LIKE predicate, an
expression, or qualifying a new value in an UPDATE or INSERT statement.

UPSHIFT returns a string of either character or varying-length character data,
depending on the data type of the input string.

For more information, see Character Expressions on page C-14.

character-exp

is a character expression that specifies a string of single-byte characters to upshift.

Considerations—UPSHIFT

 If the character expression you specify as an argument to UPSHIFT is associated
with a collation, SQL upshifts the string based on the rules specified in that
collation.

If the argument is not associated with a collation, SQL converts lowercase
characters to uppercase characters according to the usual rules of English.

 In version 2, the argument to UPSHIFT could be a column name, a string literal
(without an associated character set), a parameter name, or a host variable name,
but could not be any other form of character expression.

If you use the UPSHIFT function according to version 2 rules, the program will be
at least version 2. If you use the UPSHIFT function according to version 3 rules,
the program will be at least version 3.

Examples—UPSHIFT

 This example selects all values from the column CUSTNAME and returns them in
uppercase:

>> SELECT UPSHIFT(CUSTNAME) FROM =CUSTOMER;

 This example performs a case-insensitive search for the customer name HOTSYS.
(In the table, the name can be in lowercase, uppercase, or mixed case.)

>> SELECT * FROM =CUSTOMER
+> WHERE UPSHIFT(CUSTNAME) = "HOTSYS";

 This example returns all rows from two tables in which department names have the
same value, regardless of case:

>> SELECT * FROM =DEPT1, =DEPT2
+> WHERE UPSHIFT(DEPT1.DEPTNAME) = UPSHIFT(DEPT2.DEPTNAME);

UPSHIFT (character-exp)
HP NonStop SQL/MP Reference Manual—523352-013
U-14

USAGES Table
USAGES Table
The USAGES table is a catalog table that keeps records of dependencies between
objects and between programs and objects. Table U-1 describes the contents of the
USAGES table. In the column descriptions, the terms initial object and used
object refer to an object on which another object depends. The dependent object is
called a using object.

The USAGES table was created in version 1. The CP option was added to
USEDOBJTYPE and USINGOBJTYPE in version 300.

The relations recorded in the USAGES table are:

 Program uses view, table, or index
 View uses view or table
 Index uses table
 Table, view, index, or program uses collation

If a table or index is partitioned or a view has an underlying partitioned table, the
relations are established with the primary partition and recorded in the primary
partition's catalog.

Relations between objects that reside in separate catalogs appear in both catalogs.

Relations between partitions and relations to constraints, comments, or files are not
recorded. This information is already present in other catalogs.

Table U-1. The USAGES Table

Column Name Data Type Description

1 USEDOBJNAME * CHAR(34) Name of initial object

2 USEDOBJTYPE * CHAR(2) CP if collation
IN if index
TA if table
VI if view

3 RELATIONSHIPTYPE * CHAR(2) DP if using object depends on used object

4 USINGOBJNAME * CHAR(34) Name of dependent object

5 USINGOBJTYPE * CHAR(2) IN if index
VI if view
PG if program
TA if table

6 USEDCATALOGNAME CHAR(25) Subvolume of catalog that describes initial
object

7 USINGCATALOGNAME CHAR(25) Subvolume of catalog that describes
dependent object

* Indicates primary key
HP NonStop SQL/MP Reference Manual—523352-013
U-15

User-Defined Keys
Only direct relations are stored. Indirect relations can be determined by following a
path from one relation to another.

The lock length for the USAGES table is set to zero to indicate that the entire primary
key length should be used for locking.

Guardian names in USAGES are fully qualified and use uppercase characters. Names
of SQL programs in OSS files are stored as the corresponding ZYQ Guardian names,
not OSS pathnames.

User-Defined Keys
A user-defined primary key is made up of the columns specified in the PRIMARY KEY
clause of the CREATE TABLE statement when the table is created. Values for a
user-defined primary key must be unique within the table. Only a table stored in a
key-sequenced file can have a user-defined primary key.

Each column in the primary key has an ordering characteristic (either ascending or
descending) that determines the order for storing and retrieving the rows. If multiple
rows share the same value for the first column of the primary key, the value and the
ordering characteristic of the second column determines the order for storing or
retrieving the rows, and so forth.

The columns in a primary key cannot contain null values and cannot be updated.

The length of a primary key cannot exceed 255 bytes. To calculate the length of the
key, add the number of bytes in the columns that make up the key. For each
varying-length character column, add 2 to the byte count determined by the number
and size of the characters allowed in the column. (SQL uses the two additional bytes to
store the character count.)

The system does not generate a SYSKEY for a table that has a user-defined primary
key.

Utilities
SQLCI includes a variety of utilities that perform database maintenance tasks and that
access editors and other commonly used Guardian utilities from within an SQLCI
session.

These SQLCI commands access SQLCI utilities:

CLEANUP INVOKE

CONVERT LOAD

COPY MODIFY CATALOG

DISPLAY USE OF MODIFY LABEL

DOWNGRADE CATALOG MODIFY REGISTER

DOWNGRADE SYSTEM CATALOG PERUSE
HP NonStop SQL/MP Reference Manual—523352-013
U-16

Utilities
The SQLCI commands EDIT, FUP, PERUSE, and TEDIT access Guardian utilities from
SQLCI that you can also access from TACL; the other utilities are part of NonStop
SQL/MP. For more information about these utilities, see entries for specific commands.

You can also use the Guardian utilities, BACKUP, DCOM, DSAP, PUP, and RESTORE
on SQL/MP objects, but you must run these utilities from TACL, not from SQLCI.
Guardian utilities are described in the Guardian Disk and Tape Utilities Reference
Manual and the Peripheral Utility Program (PUP) Reference Manual.

One additional SQL utility, GOAWAY, can be run only from TACL. GOAWAY enables a
user with super ID authority to delete SQL files or shadow labels that cannot be
removed with other commands or utilities. For more information, see GOAWAY
Command on page G-6.

DUP PURGE

EDIT PURGEDATA

EXPLAIN SECURE

FILEINFO TEDIT

FILENAMES UPGRADE CATALOG

FILES UPGRADE SYSTEM CATALOG

FUP VERIFY
HP NonStop SQL/MP Reference Manual—523352-013
U-17

Utilities
HP NonStop SQL/MP Reference Manual—523352-013
U-18

V
VARCHAR_WIDTH Option

VARCHAR_WIDTH is an option of the SQLCI report writer SET STYLE command that
specifies the maximum number of single-byte characters the report writer can display
in a print item of a varying-length character data type.

number

is an integer in the range 1 through 255 that specifies the maximum number of
single-byte characters that can appear in the print item. The default is 80.

Consideration—VARCHAR_WIDTH

You can override the VARCHAR_WIDTH setting by using the Cn display descriptor in
an AS clause for a print item. For information, see AS Clause on page A-60.

You must override VARCHAR_WIDTH to print varying-length character items with
more than 255 bytes. For example, you can use AS C0.40 to print a VARCHAR item
that contains 1000 single-byte characters (or 500 multibyte characters). The value
prints on multiple lines in 40-byte fields.

Example—VARCHAR_WIDTH

This example sets a VARCHAR_WIDTH of 60 (60 single-byte characters or 30
multibyte characters):

>> SET STYLE VARCHAR_WIDTH 60;

VERIFIEDWRITES File Attribute
VERIFIEDWRITES is a file attribute that specifies or inhibits a verification disk read
after each disk write. VERIFIEDWRITES applies to key-sequenced, relative, and
entry-sequenced files, in addition to indexes.

The table default is NO VERIFIEDWRITES. The index default is its table's value at
index creation.

VARCHAR_WIDTH number

{ VERIFIEDWRITES | NO VERIFIEDWRITES }
HP NonStop SQL/MP Reference Manual—523352-013
V-1

Consideration—VERIFIEDWRITES
Consideration—VERIFIEDWRITES

On a verified write, the disk controller hardware makes a byte-by-byte comparison
between the newly written data and the corresponding data in the controller's memory.
Verified writes help ensure the accuracy of write operations, but they increase
response time and disk utilization.

VERIFY Command
VERIFY is an SQLCI utility command that reports whether SQL objects and programs
are consistently described in the file labels and the catalog.

VERIFY also lists invalid SQL programs described in specified catalogs and optionally
generates a command file to recompile the invalid programs stored on Guardian files.
(The command file does not include commands to recompile invalid programs stored
on OSS files.)

[DEF[INITION] [OF]]

is an optional phrase that does not change the meaning of the command. The
words DEFINITION and OF are reserved words.

qualified-fileset-list

is a qualified fileset list that specifies SQL objects and programs to verify, either
directly or indirectly (by specifying catalogs or subvolumes that include the objects
and programs). For information, see Qualified Fileset List on page Q-1.

If qualified-fileset-list includes a FROM CATALOGS clause, VERIFY
expands a list containing wild-card characters using the specified catalogs; if you
omit FROM CATALOGS, VERIFY expands the list using the Guardian disk
directory.

To list invalid programs only, use qualified-fileset-list with the WHERE
SQLPROGRAM qualifier.

If SMF is installed on your node, qualified-fileset-list cannot specify any
file, program, or object on a $*.ZYS*. subvolume.

SOURCE edit-file [CLEAR]

directs SQL to generate SQLCOMP commands to recompile any invalid SQL
programs on Guardian files included in qualified-fileset-list and to write
the SQLCOMP commands in an EDIT file named edit-file. If edit-file does
not exist, SQL creates it.

VERIFY [DEF[INITION] [OF]] qualified-fileset-list

 [[,] SOURCE edit-file [CLEAR]][REPAIR];
HP NonStop SQL/MP Reference Manual—523352-013
V-2

Considerations—VERIFY
You can use edit-file with the TACL OBEY command to recompile the invalid
SQL programs in the Guardian files. (SQL does not generate commands to
recompile SQL programs in OSS files.)

CLEAR clears edit-file before writing SQLCOMP commands. If you omit
CLEAR, SQL appends commands to the existing text.

If SMF is installed on your node, edit-file must be either a logical or direct file.

[REPAIR]

directs VERIFY to re-create any missing SQL object using information available in
the catalog. The newly created object does not contain any data. The VERIFY
command with this option creates the physical object and checks the object for
definitional integrity. This option provides support for tables, partitions, views, and
indexes.

Considerations—VERIFY

 VERIFY requires read authority for the objects being verified and for related
objects and catalogs.

VERIFY requests REPEATABLE access to object definitions in catalogs to prevent
DDL operations on the object during the VERIFY operation. If VERIFY cannot
attain REPEATABLE access, it issues a warning message and continues using
BROWSE access.

VERIFY also requests a SHARED lock on the file label of the object (including all
partitions of partition objects). If VERIFY cannot obtain the lock, it issues a warning
message and continues without the lock.

 VERIFY checks for definitional integrity, but not for data integrity. An object or
program has definitional integrity if its description in the file label is consistent with
its definition in the catalog, and the descriptions of related objects in related disk
file labels are valid. Specific checks depend on the type of item being checked.

For all objects and SQL programs in Guardian files, VERIFY checks that the
version is the same in the file label and in the catalog. VERIFY also checks related
catalogs for relationships with other objects as described in the local USAGES
table.

For a table, VERIFY checks descriptions of the table and its columns, primary key
columns, indexes and index key columns, partitions, and protection views. VERIFY
also checks the consistency of index and partition entries in related file labels.
However, VERIFY does not check whether the text of a constraint associated with
a table is the same in the catalog and in the file label.

For a collation, VERIFY checks descriptions of the collation.

For a protection view, VERIFY checks descriptions of the protection view and its
base table and columns. VERIFY also checks the consistency of base table entries
in related file labels. However, VERIFY does not check whether the data types of
HP NonStop SQL/MP Reference Manual—523352-013
V-3

Considerations—VERIFY
view columns and the SELECT clause of a protection view are the same in the
catalog and in the file label.

For a shorthand view, VERIFY checks descriptions of the view. However, VERIFY
does not check whether data types of view columns are the same in the catalog
and in the file label.

For an index, VERIFY checks descriptions of the index and its base table, views of
the base table, and partitions. VERIFY also checks the consistency of base table
and partition entries in related file labels.

For an SQL program, VERIFY checks whether the program is valid or invalid and
also checks the consistency of the PCV and PFV values in related file labels. For
an SQL program in a Guardian file, VERIFY also checks descriptions of the
program.

For a catalog, VERIFY checks descriptions of each catalog table and each
SQL-supplied index or protection view on a catalog table.

For partitioned objects, VERIFY makes the checks previously described for each
partition of the object. However, VERIFY does not check whether first key values
for partitions are the same in the catalog and in the file label.

VERIFY does not check whether a file label is internally consistent with itself.

 If VERIFY locates an invalid object, you might want to change the VALIDDEF flag
in the appropriate catalog table to prevent further use of the object until the
problem is corrected. (For example, if a view is invalid, change the value of the
VALIDDEF column of the VIEWS table to N.) A user with the super ID can change
values in a catalog table by using the UPDATE command with a licensed version of
SQLCI2. For more information about using a licensed SQLCI2 process, see the
SQL/MP Installation and Management Guide.

 A program can be invalid for a variety of reasons. In some cases, the appropriate
action is to recompile the program. In other cases (especially if the program uses
execution-time name resolution), you might want to continue using the invalid
program. For more information about changes that can cause program invalidation,
see Program Invalidation on page P-28.

If VERIFY returns SQL error -9853 (a column in the catalog table is corrupted) for a
program file, SQL-compiling the program again might correct the problem.

 Avoid using VERIFY within user-defined transactions, because it reduces
concurrency for other operations. If a user-defined transaction is not in progress
when you execute VERIFY, SQL automatically starts a transaction before verifying
each object or program and ends the transaction when the verification of that
object or program is complete.

You can use the Break key to interrupt a VERIFY operation. If you roll back the
transaction and want to restart the operation, you must issue the VERIFY
command again.
HP NonStop SQL/MP Reference Manual—523352-013
V-4

Examples-VERIFY
Repairing Views

Both the protection view and short hand view, after re-creation, contain a new
creation timestamp in the physical objects (file label) and catalog. This invalidates
the programs using these views, which might call for recompilation of the
programs.

Usage of File Sets With Wild-Card Characters in Repair

File sets used in the VERIFY command, such as $VOL.SUBVOL.T* cannot be
repaired because the filenames are extracted from a disk. The file to be repaired
must be fully qualified. File sets with wild-card characters work when the FROM
CATALOG option is chosen.

Examples-VERIFY

 This example verifies objects and locates invalid programs in the SALES catalog:

>> VERIFY *.*.* FROM CATALOG SALES;
--- Verifying $VOL1.SALES.ASSERTS
--- $VOL1.SALES.ASSERTS Verified.
--- Verifying $VOL1.SALES.BASETABS
--- $VOL1.SALES.BASETABS Verified.
 ...
(any invalid programs are listed)
 ...
--- SQL operation complete.

 This example verifies the EMPLOYEE table:

>> VERIFY $VOL1.PERSNL.EMPLOYEE;
--- Verifying $VOL1.PERSNL.EMPLOYEE
--- $VOL1.PERSNL.EMPLOYEE Verified.
--- SQL operation complete.

 This example creates a command file named RECOMPF for recompiling invalid
SQL programs in Guardian files in the SALES catalog:

>> VERIFY $VOL1.SALES.* FROM CATALOG SALES WHERE SQLPROGRAM
+> SOURCE RECOMPF CLEAR;
...
PROGRAM \SYS.$VOL1.SALES.PROGA
 *** WARNING $VOL1.SALES.PROGA is an invalid program.

The RECOMPF file contains this command:

SQLCOMP /IN \SYS1.$VOL1.SALES.PROGA, OUT file/STOREDEFINES

The current SQLCI OUT file is used in the SQLCOMP command.
HP NonStop SQL/MP Reference Manual—523352-013
V-5

Versions
 This example shows how to use the REPAIR option:

>> VERIFY $VOL1.PERSNL.EMPLOYEE REPAIR;
--- Verifying $VOL1.PERSNL.EMPLOYEE
--- $VOL1.PERSNL.EMPLOYEE Verified.
--- SQL operation complete.

Versions
A version is associated with each component of SQL/MP software; with each SQL/MP
catalog, object, or program; and with each host language compiler that supports
NonStop SQL/MP. This table lists NonStop SQL/MP product versions and the RVUs
with which they correspond:

Versions 1, 2, and 315 are sometimes called SQL release 1, SQL release 2, and SQL
release 1.0, respectively.

Each new version of NonStop SQL/MP can run all programs that ran on previous
versions of NonStop SQL/MP, without recompilation. However, to maintain your
programs and take advantage of new features, you should understand the
relationships between different versions. Understanding versioning is important if you
work on a network that runs different versions of NonStop SQL/MP on different nodes,
or if you work with applications and databases that will eventually migrate to newer
versions of the SQL/MP software.

This discussion summarizes major rules that govern relationships between SQL/MP
items of different product versions. For more information, see the SQL/MP Version
Management Guide.

SQL/MP Version RVU

1 C10

2 C30 through D20

300 (Controlled availability release)

310 (Controlled availability release)

315 D30

320 D30

325 N. A.

330 N. A.

335 D42

340 D43

345 D44

350 G06.13
HP NonStop SQL/MP Reference Manual—523352-013
V-6

SQL/MP Component Versions
SQL/MP Component Versions

Each component of the SQL/MP software has a version. Except for the message file,
all SQL/MP software components on any one node in a network must have the same
product version. SQL/MP software on different nodes in the same network can have
different product versions.

The message file used by SQLCI also has a version. SQLCI can execute with a
version of the message file that is older than the version of the other SQL/MP software
on the node, but some messages might be missing or inaccurate as a result. (SQLCI
issues a warning if you start an SQLCI session that uses an older version of the
message file.)

A given version of SQL/MP software can operate on SQL objects registered in catalogs
with the same version as the software or in catalogs with an older version than the
software. A version of SQL/MP software cannot operate on objects registered in
catalogs with a newer version than the software.

The command GET VERSION OF SYSTEM returns the version of SQL/MP software
installed on a node.

Catalog Versions

Each SQL/MP catalog has a version that indicates the newest-version object you can
register in the catalog.

When you create a catalog using SQL/MP software of version 300 or later, NonStop
SQL/MP assigns the new catalog the version of the SQL software running on the node
on which the catalog resides. You can change the version with UPGRADE CATALOG
or DOWNGRADE CATALOG, but no catalog can have a newer version than the
software on the catalog's node, or an older version than that of the newest-version
object registered in the catalog.

A system catalog follows the same rules as any other catalog except that you use
UPGRADE SYSTEM CATALOG and DOWNGRADE SYSTEM CATALOG to change
the version. A system catalog can also register user catalogs of newer versions
(because these are not considered SQL/MP objects) but cannot register objects of
newer versions.

The command GET VERSION OF CATALOG returns the version of a catalog.

Object Versions

Each SQL/MP object (table, view, index, constraint, or collation) has a version that
indicates the oldest version of NonStop SQL/MP that can support that object.

The version of an object depends on the features used in the object and in other
objects on which that object depends. For example, if you create a table that uses only
features that were available in version 1 of NonStop SQL/MP, the table is associated
with version 1, even if you create it with version 315 software. If you add a column to
HP NonStop SQL/MP Reference Manual—523352-013
V-7

Program Versions
the table that has the NCHAR data type, however, the version of the table becomes
version 300 (because the NCHAR data type is first supported in version 300).

Because the version of an object affects the version of any object that depends upon
that object, changing the version of an object can automatically change the version of
other objects that depend on that object. For example, adding an index that has a
newer version than the associated table changes the version of the table. If the table
has a dependent view, the operation also changes the version of the view.

The GET VERSION command returns the version of a table, view, index, or collation.

Program Versions

Each compiled SQL/MP program has three different versions associated with it:

 The host object SQL version (HOSV) is the version of the host language compiler
that compiled the program. It indicates the oldest version of the SQL compiler that
can compile the program.

 The program catalog version (PCV) is the version of the newest-version SQL
feature used in the program. It indicates the oldest version of a catalog that can
register the program. A program can access objects with versions older or newer
than the PCV of the program, but a program cannot be registered in a catalog that
has a version older than the PCV of the program.

 The program format version (PFV) is the version of the SQL compiler that compiled
the program. It indicates the oldest version of SQL/MP software that can execute
the program and the newest version of objects that the program can access. A
program can be registered in a catalog that has a version older or newer than the
PFV of the program, but a program cannot access an object that has a version
newer than the PFV of the program.

A host language compiler cannot have a newer version than the SQL/MP software on
the same node, but can have an older version.

Host language compiler versions

Each host language compiler that supports SQL/MP has a version that indicates the
oldest version of SQL/MP software that can SQL-compile object programs produced by
the host language compiler. The version of the host language compiler becomes the
host object SQL version (HOSV) of the object programs it produces.

The GET VERSION OF PROGRAM command returns the HOSV, PCV, or PFV of a
program.
HP NonStop SQL/MP Reference Manual—523352-013
V-8

VERSIONS Table
VERSIONS Table
The VERSIONS table is a catalog table that stores version information about the
catalog. The version information is also replicated in the SQL.CATALOGS table.
Table V-1 describes the contents of the VERSIONS table.

The columns SUBSYSTEMNAME through CATALOGCLASS (1 through 4) were
created in version 1. The columns CATALOGVERSION and CATALOGFORMAT
(5 through 6) were added in version 300.

Views
A view is a logical table created with the CREATE VIEW statement and derived by
projecting a subset of columns, restricting a subset of rows, or both, from one or more
base tables or other views. A view has a file label but has no actual data separate from
the data in the tables on which it is defined.

A view name must be a Guardian name. The fully expanded name of the view must be
unique among object names in the network.

A view is either a protection view or a shorthand view:

 A protection view is derived from a single table and can be read, updated, and
secured.

 A shorthand view is derived from one or more tables or other views. A shorthand
view can be read but cannot be updated. A shorthand view can be secured for
purge authority, but any user who has read access to the tables and views
underlying the view can read the view.

Table V-1. The VERSIONS Table

Column Name Data Type Description

1 SUBSYSTEMNAME * CHAR(30) Name of subsystem where catalog
resides

2 VERSION CHAR(4) Version of catalog: A010=1,
A011=2, ...A315=315, and so forth

3 VERSIONUPGRADETIME LARGEIN
SIGNED

Julian timestamp for last upgrade
or downgrade of catalog

4 CATALOGCLASS CHAR(1) S if system catalog
U if user catalog

5 CATALOGVERSION SMALLINTUNSIGNED Version number of catalog

6 CATALOGFORMAT SMALLINTUNSIGNED Format number of catalog (version
number of oldest software that can
read or write the catalog)

* Indicates primary key
HP NonStop SQL/MP Reference Manual—523352-013
V-9

VIEWS Table
Protection views are always valid. A shorthand view becomes invalid if a user who
lacks purge authority for the view itself purges any of the tables or views underlying the
view. To make an invalid shorthand view valid, the owner of the invalid view must purge
and re-create the view.

VIEWS Table
The VIEWS table is a catalog table that describes the views available for the base
tables. Table V-2 describes the contents of the VIEWS table.

The VIEWS table was created in version 1, and subsequent modifications have not
been made.

Guardian names in the VIEWS table (including names of tables and views in the
statements stored in the VIEWTEXT column) are fully qualified. Table and view names
in the VIEWTEXT column are actual file names, never DEFINE names. SQL replaces
any DEFINE names with actual file names at the time you create the view.

All CHAR and VARCHAR columns in the VIEWS table use uppercase characters
except for lowercase string literals specified as part of the search condition in the
VIEWTEXT column. Search conditions that specify the system default multibyte
character set are stored as if you specified the actual character set. (For example, if
the system default multibyte character set is Kanji, the literal N”” is stored as
_KANJI”....”.)

Table V-2. The VIEWS Table

Column Name Data Type Description

1 VIEWNAME * CHAR (34) Name of view

2 PROTECTION CHAR (1) Y if protection view
N if shorthand view

3 VALIDDEF CHAR (1) Y if definition valid
N if definition not valid

4 AUDIT CHAR (1) Y if all underlying tables are audited
N if all underlying tables are nonaudited
M if based both on audited and nonaudited
tables

5 WITHCHECKOPTION CHAR (1) Y if defined with WITH CHECK OPTION
 N if not

6 INSERTABLE CHAR (1) Y if row inserts allowed
N if not

7 VIEWTEXT VARCHAR (3000) Text of statement used to define view

* Indicates primary key
HP NonStop SQL/MP Reference Manual—523352-013
V-10

VOLUME Command
VOLUME Command
VOLUME is an SQLCI command that changes the current node, volume, or subvolume
defaults for the SQLCI session. VOLUME also sets the VOLUME attribute of the
=_DEFAULTS DEFINE.

Defaults you set with VOLUME remain in effect until you exit SQLCI or until you enter a
SYSTEM, VOLUME, or ALTER DEFINE that changes the defaults.

\node

 specifies the node to be the current default node.

volume

specifies the volume to be the current default volume.

subvol

specifies the subvolume to be the current default subvolume.

Considerations—VOLUME

 If you enter VOLUME with no parameters, SQLCI resets the current default node,
volume, and subvolume to their values at the start of the SQLCI session. However,
if you specify at least one parameter but omit one or more, SQLCI changes only
what you specify and leaves other values unchanged.

 Changing the current defaults for file name expansion does not affect names in
prepared statements unless a CONTROL QUERY BIND NAMES AT EXECUTION
directive was in effect at the time a PREPARE compiled the statement. If you want
new defaults to take effect in other prepared statements, you must use PREPARE
to recompile the statements. For information, see CONTROL QUERY Directive on
page C-74 or Name Resolution on page N-2.

Examples—VOLUME

 This example changes the current default system to \SYS1:

>> VOLUME \SYS1;

 This example changes the default volume and subvolume to $VOL1.INVENT:

>> VOLUME $VOL1.INVENT;

 [\node]]
 VOLUME [[\node.][$volume]] ;
 [[\node.][$volume.]subvol]
HP NonStop SQL/MP Reference Manual—523352-013
V-11

Examples—VOLUME
 This example resets the default node, volume, and subvolume to their values at
the start of the SQLCI session:

>> VOLUME;
HP NonStop SQL/MP Reference Manual—523352-013
V-12

W
WHENEVER DIRECTIVE

WHENEVER is a host program directive that specifies an action to take when an error,
warning, or no-rows-found condition occurs.

{ NOT FOUND }
{ SQLERROR }
{ SQLWARNING }

specifies a condition to test for:

SQL tests for the condition after each DCL, DDL, and DML statement for which the
WHENEVER directive is in effect. (To end testing, specify WHENEVER with the
same condition, but no action.)

In a SELECT through a cursor, NOT FOUND means no rows or all rows qualify. In
statements with a WHERE clause, NOT FOUND means no rows satisfy the
WHERE clause. In a FETCH after a series of fetches, NOT FOUND means all
rows were fetched.

[CONTINUE]
[GOTO :host-id]
[GO TO :host-id]
[CALL :host-id]
[PERFORM :host-id]

specifies the action to take:

host-id is an identifier that specifies a location in the host language program. For
more information, see the SQL/MP programming manual for your host language.

 [CONTINUE]
 { NOT FOUND } [GOTO :host-id]
WHENEVER { SQLERROR } [GO TO :host-id]
 { SQLWARNING } [CALL :host-id]
 [PERFORM :host-id]

NOT FOUND A no-rows-found condition (SQLCODE 100)

SQLERROR An error (a negative SQLCODE value)

SQLWARNING A warning (a positive SQLCODE value other than
100)

CONTINUE continue with next statement

GOTO :host-id pass control to location host-id

GO TO :host-id pass control to location host-id

CALL :host-id execute host-id (Not COBOL85)

PERFORM :host-id execute host-id (COBOL85 only)
HP NonStop SQL/MP Reference Manual—523352-013
W-1

Consideration—WHENEVER Directive
If you do not specify an action, SQL discontinues checking for the specified
condition.

Consideration—WHENEVER Directive

The WHENEVER directive applies to source lines of a program that are sequentially
compiled (including text brought in by SOURCE, COPY, and INLINE directives) The
directive stays in effect until SQL detects another WHENEVER directive for the same
condition.

WHERE CLAUSE
WHERE clauses on SELECT, DELETE, or UPDATE statements are search condition
clauses that specify criteria for choosing rows from tables or views. For more
information, see SELECT Statement on page S-18, DELETE Statement on page D-39,
or UPDATE Statement on page U-3.

WHERE clauses on SQLCI utility commands qualify the set of files on which the
command is to operate.

For examples of the WHERE clause, see Qualified Fileset List on page Q-1 and topics
for other language elements related to the WHERE clause, such as SELECT
Statement on page S-18, DELETE Statement on page D-39, UPDATE Statement on
page U-3, and EXISTS Predicate on page E-12.

WINDOW OPTION
WINDOW is an option of the SQLCI report writer SET LAYOUT command that
specifies a print item or print position to display at the left edge of the output device. It
enables you to display the portion of a report that extends beyond the right edge of the
output device.

TAB number

specifies an integer in the range 1 through 255 that is the print position of the
output line to display at the left edge of the output device. (The first position in the
output line is 1, and each print position occupies one byte.) The default is TAB 1.

You can use this clause at the select-in-progress prompt (S>) or at the standard
SQLCI prompt (>>).

column

identifies a print item in the detail print list to begin printing at the left edge of the
output device. column can be a column name, an alias, or COL number (which

WINDOW { TAB number }
 { column }
HP NonStop SQL/MP Reference Manual—523352-013
W-2

Consideration—WINDOW
specifies the position of the column in the select list). column cannot be a detail
alias.

You can use this clause only at the select-in-progress prompt (S>).

If you specify a column that is not in the detail print list, the report writer ignores the
WINDOW command. If the column appears in the detail print list more than once,
its first occurrence is the one that prints at the left edge of the output device.

Consideration—WINDOW

If WINDOW is set to a column identifier (as opposed to a TAB position) when a
SELECT command terminates, the report writer resets WINDOW to TAB 1.

Examples—WINDOW

 This example defines a report format for the rows specified in the SELECT
command at the beginning of the example. The WINDOW option of the SET
LAYOUT command specifies that only the rightmost portion of the report
(beginning at print position 40) should be displayed when the LIST command
executes.

>> SELECT EMPNUM, LAST_NAME, SALARY, SALARY * .05
+> FROM PERSNL.EMPLOYEE;
S> NAME COL 4 BONUS;
S> DETAIL "*", EMPNUM, LAST_NAME, SALARY, SALARY * 1.1 NAME
+> NEW_SALARY, BONUS;
S> SET LAYOUT WINDOW TAB 40;
S> LIST;

 These SET LAYOUT commands use the WINDOW option to specify different
vertical segments of the report defined in the previous example. (You could use
any one in place of the previous SET LAYOUT command.) As in that example,
these must be preceded by an appropriate SELECT command and followed by a
LIST command to actually print a report.

S> SET LAYOUT WINDOW SALARY; Displays SALARY, NEW_SALARY, and
BONUS

S> SET LAYOUT WINDOW COL 2; Displays LAST_NAME, SALARY,
NEW_SALARY, and BONUS

S> SET LAYOUT WINDOW TAB 44; Displays BONUS (print position 44)
HP NonStop SQL/MP Reference Manual—523352-013
W-3

WITH SHARED ACCESS OPTION
WITH SHARED ACCESS OPTION
WITH SHARED ACCESS is an option available on some DDL statements that
specifies that the DDL operation is to allow concurrent read-write DML access and
read-only utility access to the objects on which it operates during all but the final phase
of the operation.

DDL statements that include the WITH SHARED ACCESS option initiate potentially
long-running operations that prohibit concurrent INSERT, DELETE, UPDATE, and
utility operations unless you explicitly specify WITH SHARED ACCESS.

NAME operation-name

specifies an SQL identifier as the name of the operation.

If you omit the NAME option, the name of the operation is the first two words of the
statement that initiated the operation concatenated by an underscore (for example,
CREATE_INDEX).

For more information, see NAME Option on page N-2.

REPORT [TO collector | ON | OFF]

controls EMS reporting for the operation.

Omitting the option entirely is equivalent to specifying REPORT ON and sends
event messages for the operation to $0, the default EMS collector. Specifying
REPORT without an option is equivalent to specifying REPORT OFF and
suppresses event messages for the operation.

For more information, see REPORT Option on page R-3.

{ COMMIT [WORK] commit-options }

{ ROLLBACK [WORK] }

specifies the start time, the timeout period for lock requests, and the handling of
retryable errors for the commit phase of the operation. The default is,

 [| NAME operation-name |]
 [| |]
 [| [TO collector] |]
WITH SHARED ACCESS [| REPORT [ON] |]
 [| [OFF] |]
 [| |]
 [| { COMMIT [WORK] commit-options } |]
 [| { ROLLBACK [WORK] } |]
HP NonStop SQL/MP Reference Manual—523352-013
W-4

Considerations—WITH SHARED ACCESS
COMMIT WHEN READY
 TIMEOUT DEFAULT ONCOMMITERROR ROLLBACK WORK

For more information, see COMMIT Option on page C-52.

Considerations—WITH SHARED ACCESS

 Restrictions

 You cannot use WITH SHARED ACCESS on a statement that executes within
a user-defined TMF transaction.

 You cannot use WITH SHARED ACCESS unless each source object (for
example, the table being indexed by CREATE INDEX or the partition being
moved by ALTER INDEX or ALTER TABLE) in the operation is audited.

 You cannot use WITH SHARED ACCESS for an ALTER TABLE or ALTER
INDEX statement unless each source object and each target object (for
example, the new location of a partition being moved by ALTER INDEX or
ALTER TABLE) in the operation resides on a node running version 315 or later
of NonStop SQL/MP.

 You cannot use WITH SHARED ACCESS on a statement that performs
cross-node operations, where the TMF on one node provides Format 2 audit
trail file support, and the TMF on the other node provides only Format 1 audit
trail file support.

 TMF audit trail requirements

An operation that uses WITH SHARED ACCESS cannot complete successfully
unless the TMF audit trail generated during the operation is available for reading
later in the operation. If a required audit trail has been overwritten, a WITH
SHARED ACCESS operation cancels changes made to the database and
terminates.

When performed on a source object that has a valid TMF online dump, an
operation that uses WITH SHARED ACCESS generates audit information for the
target object. The target might not audit to the same audit trail as the source.

Lengthy operations that use WITH SHARED ACCESS might require an operator to
mount tapes of previously taken TMF audit dumps. Requests to mount TMF audit
dump tapes for WITH SHARED ACCESS operations are not distinguishable from
other requests to mount TMF audit dump tapes. Such requests are generally sent
to an operator's console. SQL does not return information about such requests to
the terminal or process that started the operation.

 Phases of a WITH SHARED ACCESS operation

An operation specified by a statement that includes the WITH SHARED ACCESS
option occurs in these phases:
HP NonStop SQL/MP Reference Manual—523352-013
W-5

Considerations—WITH SHARED ACCESS
1. Initialization and load phase

SQL reads catalog entries for existing objects involved in the operation (the
“source objects”) and creates any new objects for the operation with auditing
disabled. For CREATE INDEX operations, SQL also sets the
NOAUDITCOMPRESS file attribute for the table being indexed unless it is
already set. All this activity occurs in one transaction.

SQL then starts an audit fix-up process on each node that contains one or
more source objects for the operation and begins copying data from source
objects to target objects as needed. For CREATE INDEX, SQL transforms the
data as needed. All this activity occurs outside of a transaction. If EMS
reporting is turned on, the audit fix-up processes issue status messages
throughout the load.

SQL starts each audit fix-up process as a named process running under the
process access ID of the user that started the WITH SHARED ACCESS
operation. However, audit fix-up processes switch to the super ID during
portions of their execution, then switch back to the initial user ID. (The audit
fix-up processes handle this change automatically, but you might notice that
these processes sometimes appear in lists of processes running under your
user ID and sometimes do not.)

After the load finishes, SQL executes a transaction that enables auditing, if it is
not already enabled, on the target objects, after which, you can take online
dumps of the target objects if necessary. (Online dumps are not necessary for
merge and move boundary requests.) If your operation uses EMS reporting, an
EMS message is issued.

2. Audit fix-up phase

The audit fix-up processes search TMF audit trails to find audit information for
the source objects and update the target objects to reflect any changes made
since the load of the corresponding records. When the updates are complete,
SQL is ready to commit the operation.

Although the target objects are audited, the changes made by the audit fix-up
processes during this phase do not occur within TMF transactions unless the
source objects have file-recovery protection (that is, if valid online dumps exist
for the source objects).

Depending on the COMMIT option in effect for the operation, SQL either
moves into the commit phase (the default), waits for the appropriate time
window in which to move into the commit phase, rolls back the operation and
terminates with an error because the time window has passed, or issues

Note. Some operations involve one source object and one target object, while others
involve many. For example, a simple move of a partition involves one source object
and one target object. However, if you create an index on a partitioned table, each
partition of the table is a source object for the operation; if the new index is itself
partitioned, each partition of the index is a target object for the operation.
HP NonStop SQL/MP Reference Manual—523352-013
W-6

Considerations—WITH SHARED ACCESS
warnings 1618 and 1619 to notify the user that the operation is ready to
commit and waits for the user to respond with a CONTINUE statement.

If the operation cannot move into the commit phase immediately (because it
must wait for a time window or a CONTINUE statement) the audit fix-up
processes continue reading audit trails and updating target objects to maintain
the ready-to-commit state.

3. Commit phase and command completion

SQL begins a transaction and acquires an exclusive table lock on each source
object. This stops DML transaction activity against the source objects so that
the audit fix-up processes can complete their work.

When the audit fix-up processes have finished, SQL acquires label and file
locks on all objects that participate in the operation, except source objects,
which are already locked.

(For ALTER INDEX MOVE or ALTER TABLE MOVE, objects that participate in
the operation include all partitions of the index or table involved in the move,
not just the specific partition being moved.)

SQL then updates file labels and catalog tables. At this time, the commit phase
has completed. A few extra steps such as program invalidation are performed
within the same transaction. After these final steps are performed the
transaction commits and the operation completes.

 Error considerations

Errors before or after the commit phase of a WITH SHARED ACCESS operation
cause SQL to cancel changes to the database and terminate the operation, as do
nonretryable errors during the commit phase.

Retryable errors during the commit phase cause SQL to take the action specified
in the ONCOMMITERROR option of the COMMIT specification in effect. The
default is to cancel changes to the database and terminate the operation. For more
information, see COMMIT OPTION.

If the process that started a WITH SHARED ACCESS operation terminates
abnormally, the DDL operation in progress stops without being either committed or
canceled. (This halting also occurs if the user fails to issue a CONTINUE
statement in response to warning 1619, as discussed under CONTINUE.) If this
event occurs, the changes are not made to the database, but you (or another user
with the super ID) must use CLEANUP to remove the new objects. If the operation
was a CREATE INDEX operation on a table with the AUDITCOMPRESS attribute,
you must also use ALTER TABLE to reset the AUDITCOMPRESS attribute.

 Performance considerations

Operations that use WITH SHARED ACCESS usually require more time to finish
than those that do not. However, because WITH SHARED ACCESS operations
allow concurrent read and write access to the source partition, such operations
HP NonStop SQL/MP Reference Manual—523352-013
W-7

Example—WITH SHARED ACCESS
cause far less application downtime than equivalent operations without WITH
SHARED ACCESS.

The duration of a WITH SHARED ACCESS operation increases with the number
and length of transactions on the node that contains the source partition,
particularly with the number and length of transactions that involve the source
partition and the amount of activity on the audit trail used for the source partition.

Example—WITH SHARED ACCESS

The command CREATE INDEX uses the WITH SHARED ACCESS option:

CREATE INDEX EMPLOYE2
 ON EMPLOYEE (JOBCODE) CATALOG PERSNL
 WITH SHARED ACCESS NAME CR_IND_EMP2
 COMMIT WHEN READY TIMEOUT NEVER;
HP NonStop SQL/MP Reference Manual—523352-013
W-8

Z
! Command

! (exclamation point) is an SQLCI command that re-executes a statement or command
without modifying a previous statement or command in the history buffer or a current
report formatting command. For more information, see HISTORY Command on
page H-5.

text

specifies the most recent version of a command in the history buffer or a stored
report formatting command. The command must begin with text, but text need
only be as many characters as necessary to identify the command.

number

is an integer that specifies a command in the history buffer.

If number is negative, it indicates the position of the command in the history buffer
relative to the current command; if number is positive, it is the ordinal number of a
command in the history buffer.

To re-execute the previous command, you can enter an exclamation point (!)
without specifying text or a number. If you enter more than one SQLCI command
on a line, the exclamation point re-executes only the last command on the line.

Examples—!

 To reexecute the last SELECT command, enter:

>> ! SELECT

 To reexecute the second to the last command entered, enter:

>> !-2

! [text] [;]
 [[-]number]
HP NonStop SQL/MP Reference Manual—523352-013
X-1

=_AUDSERV_XSWAP_node DEFINE
=_AUDSERV_XSWAP_node DEFINE
=_AUDSERV_XSWAP_node is a system DEFINE that specifies a swap volume for the
audit fix-up process on the specified node.

node

is the name of the node (without the usual leading “\”) for which the swap volume
of the audit fix-up process is to be set.

volume

is the name of the swap volume for the audit fix-up process on the node.

Consideration—=_AUDSERV_XSWAP_node

An operation that uses the WITH SHARED ACCESS option starts an audit fix-up
process on each node in the network that contains at least one source object used in
the operation. (There might be more than one node for CREATE INDEX operations on
network-partitioned tables.) The default swap volume for an audit fix-up process is the
volume that contains the program file for the process.

Because an audit fix-up process generates a large swap file, you might want to specify
an alternate swap volume for such a process with the =_AUDSERV_XSWAP_node
DEFINE.

Example—=_AUDSERV_XSWAP_node

 These SQLCI commands specify swap volumes for audit fix-up processes on
nodes \REG1 and \REG2:

>>ADD DEFINE =_AUDSERV_XSWAP_REG1, CLASS MAP, FILE
\REG1.$SCR;
>>ADD DEFINE =_AUDSERV_XSWAP_REG2, CLASS MAP, FILE
\REG2.$VM3;

ADD DEFINE =_AUDSERV_XSWAP_node, CLASS MAP, FILE volume
HP NonStop SQL/MP Reference Manual—523352-013
X-2

=_DEFAULTS DEFINE
=_DEFAULTS DEFINE
=_DEFAULTS is a system DEFINE that specifies the current default node, volume,
subvolume, and catalog. =_DEFAULTS determines how to expand partially qualified
Guardian names.

=_DEFAULT always has a VOLUME attribute that specifies the current default volume
and subvolume. If =_DEFAULT has a CATALOG attribute, that attribute specifies the
current default SQL catalog; if not, the VOLUME attribute specifies the subvolume that
is the current default SQL catalog.

You cannot rename or delete the =_DEFAULTS DEFINE, but you can display and alter
it.

CATALOG [\node.][$volume.]subvolume

sets the current default catalog, which is used wherever a catalog name is required
but no CATALOG clause is supplied, such as in DDL statements or in the SQL
compiler command.

VOLUME [\node.][$volume.]subvolume

sets the current default node, volume, and subvolume. The file system uses the
current defaults to expand a partially specified Guardian name to a fully qualified
name.

Considerations—=_DEFAULTS

 Processes started during a TACL session automatically inherit the =_DEFAULTS
DEFINE from the TACL session, regardless of the DEFMODE setting.

 You can alter =_DEFAULTS explicitly using the ALTER DEFINE command. You
can alter it implicitly using the VOLUME, SYSTEM, and CATALOG commands.

If you alter =_DEFAULTS from SQLCI, you alter it only for the duration of the
SQLCI session, not for the TACL session that started the SQLCI session.

 With the introduction of the kernel-managed swap facility, the SWAP option is
ignored but is stored so that programs can continue to use the information when
creating temporary files.

ALTER DEFINE =_DEFAULTS,

 {| CATALOG [\node.][$volume.]subvolume |}
 {| |}
 {| VOLUME [\node.][$volume.]subvolume |} ;
HP NonStop SQL/MP Reference Manual—523352-013
X-3

Examples—=_DEFAULTS
Examples—=_DEFAULTS

 These commands are all legal commands that alter the =_DEFAULTS DEFINE:

ALTER DEFINE =_DEFAULTS, VOLUME \SYS1.$VOL1.PERSNL;
ALTER DEFINE =_DEFAULTS, CATALOG $VOL1.CAT1;
ALTER DEFINE =_DEFAULTS, VOLUME $VOL1.PAYROLL;
VOLUME $VOL1.ORDENTRY;
SYSTEM \SYS2;
ALTER DEFINE =_DEFAULTS, SWAP $VOL1;

 This example uses the INFO DEFINE command to display the current setting of
the =_DEFAULTS DEFINE:

>>INFO DEFINE =_DEFAULTS, DETAIL;
CLASS DEFAULTS
VOLUME \SYS2.$VOL1.ORDENTRY
CATALOG \SYS1.$VOL1.CAT1
SWAP \SYS2.$VOL1

=_SORT_DEFAULTS DEFINE
=_SORT_DEFAULTS is a system DEFINE that specifies defaults for FastSort
operations. It can affect SQL performance because SQL uses FastSort for queries and
utility operations.

=_SORT_DEFAULTS affects sorts performed as part of an SQL statement executed in
parallel if you do not specify scratch and swap files in a configuration file or by some
other mechanism. In this case, SQL uses the scratch and swap files specified in the
=_SORT_DEFAULTS DEFINE

.

ADD DEFINE =_SORT_DEFAULTS,

 CLASS SORT [, param value] ...

param value is:

 { BLOCK block-size }
 { CPU cpu-number }
 { CPUS subsort-cpu-list }
 { MODE mode-type }
 { NOSCRATCHON (volume-list) }
 { NOTCPUS cpu-list-not-subsort }
 { PRI process-priority }
 { PROGRAM file }
 { SCRATCH file }
 { SCRATCHON (volume-list) }
 { SEGMENT extended-segment-size }
 { SUBSORTS define-list }
 { SWAP file-name }
 { VLM { ON | OFF } }
HP NonStop SQL/MP Reference Manual—523352-013
X-4

Considerations—=_SORT_DEFAULTS
param value

specifies a FastSort parameter and a value for that parameter. FastSort
parameters commonly used with NonStop SQL/MP are:

For information about other FastSort parameters and the parameters just
described, see the FastSort Manual.

Considerations—=_SORT_DEFAULTS

 By using =_SORT_DEFAULTS, you can improve performance for DML operations
by giving the FastSort process sufficient space for sorting on an alternate disk
volume. Using =_SORT_DEFAULTS can also prevent errors caused when DML
operations encounter a full disk.

 If the swap and scratch files you specify do not exist at the time of the FastSort
operation, FastSort creates them and uses MAXEXTENTS 160. If you create the
files yourself, you must choose an appropriate file size.

 If you specify swap or scratch files on a LOAD command or in the configuration file
for parallel execution of a CREATE INDEX or LOAD command, those file
specifications override any file specifications in =_SORT_DEFAULTS for that
LOAD operation.

 If SMF is installed on your node, you can specify either a virtual or physical volume
for the SCRATCH parameter. However, only physical volumes are valid values for
the SCRATCHON and NOSCRATCHON parameters.

If you specify a virtual volume for SCRATCH, the sort process ignores any overflow
scratch volumes you specify in SCRATCHON and NOSCRATCHON. Because
FastSort does not automatically create and manage overflow scratch files when
you specify a virtual volume for SCRATCH, the virtual volume must have space
available for all scratch files for the sort operation.

SCRATCH file specifies the Guardian name of a scratch file or
volume to store runs of records sorted by each
SORTPROG process. If you specify only a volume
name, FastSort automatically creates the scratch file;
this method is recommended for parallel sort
operations.

SWAP file specifies the Guardian name of a swap file or volume
for the extended memory segment. If you specify only
a volume name, FastSort automatically creates the
swap file; this method is recommended for parallel sort
operations.

VLM { ON | OFF } specifies use of additional memory for sorting;
improves performance in certain situations (usually for
LOAD, but not for CREATE INDEX). Do not use VLM
for parallel sort operations.
HP NonStop SQL/MP Reference Manual—523352-013
X-5

Example—=_SORT_DEFAULTS
 An error occurs if you add =_SORT_DEFAULTS without specifying CLASS SORT
either explicitly or through the working attribute set.

For more information about =_SORT_DEFAULTS, see the TACL Reference Manual or
the FastSort Manual.

Example—=_SORT_DEFAULTS

This SQLCI example specifies scratch and swap volumes for FastSort operations:

>> ADD DEFINE =_SORT_DEFAULTS, CLASS SORT,
+> SCRATCH $DISKA, SWAP $DISKB;

The specified volumes are to be used for SQL queries or utility operations that call
FastSort as long as the DEFINE remains in effect.

=_SQL_CAT_HEAP_LIMIT DEFINE
=_SQL_CAT_HEAP_LIMIT is a system DEFINE that specifies the heap space size for
the SQLCAT process. Some SQL DDL or utility statements require a large memory
heap in the SQLCAT process. The catalog manager currently allocates 4 MB of heap
space that can expand to 16 MB. You can use this DEFINE to allocate a larger heap.

heap-space-size

is the amount of heap space for the SQLCAT process, in megabytes. This value
can range from 8 to 1119. SQL does not use the node, volume, and subvolume
portions of the file name if supplied.

Considerations—=_SQL_CAT_HEAP_LIMIT

 If there is an error in heap-space-size, SQL returns a warning, and SQLCAT
runs with the default heap space size.

 The =_SQL_CAT_HEAP_LIMIT DEFINE can be used from TACL, SQLCI, or a
user process (for embedded SQL).

Examples—=_SQL_CAT_HEAP_LIMIT

 This TACL command specifies 32 MB of SQLCAT heap space:

32> ADD DEFINE =_SQL_CAT_HEAP_LIMIT, CLASS MAP, FILE M32

 This TACL command directs SQL to use its default value for heap space size:

33> DELETE DEFINE =_SQL_CAT_HEAP_LIMIT

ADD DEFINE =_SQL_CAT_HEAP_LIMIT, [CLASS MAP,]
 FILE Mheap-space-size
HP NonStop SQL/MP Reference Manual—523352-013
X-6

=_SQL_CMP_CPUS_node DEFINE
=_SQL_CMP_CPUS_node DEFINE
The =_SQL_CMP_CPUS_node DEFINE is a system DEFINE that directs SQL to limit
processors used in a parallel query to a specified node.

_node

is the node associated with the processors to use for the query. _node is optional;
the default value is the current node.

Xhhhh

is the letter X (uppercase) followed by up to four hex characters. X has no purpose
other than to make the DEFINE syntactically correct. The hex character or
characters represent a unique configuration of available processors. For a sample
configuration and conversion from binary code to hex characters, see
Considerations in this entry.

Considerations—=_SQL_CMP_CPUS_node

 Scope of =_SQL_CMP_CPUS_node

To specify available processors, add this DEFINE before you compile the query.
=_SQL_CMP_CPUS_node affects all parallel query plans compiled while the
DEFINE is in effect. To specify a different set of available processors for a new
parallel query, reset the DEFINE.

=_SQL_CMP_CPUS_node affects only the location of Executor Server Processes
(ESPs) for parallel plans. It does not affect the location of the master executor.
=_SQL_CMP_CPUS_node also has no effect upon:

 Locations of sort processes used in the query

 Locations of disk processes used in the query

 Specifying the processor configuration—mapping binary code to hex code

=_SQL_CMP_CPUS_node syntax requires that you express a configuration of
processors to use for the parallel query as a string of up to four hex characters.

This example shows how to express the configuration as binary code, then how to
map the binary code to hex code. It assumes there are 16 processors on the
current node and that processors 0, 1, 2, 3, 8, 10, 12, and 15 are available.

First, assign each processor number a “1” if it is available or a “0” if it is not
available:

ADD DEFINE =_SQL_CMP_CPUS_node, CLASS MAP, FILE Xhhhh

CPU #: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Binary (ON/OFF) value: 1 1 1 1 0 0 0 0 1 0 1 0 1 0 0 1
HP NonStop SQL/MP Reference Manual—523352-013
X-7

=_SQL_CMP_DOUBLE_SBB_OFF DEFINE
The processors in this example are shown in groups of four, because each hex
character represents four processors:

Using this binary-to-hex conversion chart, the first group of four processors-0, 1, 2,
and 3-with the binary code “1111” map to the single hex character “F.” Mapping
binary codes for the remaining three groups of processors yields the hex
characters “0,” “A,” and “9,” respectively. Therefore, the complete hex character
expression for this processor configuration is “F0A9.” The
=_SQL_CMP_CPUS_node syntax for this configuration is:

ADD DEFINE =_SQL_CMP_CPUS, CLASS MAP, FILE XU0A9;

For nodes with fewer than 16 processors, SQL assumes that the missing trailing
hex characters are zero.

 Availability of processors at compile time

When you compile a parallel query, the compiler assigns ESPs to the processors
specified as available in =_SQL_CMP_CPUS_node. If a processor is unavailable
when you compile the query no ESP is assigned to that processor, even if you
specified the processor as available in this DEFINE. In this case, the executor
chooses a substitute processor for the stranded ESP. The substitute processor
does not have to be specified as available in =_SQL_CMP_CPUS_node.

=_SQL_CMP_DOUBLE_SBB_OFF DEFINE
=_SQL_CMP_DOUBLE_SBB_OFF is a system DEFINE that directs SQL not to use
file system double buffering.

filename

must be a legal Guardian file name but has no purpose except to make the ADD
DEFINE command syntactically correct.

Hex Binary Hex Binary

0 0000 8 1000

1 0001 9 1001

2 0010 A 1010

3 0011 B 1011

4 0100 C 1100

5 0101 D 1101

6 0110 E 1110

7 0111 F 1111

ADD DEFINE =_SQL_CMP_DOUBLE_SBB_OFF, CLASS MAP,
 FILE filename
HP NonStop SQL/MP Reference Manual—523352-013
X-8

Consideration—=_SQL_CMP_DOUBLE_SBB_OFF
Consideration—=_SQL_CMP_DOUBLE_SBB_OFF

=_SQL_CMP_DOUBLE_SBB_OFF disables file system double buffering for queries
that are SQL compiled while this DEFINE is in effect.

For information about how to manage double buffering, see the SQL/MP Installation
and Management Guide.

=_SQL_CMP_DOUBLE_SBB_ON DEFINE
=_SQL_CMP_DOUBLE_SBB_ON is a system DEFINE that directs SQL to use file
system double buffering to scan the inner table in a nested join or key-sequenced
merge join.

filename

must be a legal Guardian file name but has no purpose except to make the ADD
DEFINE command syntactically correct.

Considerations—=_SQL_CMP_DOUBLE_SBB_ON

 By default, the SQL optimizer considers using file system double buffering for
scans that use VSBB and BROWSE ACCESS except for an inner scan of a nested
join or key-sequenced merge join. When the =_SQL_CMP_DOUBLE_SBB_ON
DEFINE is present, the optimizer also considers using double buffering for these
two types of join operations.

 If both =_SQL_CMP_DOUBLE_SBB_ON and =_SQL_CMP_DOUBLE_SBB_OFF
are present, file-system double buffering is not used.

² Double buffering can increase performance, but can also increase the likelihood of
PFS memory overflow. For information about how to manage double buffering, see
the SQL/MP Installation and Management Guide.

ADD DEFINE =_SQL_CMP_DOUBLE_SBB_ON, CLASS MAP,
 FILE filename
HP NonStop SQL/MP Reference Manual—523352-013
X-9

=_SQL_CMP_EQ_LIMIT DEFINE
=_SQL_CMP_EQ_LIMIT DEFINE
=_SQL_CMP_EQ_LIMIT is a system DEFINE that specifies the number of expressions
in an equivalence class for which the query rewrite feature adds equality predicates.

xnn

is a string containing a single arbitrary alphabetic character followed by one or two
digits that represent a decimal value between 0 and 99. If you do not use this
DEFINE, SQL uses a default value of 5.

Consideration—=_SQL_CMP_EQ_LIMIT

The optimizer evaluates join plans for different combinations of tables. If the join
involves numerous tables, this selection process can be inefficient. When choosing a
value for =_SQL_CMP_EQ_LIMIT, set the DEFINE low enough to obtain a reasonable
SQL compilation time but high enough to obtain the benefits of the optimization
process. Typical values are:

Examples—=_SQL_CMP_EQ_LIMIT

 This TACL command specifies a limit of four equivalent predicates for join order
and index selection:

32> ADD DEFINE =_SQL_CMP_EQ_LIMIT, CLASS MAP, FILE T4

 This TACL command directs SQL to use its default value for the number of
equivalent predicates:

34> DELETE DEFINE =_SQL_CMP_EQ_LIMIT

ADD DEFINE =_SQL_CMP_EQ_LIMIT, CLASS MAP, FILE xnn

0 or 1 SQL does not generate any additional equivalent predicates

2 or 3 Increased compile time is negligible

4 to 6 Some increased compile time but a wider range of table
combinations, allowing a more efficient query plan
HP NonStop SQL/MP Reference Manual—523352-013
X-10

=_SQL_CMP_EVENT DEFINE
=_SQL_CMP_EVENT DEFINE
=_SQL_CMP_EVENT is a system DEFINE that directs the SQL compiler to log
compiler event messages to a file or to the home terminal.

filename

must be a legal Guardian file name.

If the named file is an existing, entry-sequenced file, the compiler sends compiler
event messages to the file. If the file does not exist or is not an entry-sequenced
file, the compiler sends only messages for compiler events of type STMT and
PROG and sends the messages to the home terminal.

Format of SQL Compiler Event Messages

SQL compiler event messages can be up to 102 characters long.

Log files with shorter record lengths receive truncated messages.

The event messages contain these fields:

86 SQLCOMP type datetime file PID=pid E=err FS=fs-err

The types of events are;

ADD DEFINE =_SQL_CMP_EVENT, CLASS MAP, FILE filename

type Type of event that occurred

datetime Date and time of the compilation

file Name of the program file that was compiled

pid Process that started the compiler (a process name, if any, or a
processor and PIN)

err SQL error that caused the automatic recompilation. (Appears only on
messages of type PROG or STMT.)

fs-err File-system error that caused the automatic recompilation. (Appears
only on messages of type PROG or STMT.)

BTCH Recompilation and registration of a program by RESTORE

PREP Compilation of one statement by a run-time PREPARE statement or an
EXECUTE IMMEDIATE command from SQLCI

PROG Automatic recompilation of a program at run time

STAT Explicit compilation

STMT Automatic recompilation of one statement at run time
HP NonStop SQL/MP Reference Manual—523352-013
X-11

Considerations—=_SQL_CMP_EVENT
Considerations—=_SQL_CMP_EVENT

 If you use =_SQL_CMP_EVENT to direct compiler event messages regarding
automatic recompilations (PROG and STMT type events) to a home terminal, the
home terminal used is the home terminal for the process that invoked the SQL
compiler. This selection is normally the home terminal for the executing TACL for
SQLCI session, but you can specify a different home terminal for the process by
specifying the TERM option in the RUN command that executes the process.

You cannot direct other types of event messages from the SQL compiler to the
home terminal, and you cannot direct event messages regarding automatic
compilations to a different terminal or to both a file and the home terminal.

 You cannot globally direct SQL compiler event messages from other processes on
a node to a file or home terminal; each affected TACL or SQLCI session must have
its own =_SQL_CMP_EVENT DEFINE in effect, although multiple users can direct
messages to the same file.

Examples—=_SQL_CMP_EVENT

 This example creates a file called LOGFILE on volume $X subvolume Y and
directs the SQL compiler to send event messages there, as shown:

30> FUP CREATE LOGFILE, TYPE E, REC 102, NO AUDIT;
31> ADD DEFINE =_SQL_CMP_EVENT, CLASS MAP, FILE $X.Y.LOGFILE;

The DEFINE affects only SQL compiler messages from a TACL process in which
the DEFINE is in effect. After the file is created, however, users of other TACL
processes can direct compiler messages to the same file by adding a similar
DEFINE.

 This TACL command directs the SQL compiler to log PROG and STMT events to
the user's terminal by specifying a nonexistent file for the =_SQL_CMP_EVENT
DEFINE:

32> ADD DEFINE =_SQL_CMP_EVENT, CLASS MAP, FILE NOFILE;

=_SQL_CMP_EVENT_NO0 DEFINE
=_SQL_CMP_EVENT_NO0 is a system DEFINE that suppresses event messages that
the SQL compiler normally sends to $0 when automatic recompilations occur.

filename

must be a legal Guardian file name but has no purpose except to make the ADD
DEFINE command syntactically correct.

ADD DEFINE =_SQL_CMP_EVENT_NO0, CLASS MAP, FILE filename
HP NonStop SQL/MP Reference Manual—523352-013
X-12

Default Event Messages
Default Event Messages

If the =_SQL_CMP_EVENT_NO0 DEFINE does not exist, the SQL compiler issues a
message to $0 whenever an automatic recompilation occurs.

The event messages contain these fields:

86 SQLCOMP type datetime file PID=pid E=err FS=fs-err

Compiler event messages displayed on the console have an EMS subsystem ID rather
than an SQL ID, because SQL compiler event messages are not EMS messages. The
compiler sends the messages to $0, where they are converted to EMS messages and
given an EMS subsystem ID.

Consideration—=_SQL_CMP_EVENT_NO0

=_SQL_CMP_EVENT_NO0 affects only event messages issued within the TACL or
SQLCI session in which the DEFINE is in effect.

You cannot globally disable the logging of such messages to $0 except to have each
TACL process on the node add the =_SQL_CMP_EVENT_NO0 DEFINE.

Example—=_SQL_CMP_EVENT_NO0

This TACL command directs the SQL compiler not to send event messages regarding
automatic recompilations from the TACL or SQLCI session to $0:

32> ADD DEFINE =_SQL_CMP_EVENT_NO0, CLASS MAP, FILE NOFILE

type PROG (indicating automatic recompilation of an entire program) or
STMT (indicating automatic of a single statement)

datetime the date and time of the compilation

file the name of the program file

pid identifies the process that started the compiler (a process name, if
any, or a processor and PIN)

err the SQL error that caused the automatic recompilation

fs-err the file-system error that caused the automatic recompilation
HP NonStop SQL/MP Reference Manual—523352-013
X-13

=_SQL_CMP_NO_KS_MJOIN DEFINE
=_SQL_CMP_NO_KS_MJOIN DEFINE
=_SQL_CMP_NO_KS_MJOIN is a system DEFINE that inhibits SQL from using the
key-sequenced merge join operation.

name

must be a legal Guardian file name but has no purpose except to make the ADD
DEFINE command syntactically correct. If you do not set this DEFINE, a
key-sequenced merge join is considered.

Examples—=_SQL_CMP_NO_KS_MJOIN

 This TACL command directs SQL to avoid using KSMJ:

32> ADD DEFINE =_SQL_CMP_NO_KS_MJOIN, CLASS MAP, FILE T1

 To direct SQL to resume using KSMJ, delete the DEFINE as shown:

34> DELETE DEFINE =_SQL_CMP_NO_KS_MJOIN

=_SQL_cmp_node DEFINE
=_SQL_cmp_node is a set of system DEFINEs that identify files that hold components
of SQL/MP software. Only a user logged on with an ID from the group 255 can use
these DEFINEs to direct SQL to use alternate versions of its normal components.

cmp

is one of these components:

node

is the name of the node (without the usual leading “\”) that uses the specified
object file as a component.

ADD DEFINE =_SQL_CMP_NO_KS_MJOIN, CLASS MAP, FILE name

ADD DEFINE =_SQL_cmp_node, CLASS MAP, FILE name

cmp Normal $SYSTEM.SYSTEM file for component

AUD AUDSERV

CAT SQLCAT

CI2 SQLCI2

CMP SQLCOMP

UTL SQLUTIL
HP NonStop SQL/MP Reference Manual—523352-013
X-14

Consideration—=_SQL_cmp_node
name

is the name of the object file to use in place of the standard $SYSTEM.SYSTEM
object file for the component.

Consideration—=_SQL_cmp_node

 You can use a =_SQL_cmp_node DEFINE only if you are logged on as a user in
group 255. SQL ignores the DEFINE for other users.

 If the DEFINE =_SQL_CI2_node is in effect during INITIALIZE SQL, the alternate
file specified is the file compiled and registered in the system catalog by the
INITIALIZE SQL operation.

Specifying an appropriate alternate CI2 file at initialization time is the way you
install a licensed SQLCI2.

Example—=_SQL_cmp_node

This TACL command adds two =_SQL_cmp_node DEFINES:

37> SET DEFINE CLASS MAP
38> ADD DEFINE =_SQL_CMP_SYS1, FILE
\SYS1.$VOL1.SYSTEM.SQLCOMP
38> ADD DEFINE =_SQL_CI2_SYS1, FILE
\SYS1.$VOL1.SYSTEM.SQLCI2L

=_SQL_EXE_DOUBLE_SHUTOFF DEFINE
=_SQL_EXE_DOUBLE_SHUTOFF is a system DEFINE that directs SQL to disable file
system double buffering when a specified level of memory use is reached.

Xn

is the letter X (uppercase) followed by a number from 0 (zero) through 10 that
specifies tenths of the process file segment (PFS). It represents the limit above
which double buffering is not used. If this limit is reached, double buffering is shut
off for that query. No notification is given that this has occurred. If the PFS load
decreases, double buffering is turned on again for a new query. When n is zero,
the executor never uses double buffering.

Considerations—=_SQL_EXE_DOUBLE_SHUTOFF

 When you increase the memory use threshold, you increase the use of double
buffering but also increase the likelihood of a PFS memory overflow.

 If the DEFINE is absent, the PFS memory-use threshold defaults to 70 percent.

ADD DEFINE =_SQL_EXE_DOUBLE_SHUTOFF, CLASS MAP, FILE Xn
HP NonStop SQL/MP Reference Manual—523352-013
X-15

=_SQL_EXE_ESPS_CK_CMON DEFINE
 For information about how to manage double buffering, see the SQL/MP
Installation and Management Guide.

=_SQL_EXE_ESPS_CK_CMON DEFINE
=_SQL_EXE_ESPS_CK_CMON is a system DEFINE that directs SQL to communicate
with the $CMON process whenever it must create a new ESP.

name

must be a legal Guardian file name but has no purpose except to make the ADD
DEFINE command syntactically correct.

Consideration—=_SQL_EXE_ESPS_CK_CMON

In previous RVUs, SQL would send a message to the $CMON process before creating
an ESP. $CMON would reply with a recommendation for a processor in which to create
the new ESP and a priority for running the ESP. However, SQL would ignore the
recommendations returned by the $CMON process. Instead, SQL would create the
new ESP in the processor and at the priority determined by the optimizer (and stored in
the query execution plan).

With the D43 version of SQL/MP software, SQL does not send a message to the
$CMON process before creating a new ESP. For parallel queries involving many
ESPs, this strategy improves the performance of process creation and reduces
query start-up time.

The =_SQL_EXE_ESPS_CK_CMON DEFINE allows you to direct SQL to notify
the $CMON process whenever SQL creates a new ESP. However, even when SQL
notifies the $CMON process before creating an ESP, it does nothing with the
information returned by $CMON.

Example—=_SQL_EXE_ESPS_CK_CMON

This example directs SQL to send a message to the $CMON process before creating
each ESP:

30> ADD DEFINE =_SQL_EXE_ESPS_CK_CMON, CLASS MAP, FILE NOFILE

ADD DEFINE =_SQL_EXE_ESPS_CK_CMON, CLASS MAP, FILE name
HP NonStop SQL/MP Reference Manual—523352-013
X-16

=_SQL_EXE_USE_SWAPVOL DEFINE
=_SQL_EXE_USE_SWAPVOL DEFINE
=_SQL_EXE_USE_SWAPVOL is a system DEFINE that directs SQL to allocate
temporary tables for serial plans on the swap volume for the process.

name

must be a legal Guardian file name but has no purpose except to make the ADD
DEFINE command syntactically correct.

Considerations—=_SQL_EXE_USE_SWAPVOL

 You can use the =_SQL_EXE_USE_SWAPVOL DEFINE to change the location of
temporary tables from serial plans that might require more space than available on
the volumes where the temporary tables would normally be located, causing
file-system error 122.

NonStop SQL/MP normally places temporary tables on the same volume as the
outermost table in a join. For more information about temporary table placement,
see Temporary Tables on page T-4.

 If SMF is installed on your node and the swap volume is a virtual volume, SQL
places temporary tables on the virtual volume when you specify
=_SQL_EXE_USE_SWAPVOL.

 =_SQL_EXE_USE_SWAPVOL has no effect on the location of temporary tables
for parallel plans or on the SYNCDEPTH of temporary tables, both of which can
also lead to error 122.

Another DEFINE, =_SQL_TM_node_vol, allows you to redirect temporary tables
from both serial or parallel plans from a specific volume to another specific volume
and also allows you to specify SYNCDEPTH 1 instead of SYNCDEPTH 0 for the
temporary tables. If both DEFINEs exist, =_SQL_TM_node_vol overrides the
effect of =_SQL_EXE_USE_SWAPVOL for temporary files on the specified system
and volume.

 Note that the kernel-managed swap facility manages process swap files.

Examples—=_SQL_EXE_USE_SWAPVOL

 This TACL command directs SQL to allocate temporary tables for serial plans on
process swap volumes:

32> ADD DEFINE =_SQL_EXE_USE_SWAPVOL, FILE NOFILE

 To direct SQL to resume allocating temporary tables at the normal location, delete
the DEFINE as shown:

34> DELETE DEFINE =_SQL_EXE_USE_SWAPVOL

ADD DEFINE =_SQL_EXE_USE_SWAPVOL, CLASS MAP, FILE name
HP NonStop SQL/MP Reference Manual—523352-013
X-17

=_SQL_MSG_node DEFINE
=_SQL_MSG_node DEFINE
=_SQL_MSG_node is a system DEFINE that directs SQL to use an alternate message
file. It allows you to specify message files that provide SQL messages in languages
other than English.

node

is the name of the node running the SQL software that is to use the alternate
message file. Specify the node name without the leading backslash (\).

msg-file

is the name of the alternate message file.

Considerations—=_SQL_MSG_node

 The SQL message file is a key-sequenced file that contains the text of most of the
messages displayed by SQL. SQL retrieves messages from the file as needed.

The standard SQL message file, provided with NonStop SQL/MP, is placed in
$SYSTEM.SYSTEM.SQLMSG when NonStop SQL/MP is installed on a node. All
the messages in the file are in English.

The =_SQL_MSG_node DEFINE allows you to designate a different file as the
SQL message file for SQL if an appropriate file is available on your network. (HP
does not provide alternate SQL message files as a standard part of NonStop
SQL/MP. You should check at your site to determine what alternate message files,
if any, are available to you.)

When SQL must open the SQL message file, SQL determines whether a
=_SQL_MSG_node DEFINE is in effect for the node for the process running SQL.
If the DEFINE is in effect, SQL uses the message file specified in the DEFINE. If
there is no =_SQL_MSG_node DEFINE in effect, or if the file specified in the
DEFINE does not exist, is invalid, or is incompatible with the SQL software that
attempted to open it, then SQL opens the message file in
$SYSTEM.SYSTEM.SQLMSG.

 To use an alternate message file from SQLCI, you must specify an
=_SQL_MSG_node DEFINE in TACL before you start the SQLCI session. SQL
opens the message file at the beginning of an SQLCI session and leaves the file
open throughout the session. As a result, changing DEFINEs during the session
has no effect on the SQL message file used for that session.

If you regularly use an alternate message file from SQLCI, you might want to place
an =_SQL_MSG_node DEFINE in your TACLCSTM file so that it is in effect
whenever you log on. For information about TACLCSTM, see the TACL Reference
Manual.

ADD DEFINE =_SQL_MSG_node, CLASS MAP, FILE msg-file
HP NonStop SQL/MP Reference Manual—523352-013
X-18

Examples—=_SQL_MSG_node
 To use an alternate message file from a program, specify an =_SQL_MSG_node
DEFINE in TACL before you execute the program, or specify the DEFINE at the
beginning of the program. SQL uses the file you specify for all SQL messages from
the program.

If you plan to switch message files within a program by changing the
=_SQL_MSG_node DEFINE in the body of the program, be aware that SQL opens
the message file the first time you call any one of these procedures:

 SQLCADISPLAY

 SQLCAFSCODE

 SQLCATOBUFFER

 SQLSADISPLAY

 SQLSA_DISPLAY2

 SQLCA_TOBUFFER2

Whether SQL closes the message file when it returns from the procedure depends
on the parameters you supply in the procedure call.

If the message file is left open, SQL uses the same message file the next time you
call one of the procedures. If the file is closed, SQL opens the message file
(possibly a different one) again the next time you call one of the procedures listed
previously.

Each time SQL opens the message file, it selects the file specified in the current
=_SQL_MSG_node DEFINE, if any. Changes you make to the
=_SQL_MSG_node DEFINE have no effect on a message file that is already
open.

 If SQL attempts to open $SYSTEM.SYSTEM.SQLMSG and finds that it does not
exist, is invalid, or is incompatible with the SQL/MP software, SQL is unable to
issue error, warning, or help messages. Only a few English informational
messages that are coded in the software will be available. This situation should
never occur, however, if SQL is installed properly and the standard SQL message
file is always left in $SYSTEM.SYSTEM.SQLMSG.

Examples—=_SQL_MSG_node

 This TACL command designates an alternate message file for SQL/MP software
running on system \HQ. (This command would not work if a DEFINE named
=_SQL_MSG_HQ was already in effect.)

ADD DEFINE =_SQL_MSG_HQ, CLASS MAP, FILE \HQ.$SQL.MSG.SPANISH

 This TACL command specifies a different SQL message file for node \XYZ if a
DEFINE named =_SQL_MSG_XYZ already exists.

ALTER DEFINE =_SQL_MSG_XYZ, FILE \HQ.$SQL.MSG.FRENCH
HP NonStop SQL/MP Reference Manual—523352-013
X-19

=_SQL_RECGEN_node DEFINE
=_SQL_RECGEN_node DEFINE
=_SQL_RECGEN_node is a system DEFINE that allows a user with super ID authority
to specify an alternate location for the FastSort record generator program.

node

is the name of the node (without the usual leading backslash “\”) running the SQL
software that is to use the alternate FastSort record generator program.

Example—=_SQL_RECGEN_node

This SQLCI command specifies $DP1.TEST.RGP as the program file for the FastSort
record generator on node \REG1:

ADD DEFINE =_SQL_RECGEN_REGs, CLASS MAP, FILE $DP1.TEST.RGP;

=_SQL_TM_node_vol DEFINE
=_SQL_TM_node_vol is a system DEFINE that directs NonStop SQL/MP to create
temporary tables that would normally go to the specified volume on another specified
volume instead. Optionally, you can also use =_SYS_TM_node_vol to specify
SYNCDEPTH 1 for the redirected temporary files.

node

is the name of the node (without the usual leading “\”) from which to redirect
temporary files.

vol

is the name of the volume (without the usual leading “$”) from which temporary
files are to be redirected.

new-loc

is the name of the system, volume, and subvolume for the temporary files,
specified as a Guardian subvolume name (complete with a “\” preceding the node
name and “$” preceding the volume name).

The subvolume portion of the name is not actually used, but you must include it to
make the DEFINE syntactically correct. (Temporary files use names of the form
\node.$vol.#nnnn and do not use subvolume names.)

ADD DEFINE =_SQL_RECGEN_node, CLASS MAP, FILE prog-file

ADD DEFINE =_SQL_TM_node_vol, CLASS MAP,

 FILE new-loc.syncdepth
HP NonStop SQL/MP Reference Manual—523352-013
X-20

Considerations—=_SQL_TM_node_vol
syncdepth

is the keyword SYNC1 (if you want the temporary files to use SYNCDEPTH 1), or
a simple file name (if you want the temporary files to use SYNCDEPTH 0, as
usual).

The file name must be a legal Guardian file name, but the file is not used and does
not need to exist.

Considerations—=_SQL_TM_node_vol

 You can use the =_SQL_TM_node_vol DEFINE to change the location of
temporary tables that might require more space than available in the volumes
where the temporary tables would normally be located, causing file-system error
122.

NonStop SQL/MP normally places temporary tables in the same volume as the
outermost table in a join. For more information about temporary table placement,
see Temporary Tables on page T-4.

 The disk process normally uses SYNCDEPTH 0 to access temporary SQL/MP
tables. This approach saves the overhead of checkpointing operations on the
tables to the backup DP2 process but can cause error 122 if a DP2 takeover
occurs during execution of a statement.

You can use =_SQL_TM_node_vol to specify SYNCDEPTH 1 for temporary
tables if avoiding a potential error 122 justifies the performance penalty for your
application.

 =_SQL_TM_node_vol affects temporary tables for both serial and parallel plans.

 If a =_SQL_EXE_USE_SWAPVOL DEFINE exists, =_SQL_TM_node_vol
overrides its effect for any temporary files on the specified system and volume.

 If SMF is installed on your node and a query references a table by its logical name,
you can use =_SQL_TM_node_vol to:

 Locate temporary tables on a particular physical volume in the same virtual
volume as the table

 Locate temporary tables on a different virtual volume than the table

 For parallel queries, only physical volumes are candidates for temporary tables. If
you specify a virtual volume for =_SQL_TM_node_vol when parallel execution is
on, the optimizer ignores this DEFINE.

Examples—=_SQL_TM_node_vol

 This TACL command directs NonStop SQL/MP to create all temporary tables that
would normally go to volume \A.$B on volume \X.$Y instead:

31> ADD DEFINE =_SQL_TM_A_B, CLASS MAP, FILE \X.$Y.Z.NOFILE;
HP NonStop SQL/MP Reference Manual—523352-013
X-21

Examples—=_SQL_TM_node_vol
 This TACL command directs NonStop SQL/MP to create all temporary tables that
would normally go to volume \NY.$HDQ on volume \NY.$SCR instead and to use
SYNCDEPTH 1 for the tables rather than the usual SYNCDEPTH 0:

32> ADD DEFINE =_SQL_TM_NY_HDQ, FILE \NY.$SCR.TMP.SYNC1

 Both DEFINEs shown in the previous examples can exist simultaneously, directing
different sets of temporary tables to different locations. To redirect temporary tables
to normal locations, delete the DEFINEs with these commands:

35> DELETE DEFINE =_SQL_TM_A_B
36> DELETE DEFINE =_SQL_TM_NY_HDQ
HP NonStop SQL/MP Reference Manual—523352-013
X-22

 Index

Numbers
255, user number G-7, S-12

A
A (alphanumeric) descriptor A-61
Abort transaction R-22
Access options

BROWSE A-1

concurrency summary A-3

DDL statements W-4

description of A-1

DML statements A-1

INSERT statement I-15

REPEATABLE A-1

STABLE A-1

UPDATE statement U-3

Access path
alternate E-16

controlling C-79, C-85, C-86

primary E-16

ACCESS PATH option
CONTROL TABLE directive C-79

controlling C-79, C-85

in EXPLAIN report E-16

Access type, in EXPLAIN report E-16
Ada language S-69
ADD COLUMN clause

See ALTER TABLE statement

ADD DEFINE command A-4
ADD PARTITION clause

ALTER INDEX statement A-18

ALTER TABLE statement A-36

Adding partitions
index A-18, A-25

table A-36

Aggregate functions
AVG A-76

COUNT C-130

description of A-6

MAX M-1

MIN M-3

SUM S-89

Alias
assigning to column N-1

definition of A-6

ALL option, SAVE command S-2
ALLINDEXESHERE, in BASETABS
table B-1
ALLOCATE clause, ALTER INDEX
statement A-18
ALLOCATE file attribute A-7
Allocated extents F-19
Allocating disk space with EXTENT E-30
ALLOWERRORS option

COPY command C-116

DUP command D-72

LOAD command L-20

PURGE command P-34

PURGEDATA command P-37

SECURE command S-8

ALL, in quantified predicate Q-6
ALTER CATALOG statement

description of A-8

NOPURGEUNTIL attribute A-8

OWNER file attribute A-8

SECURE file attribute A-8

ALTER COLLATION statement
description of A-10

OWNER file attribute A-10

RENAME clause A-10

SECURE file attribute A-10

ALTER DEFINE command A-11
HP NonStop SQL/MP Reference Manual—523352-013
Index-1

Index A
ALTER INDEX statement
ADD PARTITION clause A-18

ALLOCATE clause A-18

description of A-13

DROP PARTITION clause A-15

examples of A-26

file security attributes A-15

FIRST KEY clause A-18

Format 2 enabling A-25

MAXEXTENTS clause A-18

MOVE clause A-16

MOVE options A-16

RENAME clause A-15

RESETBROKEN clause A-18

SECURE file attribute A-15

WITH SHARED ACCESS clause A-17

ALTER PROGRAM statement
description of A-27

OWNER file attribute A-27

RENAME clause A-27

SECURE file attribute A-27

ALTER statements
and GRANT S-68

catalog A-8

collation A-10

concurrent DML operations C-65

index A-13

program A-27

table A-29

view A-50

ALTER TABLE ADD CONSTRAINT
statement S-70
ALTER TABLE DROP CONSTRAINT
statement S-70
ALTER TABLE statement

ADD COLUMN clause A-33

ADD PARTITION clause A-36

DEFAULT clause A-33, D-26

description of A-29

DROP PARTITION clause A-34

ALTER TABLE statement (continued)
file attributes A-32

FIRST KEY clause A-37

Format 2 enabling A-45

HEADING clause H-1

MOVE clause A-34

OWNER file attribute A-32

PARTITION ARRAY attribute A-33

RENAME clause A-32

REUSE PARTITION clause A-37

SECURE file attribute A-32

SIMILARITY CHECK clause A-32

splitting A-40

ALTER VIEW statement
description of A-50

HEADING clause A-50, H-1

OWNER file attribute A-50

RENAME clause A-50

SECURE file attribute A-50

Altered plan P-22
Alternate access path E-16
Alternate message file Z-18
AND operator S-5
ANSI SQL, compatibility with S-67
ANY clause, in quantified predicate Q-6
ANYWHERE clause, INSERT
statement I-16
APPEND clause, INSERT statement I-16
APPEND command

compared to COPY A-55

compared to LOAD A-55

description of A-52

APPENDCANCEL command A-56
APPENDRESTART command A-58
Approximate numeric data types D-5, N-12
Arithmetic operators E-25
AS clause

CREATE VIEW statement C-167

description of A-60

INVOKE directive I-25
HP NonStop SQL/MP Reference Manual—523352-013
Index-2

Index B
AS clause (continued)
report writer option R-10

AS DATE/TIME clause
description of A-67

report writer option R-10

ASCII character set A-70, C-18
Associativity and UNION ALL S-27
Asterisk, in subtotal label S-88
Atomicity, statement S-68
Attributes

See File Attributes

AUDIT
in FILES table F-27

in VIEWS table V-10

AUDIT file attribute
and BUFFERED attribute A-75

description of A-74

set by DUP D-78

turning off for loading data L-18, L-34

views and C A-74, C-170

Audit fix-up phase W-6
Audit trails A-75, W-5, W-6
AUDITCOMPRESS file attribute

ALTER INDEX statement A-15

ALTER TABLE statement A-32

CREATE INDEX statement C-146

CREATE TABLE statement C-160

description of A-75

turned off for WITH SHARED
ACCESS W-6

AUDITCOMPRESS, in FILES table F-28
Audited files C-56
Audited objects

BUFFERED file attribute B-11

description of A-76

FREE RESOURCES statement F-30

lock holder L-50

lock release summary L-48

NO SERIALWRITES file attribute S-32

processing rules T-7

Audited objects (continued)
rollback work R-21

Audited tables A-76
Authorization

description of S-11

requirements summary S-15

AUTOCOMPILE, in PROGRAMS
table P-31
AUTOWORK option

SET SESSION command S-39

TMF transactions T-8

AVG function A-76

B
BACKUP utility B-1, U-17
Base tables

creating C-154

description of T-1

BASETABS catalog table B-1
BEGIN DECLARE SECTION directive B-2
Begin TMF transaction B-3
BEGIN WORK statement B-3
BETWEEN predicate B-4
BIND NAMES option, CONTROL QUERY
directive C-74
Blanks, breaking at A-61
Block buffering

See Virtual sequential block buffering

Block size
limit L-6

of index F-17

recommendation B-5

BLOCKIN option, LOAD command L-24
BLOCKOUT option, COPY
command C-118
BLOCKSIZE file attribute B-5
BLOCKSIZE, in FILES table F-27
BLOCK, parameter for FastSort Z-4
Boolean operators S-5
Break column, subtotaling S-86
HP NonStop SQL/MP Reference Manual—523352-013
Index-3

Index C
BREAK FOOTING command
AS clause A-60

COMPUTE_TIMESTAMP
function C-62

CONCAT clause C-63

CURRENT_TIMESTAMP
function C-174

description of B-6

IF/THEN/ELSE clause I-1

Break key
and CLEANUP command C-22

and command files O-2

and CONVERT operation C-100

and COPY command C-124

and DUP command D-78

and LOAD command L-33

and PURGE command P-35

and PURGEDATA command P-38

and SECURE command S-9, S-10

and SET SESSION command S-43

effect on command files O-2

effect on duplicating D-78

SQLCI response to S-40, S-43

BREAK KEY option, SET SESSION
command S-40
BREAK ON command

and SUBTOTAL command S-86

description of B-8

BREAK TITLE command
AS clause A-60

COMPUTE_TIMESTAMP
function C-62

CONCAT clause C-63

CURRENT_TIMESTAMP
function C-174

description of B-10

IF/THEN/ELSE clause I-1

BRIEF format, DISPLAY USE OF
command D-54
BRIEF option, FILEINFO command F-10,
F-11, F-21

BROWSE access
description of A-1

in EXPLAIN report E-16

SELECT statement S-21

BUFFERED attribute B-11, F-27
Buffered operations

INSERT operations C-82

READ operations C-82

UPDATE operations C-82

Buffering
See also Virtual sequential block
buffering

and INSERT C-88

and READ C-88

and UPDATE C-88

effect on concurrency C-88, C-89

C
C language

and embedded SQL E-2

invoking record definition I-26

C (character) display descriptor A-61
C89 command C-176
Cache size C-134
CANCEL command C-1
CASE expression C-2
CAST function C-4
CATALOG clause

CREATE INDEX statement C-144

CREATE TABLE statement C-157

CREATE VIEW statement C-168

CATALOG command C-7
CATALOG DEFINEs D-32
CATALOG option

CLEANUP command C-22

CONVERT command C-96

DUP command D-71

Catalog tables
BASETABS B-1

COLUMNS C-46, U-10
HP NonStop SQL/MP Reference Manual—523352-013
Index-4

Index C
Catalog tables (continued)
COMMENTS C-51

CONSTRNT C-70

CPRLSRCE C-131

CPRULES C-131

FILES F-27

INDEXES I-10

KEYS K-1

operations on C-9

PROGRAMS P-29, P-31

retrieving statistics from U-10

See PARTNS catalog table

See USAGES catalog table

selecting from S-30

TABLES T-2

TRANSIDS T-11

VERSIONS V-9

VIEWS V-10

CATALOGCLASS
in CATALOGS table C-11

in VERSIONS table V-9

CATALOGFORMAT in VERSIONS
table V-9
CATALOGNAME

in CATALOGS table C-11

in PARTNS table P-20

Catalogs
ALTER CATALOG statement A-8

components of C-8

CREATE CATALOG statement C-132

creating SYSTEM CATALOG C-152

default Z-3

description of C-8

displaying current default E-3

DROP statement D-64

expiration date, setting N-5

format C-8

inserting comments into C-48

list of on node C-11

performance considerations C-134

Catalogs (continued)
purging with CLEANUP C-22

resecuring A-8

setting default for C-8

system S-92

upgrading U-11

versions C-8, V-7

CATALOGS catalog table
creating catalog C-132, C-152

description of C-11

securing A-9

CATALOGS Table
See CATALOGS catalog table

CATALOGVERSION
in CATALOGS table C-11

in VERSIONS table V-9

CENTER_REPORT layout option C-12,
R-10
Character data

size limit L-7

syntax D-2

types C-13

Character expressions C-14
Character literals S-80
CHARACTER option, CONVERT
command C-98
Character sets

ASCII listing A-70

in collations C-37

ISO 8859 C-18

JIS X0208 C-18

Kanji C-18

KSC5601 C-19

multibyte M-43

shift JIS C-18

specifying for columns D-1

summary of C-17

Character strings
comparing C-58

effect of collation on C-59
HP NonStop SQL/MP Reference Manual—523352-013
Index-5

Index C
Character strings (continued)
literals S-80

matching pattern L-2

Character values, display format of A-61
CHARACTERISTICS in CPRULES
table C-131
CHARACTERSET

in COLUMNS table C-47

in CPRULES table C-131

CHAR_LENGTH function C-20
CHECK clause

CHECKMODE, in PROGRAMS
table P-32

CREATE CONSTRAINT
statement C-139

CREATE VIEW statement C-168

CHECKMODE, in PROGRAMS table P-32
Clauses

AS A-60

COLLATE C-29

CONCAT C-63

DEFAULT D-26

DISTINCT D-57

IF/THEN/ELSE I-1

PARTITION P-16

CLEANUP command
and dependent programs C-23

and shadow labels C-22

description of C-21

CLEAR clause, COMMENT
statement C-48
CLEAR option

LOG command L-52

OUT command O-7

CLEARONPURGE
in FILES table F-27

in PROGRAMS table P-31

CLEARONPURGE file attribute
ALTER CATALOG statement A-8

ALTER INDEX statement A-15

ALTER PROGRAM statement A-27

CLEARONPURGE file attribute (continued)
description of C-26

SECURE command S-8

CLOSE statement
and locking L-51

description of C-26

Closing
cursors C-27

FREE RESOURCES statement F-30

CLUSTERING KEY clause, CREATE
TABLE statement C-158
Clustering keys

and EXECUTE RETURNING E-9

description of C-28

length limit L-6

CNVSRC file C-97
COBOL language

and embedded SQL E-2

invoking record definition I-26

COLCLASS, in COLUMNS table C-46
COLCOUNT

in INDEXES table I-10

in TABLES table T-2

COLLATE clause
associating with a column D-3

CREATE INDEX statement C-144

description of C-29

effect on data-type specification D-3

Collations
ALTER COLLATION statement A-10

associating with a column D-3

catalog description of T-2

CREATE COLLATION
statement C-137

definitions C-30

description of C-43

DROP statement D-64

duplicating D-75

in expressions C-14

renaming A-10
HP NonStop SQL/MP Reference Manual—523352-013
Index-6

Index C
Collations (continued)
similarity rules for S-57

versions V-7

Collations buffer
DESCRIBE statement D-45

INCLUDE SQLDA directive I-5

Collectors R-3
COLNAME in COLUMNS table C-46
COLNUMBER in COLUMNS table C-46
COLSIZE in COLUMNS table C-46
Column identifier C-44
Columns

ADD COLUMN option A-33

assigning alias to N-1

catalog description of C-46

changing heading A-33

default values for D-26

definition of tables C-46

definition syntax C-155

description of C-45

HEADING clause A-50

heading length limit L-6

headings D-48

identifier C-44

initializing A-33, D-7

limits L-6

maximum length D-2

names C-46

subtotal in report S-86

totals in report T-9

COLUMNS catalog table
description of C-46

selecting from U-10

Command files O-1
Command interface

See SQLCI

COMMAND option
LOG command L-52

SAVE command S-3

Commands
ADD DEFINE A-4

ALTER DEFINE A-11

APPEND A-52

APPENDCANCEL A-56

APPENDRESTART A-58

BREAK FOOTING B-6

BREAK ON B-8

BREAK TITLE B-10

CANCEL C-1

CATALOG C-7

CLEANUP C-21

CONVERT C-94

COPY C-113

CREATE SYSTEM CATALOG C-152

DELETE DEFINE D-38

DETAIL D-47

DISPLAY STATISTICS D-52

DISPLAY USE OF D-54

DOWNGRADE CATALOG D-58

DOWNGRADE SYSTEM
CATALOG D-61

DROP SYSTEM CATALOG D-66

DUP D-69

EDIT E-1

editing and re-executing F-1

ENV E-3

ERROR E-4

executing multiple O-1

EXIT E-13

FILEINFO F-9

FILENAMES F-25

FILES F-26

FUP F-33

GOAWAY G-6

HISTORY H-5

INFO DEFINE I-12

INITIALIZE SQL I-13

INVOKE I-25
HP NonStop SQL/MP Reference Manual—523352-013
Index-7

Index C
Commands (continued)
LIST L-16

LOAD L-18

LOG L-52

MODIFY CATALOG M-4

MODIFY LABEL M-19

MODIFY REGISTER M-40

NAME N-1

OUT O-7

OUT_REPORT O-8

PAGE FOOTING P-1

PAGE TITLE P-4

PERUSE P-21

PURGE P-33

PURGEDATA P-36

reexecuting Z-1

REPORT FOOTING R-2

REPORT TITLE R-6

RESET DEFINE R-12

RESET LAYOUT R-13

RESET PARAM R-14

RESET PREPARED R-16

RESET REPORT R-16

RESET SESSION R-19

RESET STYLE R-19

SAVE S-2

saving in a file S-2

SECURE S-7

SET DEFINE S-32

SET DEFMODE S-34

SET LAYOUT S-34

SET PARAM S-35

SET SESSION S-39

SET STYLE S-45

SHOW CONTROL S-48

SHOW DEFINE S-48

SHOW DEFMODE S-49

SHOW LAYOUT S-50

SHOW PARAM S-50

Commands (continued)
SHOW PREPARED S-51

SHOW REPORT S-52

SHOW SESSION S-53

SHOW STYLE S-54

SQLCI S-63

SQLCOMP S-67

SUBTOTAL S-86

summary S-64

SYSTEM S-93

TEDIT T-3

TOTAL T-9

UPGRADE CATALOG U-11

UPGRADE SYSTEM CATALOG U-13

VERIFY V-2

VOLUME V-11

! Z-1

COMMENT statement C-48
Comments

deleting C-49

description of C-50

in catalogs C-48

in collation definitions C-30, C-31

in programs and SQLCI C-51

line length limit L-7

number allowed per object C-49

COMMENTS catalog table C-51
COMMENTS option, CONVERT
command C-97
COMMENTTEXT, in COMMENTS
table C-51
COMMIT option C-52
Commit phase W-7
COMMIT WORK statement C-56
Communication, SQL and host H-6
COMPACT option, LOAD command L-24
Comparing date-time values C-59
Comparing numeric data C-59
Comparing values to subquery results Q-6
Comparison predicate, description of C-58
HP NonStop SQL/MP Reference Manual—523352-013
Index-8

Index C
Compatible data types and INSERT I-16
Compilation

authority for S-15

automatic P-29

explicit P-29

Guardian command for S-67

OSS command for C-176

time D-52

Compiler event messages Z-11
Compilers

and statistics U-9

host language, versions V-8

NonStop SQL/MP, versions V-6

Components, versions of V-6
COMPUTE_TIMESTAMP function

and report writer R-11

description of C-62

SET PARAM command S-36

CONCAT clause
description of C-63

report writer option R-10

Concurrency
affect of access options A-3

and buffering C-88

DDL and DML statements C-65

DDL statements D-21

description of C-65

effect of access options A-1

effect of VSBB C-68, C-89

utility operations C-68

Conditional
display format A-64

page break D-48

printing of items I-1

Conditions for grouped rows S-21
Conditions for selecting data S-5
Configuration file

CREATE INDEX statement P-5

CREATEINDEX keyword P-6

Consistency, effect of access options A-1

Constraint
catalog description of C-70

CREATE CONSTRAINT
statement C-139

description of C-69

DROP statement D-64

text limit L-7

versions V-7

CONSTRAINTNAME, in CONSTRNT
table C-70
CONSTRAINTS, in BASETABS table B-1
CONSTRAINTTEXT, in CONSTRNT
table C-70
CONSTRNT catalog table C-70
Continuation prompt S-60
CONTINUE statement C-70
CONTROL EXECUTOR directive C-73
Control options, displaying S-48
CONTROL QUERY directive

BIND NAMES option C-74

description of C-74

HASH JOIN option C-75

INTERACTIVE ACCESS option C-75

MDAM option C-75

control statements C-76
CONTROL TABLE directive

ACCESS PATH option C-79

and BIND NAMES option C-74

description of C-77

displaying current values S-48

in EXPLAIN report E-16

JOIN METHOD option C-80

JOIN SEQUENCE option C-81

lock waits C-82

MDAM option C-81

OPEN option C-82

RETURN IF LOCKED option C-82

SEQUENTIAL BLOCKSPLIT
option C-83

SEQUENTIAL option C-82

SKIP option C-83
HP NonStop SQL/MP Reference Manual—523352-013
Index-9

Index C
CONTROL TABLE directive (continued)
STOP AT option C-83

SYNCDEPTH option C-84

TABLELOCK option C-84

TIMEOUT option C-84

UNAVAILABLE PARTITION
option C-83

with LOCK TABLE statement L-46

Controlling the SORTPROG process S-25
Conversational interface

See SQLCI

CONVERT command
alternate key specification C-100

authorization requirement C-99

behavior C-99

CATALOG option C-96

CHARACTER option C-98

COMMENTS option C-97

conversion of DDL items with C-103

DDL groups C-97, C-107, C-108

description of C-94

DICTIONARY option C-97

Enscribe files C-100

file attributes of tables and
indexes C-107

FILE IS option C-97

LOAD option C-97

MAP NAME option C-96

NATIONAL option C-99

PART option C-97

partition attributes of objects C-107

primary key specification C-100

REDEFINE option C-98

SOURCE option C-97

VARCHARS option C-97

Converted Enscribe applications, RETURN
IF LOCKED option C-82

Converting
binary data types C-104

DDL character strings C-104

DDL elementary items C-103

DDL groups C-106

decimal data types C-104

Enscribe applications C-82

Enscribe file to SQL table C-94, L-36

FORTRAN data types C-105

SQL table to Enscribe file L-36

variable-length strings C-106

CONVERTTIMESTAMP function C-113
Copies of report O-9
COPY command

ALLOWERRORS option C-116

BLOCKOUT option C-118

compared to APPEND A-55

compared to LOAD C-123

COUNT option C-116

description of C-113

display format C-122

EBCDICOUT option C-118

FIRST option C-116

FOLD option C-119

operations C-122

PAD option C-119

RECOUT option C-119

REPLACE SPACES WITH
option C-116

REWINDOUT option C-120

SHAREOUT option C-122

SKIPOUT C-120

SQLNULLABLE option C-117

TMF transaction C-124

UNLOADOUT option C-121

UNSTRUCTURED option C-117

UPSHIFT option C-117

USESQLNULLS option C-117

VAROUT option C-121
HP NonStop SQL/MP Reference Manual—523352-013
Index-10

Index C
Copying
data from Enscribe file to SQL
table C-113

data from SQL table to Enscribe
file C-113

Enscribe files

Correlated subqueries S-83
Correlation names C-128
Cost

of executing a statement D-52

of hash operation E-17

of sort operation E-19

of SQL operation, in EXPLAIN
report E-18

of total SQL statement E-20

COUNT function C-130
COUNT option

COPY command C-116

LOAD command L-21

CPARRAYENTRY in COLUMNS
table C-47
CPRLSRCE catalogs table C-131
CPROBJSIZE in CPRULES table C-131
CPRULES catalog table C-131
CPRULESNAME

in COLUMNS table C-47

in CPRLSRCE table C-131

in CPRULES table C-131

in KEYS table K-1

CPUS, parameter for FastSort Z-4
CREATE ASSERTION statement S-71
CREATE CATALOG statement

description of C-132

SECURE file attribute C-132

CREATE COLLATION statement C-137
CREATE CONSTRAINT statement

CHECK clause C-139

DEFERRED C-139

description of C-139

CREATE INDEX statement
AUDITCOMPRESS file attribute C-146

CATALOG clause C-144

COLLATE clause C-144

configuration file P-5

description of C-142

file attributes C-146

INVALIDATE clause C-144

KEYTAG option C-145

PARALLEL EXECUTION clause C-145

parallel index loading P-5

PARTITION clause C-145

PHYSVOL clause C-144

UNIQUE clause C-143

WITH SHARED ACCESS
clause C-146

CREATE statements and concurrent DML
operations C-65
CREATE SYSTEM CATALOG
command C-152
CREATE TABLE statement

AUDITCOMPRESS file attribute C-160

CATALOG option C-157

CLUSTERING KEY clause C-158

DEFAULT clause C-157, D-26

description of C-154

file attributes C-160

FORMAT file attribute C-161

HEADING clause C-157, H-1

LIKE clause C-155

NOT NULL clause C-157

ORGANIZATION clause C-158

PARTITION ARRAY clause C-159

PARTITION clause C-158

PHYSVOL clause C-158

PRIMARY KEY clause C-157

SECURE file attribute C-159

SIMILARITY CHECK clause C-160
HP NonStop SQL/MP Reference Manual—523352-013
Index-11

Index D
CREATE VIEW statement
AS clause C-167

CATALOG clause C-168

CHECK C-168

description of C-166

FOR PROTECTION clause C-168

HEADING clause C-167, H-1

length of C-170

SECURE file attribute C-168

SELECT DISTINCT clause S-68

SIMILARITY CHECK clause C-168

WITH CHECK OPTION clause C-169

WITH HEADINGS clause C-169

WITH HELP TEXT clause C-169

CREATEINDEX keyword, configuration
file P-6
CREATETIME

in INDEXES table I-10

in PROGRAMS table P-31

in TABLES table T-2

Creating
catalog C-132

CATALOGS table C-152

collation C-137

constraint C-139

table C-154

view C-166

CTOEDIT command F-8
CURRENT default value D-26
CURRENT function C-173
CURRENT_TIMESTAMP function

and report writer R-11

description of C-174

in USING clause, EXECUTE
statement E-8

SET param command S-35

Cursors
CLOSE statement C-26

closing C-27

declaration D-23

Cursors (continued)
description of C-175

effect of FREE RESOURCES
statement F-30

execution time C-74

FETCH statement F-3, F-4

limits L-7

OPEN statement O-5

operations with VSBB C-91

position C-176, D-39

stability C-176

updating by position U-4

D
Damaged objects, deleting C-21
Data

clearing from file or table D-39, P-36

compression of index blocks I-1

copying C-113

fetching F-3

inserting I-14

loading into database L-18

modifying U-3

removing C-26

selecting S-17

size limits L-7

updating U-3

Data Control Language (DCL)
authorization S-15

description of D-18

Data Control Language (DCL) statements
CONTROL EXECUTOR C-73

CONTROL QUERY C-74

CONTROL TABLE C-77

description of D-18

FREE RESOURCES F-30

LOCK TABLE L-45

UNLOCK TABLE U-1
HP NonStop SQL/MP Reference Manual—523352-013
Index-12

Index D
Data declaration
BEGIN DECLARE SECTION
directive B-2

END DECLARE SECTION
directive E-3

tables and views I-25

Data Definition Language (DDL)
alternate keys C-100

and database concurrency C-65, D-21

clauses, CONVERT statement C-101

groups, converting C-107

performance considerations C-134

primary key C-100

record definitions, Enscribe file C-100

security requirements S-15

Data Definition Language (DDL) statements
ALTER CATALOG A-8

ALTER COLLATION A-10

ALTER INDEX A-13

ALTER PROGRAM A-27

ALTER TABLE A-29

ALTER VIEW A-50

COMMENT C-48

CREATE CATALOG C-132

CREATE COLLATION C-137

CREATE CONSTRAINT C-139

CREATE TABLE C-154

CREATE VIEW C-166

description of D-20

DROP D-63

HELP TEXT H-4

processing rules T-7

UPDATE STATISTICS U-7

Data dictionary D-1
Data Management Language (DML)
statements C-65
Data Manipulation Language (DML)

statements D-58

Data Manipulation Language (DML)
statements

and database concurrency C-65

authorization requirements S-16

processing rules T-7

Data retrieval
cursor declaration D-23

SELECT statement S-17

Data selection
See Selecting data

Data Status Language (DSL)
statements D-67

Data Status Language (DSL) statements
GET CATALOG OF SYSTEM G-1

GET VERSION G-2

GET VERSION OF PROGRAM G-4

Data syntax
CHARACTER D-2

DATETIME D-6

DECIMAL D-5

DOUBLE PRECISION D-5

FLOAT D-5

INTEGER D-5

INTERVAL D-7

LARGEINT D-5

NUMERIC D-4

PICTURE 9 D-6

PICTURE X D-4

REAL D-5

SMALLINT D-5

Data types
character C-13

converting C-4, L-36

DATE D-8

DATETIME D-15

date-time D-9

DDL L-36

decimal C-104

description of D-1

dynamic SQL parameters and P-13
HP NonStop SQL/MP Reference Manual—523352-013
Index-13

Index D
Data types (continued)
for parameters C-4, P-14, S-36

FORTRAN C-105

INTERVAL I-19

Julian timestamp C-62

numeric N-11

TIME T-5

TIMESTAMP T-5

view columns C-170

Database
authorization for access S-11

integrity C-69, C-139

sample S-1

updating statistics U-7

DATATYPE in COLUMNS table C-46
Date

computing for report C-62, C-173

of expiration A-32

print item display format A-67

specifying default format D-8

DATE data type D-8
DATE literal D-11
DATE values

in host variables H-6

LOAD command L-38

DATEFORMAT function D-14
DATETIME

data syntax D-6

data type D-15

literals D-11

values, LOAD command L-38

DATETIMEENDFIELD in COLUMNS
table C-47
DATETIMEQUALIFIER in COLUMNS
table C-47
DATETIMESTARTFIELD in COLUMNS
table C-47
Date-time

arithmetic E-25

comparing C-59

Date-time (continued)
functions D-10

in host variables H-6

inserting I-17, I-18

items, in expressions E-25

literals D-10

Date-time data types
description of D-9

TIME D-11

TIMESTAMP D-11

Date-time expressions
description of E-22

evaluation E-25

DATE_FORMAT layout option D-8, R-10
DAYOFWEEK function D-17
DCL

See Data Control Language(DCL)

DCOM utility U-17
DCOMPRESS file attribute

description of D-18

displaying F-17

DCOMPRESSTYPE, in FILES table F-28
DCOMPRESS, in FILES table F-27
DDL

See Data Definition Language (DDL)

DEADLOCKS D-22
DEALLOCATE file attribute A-7
DECIMAL columns, explicit lengths S-69
DECIMAL data syntax D-5
DECIMAL data types, converting to
SQL C-104
DECIMAL_POINT layout option D-22, R-10
DECLARE CURSOR statement

and locking D-25

description of D-23

FOR UPDATE OF clause D-23

Declare section
declaration B-2

terminating E-3
HP NonStop SQL/MP Reference Manual—523352-013
Index-14

Index D
Decorations
default A-64

description of A-64

display A-60

using A-64

Dedicated-operation-in-progress
prompt S-60
Default

catalog C-8

column values D-26

CURRENT value D-26

decimal character D-22

decorations A-64

detail line D-50

displaying current E-3

layout options R-13

line length L-7

names in prepared commands P-25

node, displaying E-3

page length for reports P-2

print item headings D-50

session options R-19

space between print items S-58

style options R-19

subvolume V-11

system D-27, E-3

time display format T-4

value, for column D-7

volume V-11

DEFAULT clause
ALTER TABLE statement A-33

CREATE TABLE statement C-157

description of D-26

DEFAULTCLASS in COLUMNS table C-47
DEFAULTS DEFINEs and catalogs C-8,
D-32
DEFAULTVALUE in COLUMNS table C-47
DEFINEs

and SQLCI D-28

and SQLCI HELP D-28

DEFINEs (continued)
as logical names D-27

attributes D-32

CLASS D-32

DEFMODE attribute D-28

description of D-27

Guardian procedure calls D-31

propagation of D-28

rules for naming A-4

saving in file S-2

summary of commands D-29

summary of procedures D-29

system S-94

using from SQLCI D-30

using with SQL programs D-28

working attribute set D-32, D-34

Defines
=_AUDSERV_XSWAP_node Z-2

=_DEFAULTS Z-3

=_SORT_DEFAULTS Z-4

=_SQL_AUD_node Z-14

=_SQL_CAT_HEAP_LIMIT Z-6

=_SQL_CAT_node Z-14

=_SQL_CI2_node Z-14

=_SQL_CMP_CPUS_node Z-7

=_SQL_CMP_DOUBLE_SBB_OFF Z-8

=_SQL_CMP_DOUBLE_SBB_ON Z-9

=_SQL_CMP_EQ_LIMIT Z-10

=_SQL_CMP_EVENT Z-11

=_SQL_CMP_EVENT_NO0 Z-12

=_SQL_CMP_node Z-14

=_SQL_cmp_node Z-14

=_SQL_CMP_NO_KS_MJOIN Z-14

=_SQL_EXE_DOUBLE_SHUTOFF Z-1
5

=_SQL_EXE_ESPS_CK_CMON Z-16

=_SQL_EXE_USE_SWAPVOL Z-17

=_SQL_MSG_node Z-18

=_SQL_RECGEN_node Z-20
HP NonStop SQL/MP Reference Manual—523352-013
Index-15

Index D
Defines (continued)
=_SQL_TM_node_vol Z-20

=_SQL_UTL_node Z-14

DEFINES option, SAVE command S-2
DEFMODE attribute D-28
DELETE DEFINE command D-38
DELETE statement

description of D-39

lock release summary L-48

table privileges S-68

WHERE clause D-39

WHERE CURRENT OF clause D-39

Deleting
damaged objects C-21

help text H-4

rows D-39

system catalog D-66

Delimited identifiers S-69
Dependent object

DISPLAY USE OF command D-54

information in USAGES table U-15

type D-55

DESCRIBE INPUT statement D-41
DESCRIBE statement

collations buffer D-45

description of D-43

names buffer D-44

Detail alias
description of D-46

in DETAIL command D-49

not allowed in DETAIL command D-47

DETAIL command
AS clause A-60

COMPUTE_TIMESTAMP
function C-62

CONCAT clause C-63

CURRENT_TIMESTAMP
function C-174

description of D-47

IF/THEN/ELSE clause I-1

DETAIL command (continued)
NAME option D-49

NEED clause D-49

PAGE clause D-49

SKIP clause D-49

SPACE clause D-49

TAB clause D-49

DETAIL display, FILEINFO command F-15
Detail line

controlling division of default L-53

default D-50

grouping with others B-8

printing sequence number of L-14

specifying D-47

vertical printing of D-51

DETAIL option
ERROR command E-5

FILEINFO command F-10, F-11, F-14,
F-21

Device, output R-20, S-42
DICTIONARY option, CONVERT
command C-97
Dictionary, SQL/MP D-1
Directing output to a file O-7
Directives

BEGIN DECLARE B-2

CONTROL EXECUTOR C-73

CONTROL QUERY C-74

CONTROL TABLE C-77

description of S-73

END DECLARE SECTION E-3

EXPLAIN E-13

INCLUDE SQLCA I-4

INCLUDE SQLDA I-4

INCLUDE SQLSA I-6

INCLUDE STRUCTURES I-7

INVOKE I-25

SQL S-59

Disk
erasing C-26
HP NonStop SQL/MP Reference Manual—523352-013
Index-16

Index D
Disk file
device width used R-20

labels in SQL D-1

Disk space
conserving D-18

manipulating A-7

Display formats
date print item A-67

default, for date D-8

default, for time T-4

print item A-60

STATISTICS of FILEINFO F-22

subtotal S-86

time print item A-67

total T-9

Display format, COPY command C-122
Display modifiers A-60
DISPLAY STATISTICS command D-52
DISPLAY USE OF command

AT option D-54

authorization requirements D-54

brief format D-54

description of D-54

USAGES table D-55

Displaying
contents of a file C-113

control options S-48

current default E-3

current default catalog E-3

current default volume E-3

current TMF transaction ID E-3

current TMF transaction status E-3

DCOMPRESS attribute F-17

default node E-3

Enscribe files C-123

environmental attributes E-3

error S-40

file attributes F-18

ICOMPRESS attribute F-17

Displaying (continued)
keys F-17

length of keys column F-17

levels of index F-19

LOCKLENGTH attribute F-17

name of LOG file E-3

name of MESSAGEFILE E-3

name of OUT file E-3

object D-54, F-15

OUT_REPORT E-3

ownership F-12

ownership of object D-56

PARTITION ARRAY attribute F-20

physical characteristics F-9

record length F-16

security F-12

security of object D-56

software version E-3

statistics S-41

statistics for command D-52

warning messages S-42

DISPLAY_ERROR option, SET SESSION
command S-40
DISTINCT clause

and null values N-9

description of D-57

SELECT statement S-19

Distinct rows, selecting S-19
Distributed Systems Management
(DSM) R-3
DML

See Data Manipulation Language
(DML)

DOUBLE PRECISION data syntax D-5
Double spacing L-16
DOWNGRADE CATALOG command D-58
DOWNGRADE SYSTEM CATALOG
command D-61
DROP ASSERTION statement S-71
Drop objects D-63
HP NonStop SQL/MP Reference Manual—523352-013
Index-17

Index E
DROP PARTITION clause, ALTER INDEX
statement A-15
DROP PARTITION clause, ALTER TABLE
statement A-34
DROP statement D-63
DROP SYSTEM CATALOG
command D-66
DSAP utility U-17
DSL

See Data Status Language (DSL)

DSLACK file attribute D-68
DSLACK option, LOAD command L-28
DSM (Distributed Systems
Management) R-3
DUP command

authorization requirements D-74

CATALOG option D-71

description of D-69

INDEXES option D-74

LISTALL option D-72

MAP NAME option D-70

rules D-74

SAVEALL option D-73

SAVEID option D-73

SOURCEDATE option D-73

TARGET option D-73

VIEW option D-74

Duplicate values and unique index C-143
Duplicating Enscribe files D-76
Duplicating with DUP command D-69
Dynamic SQL statements

cursor declaration D-23, D-24

describing input parameters D-41

describing output parameters D-43

describing output variables D-43

immediate execution E-11

Dynamic SQL, description of D-80
D> prompt S-60

E
EBCDICIN option, LOAD command L-24

EBCDICOUT option, COPY
command C-118
EDIT command E-1
Edit files F-8
Editing a command F-1
Editor

EDIT E-1

TEDIT T-3

vi F-8

Efficiency of multivalue predicates C-60
Elapsed compilation time D-52
ELSE clause I-1
Embedded SQL E-2
EMPTYOK option, LOAD command L-21
EMS

See Event Management Service

EMS default reports R-3
END DECLARE SECTION directive E-3
Ending TMF transaction C-56
ENDTRANSACTION procedure call C-57
Enscribe applications, converted C-82
Enscribe files

clearing data from P-36

converting to an SQL table C-94

copying to an SQL table C-113, C-125

DDL record definition C-100

description of F-8

displaying C-123, F-9

duplicating D-76

loading data into L-34

Entry-sequenced files F-8
Entry-sequenced tables S-90
ENV command E-3
ENV option, SAVE command S-2
Environmental attributes

displaying E-3

saving in a file S-2

EOF
address of file or object F-19

and filesets Q-3

in FILES table F-28
HP NonStop SQL/MP Reference Manual—523352-013
Index-18

Index E
Erasing data from disk C-26
ERROR command

description of E-4

DETAIL option E-5

Error messages
description of E-6

FETCH statement F-4

Errors
10088 S-44

1057 C-54, D-21

1125 A-24, A-45

12 C-54, D-21

1203 D-21

122 C-88, Z-17, Z-21

1222 D-21

1411 A-25

1615 - 1618 C-54

1621 - 1622 C-54

199 (Disk file is Safeguard
protected) A-28

200 - 255 (A path or network error
occurs) C-83

3001 - 3999 C-54

35 (Lock limit has been reached) C-84

40 C-54, D-21, D-22, P-35, P-39

40 (Operation timed out) C-85

45 A-17, A-35

45 (File is full) P-9

59 (The file is bad) C-83

60 C-147

61 (No more opens are permitted on
the volume) C-83

66 (The volume is not available) C-83

73 C-54, C-82, D-21, D-22, P-35, P-38,
T-7

73 (File/Record locked) C-85

8204 C-147

9179 A-57

9182 A-57

Errors (continued)
A path or network error occurs (200 -
255) C-83

checking with SQLCA I-4

Disk file is Safeguard protected
(199) A-28

displaying S-40

file system D-21

File/Record locked (73) C-85

Lock limit has been reached (35) C-84

No more opens are permitted on the
volume (61) C-83

Operation timed out (40) C-85

sort error 30 P-9

SQL/MP D-21

testing for with WHENEVER W-1

The file is bad (59) C-83

The volume is not available (66) C-83

-3036 M-43

-6021 C-80

-8300 C-82

-9132 F-11

-9133 F-11

-9853 V-4

ERROR_ABORT option, SET SESSION
command S-40
ERROR_TEXT option, SET SESSION
command S-41
Escape characters L-3
ESPs, in EXPLAIN report E-18
Estimated execution cost D-52
Evaluation of arithmetic expressions E-21
Event Management Service (EMS)

and online dumps of target objects W-6

description of R-3

messages from SQL operations R-3

messages from SQLCOMP
compiler Z-11, Z-13

Event messages, from SQLCOMP
compiler Z-11, Z-13
Exact numeric data types N-11, N-12
HP NonStop SQL/MP Reference Manual—523352-013
Index-19

Index F
Examples, database used in S-1
Exclamation point command Z-1
EXCLUSIVE clause, LOCK TABLE
statement L-45
Exclusive locks

description of L-50

EXCLUSIVE clause L-45

on SELECT statement S-21

Execute access S-14
EXECUTE command

COMPUTE_TIMESTAMP
function C-62

CURRENT_TIMESTAMP
function C-174

EXECUTE IMMEDIATE statement E-11
EXECUTE statement

CURRENT_TIMESTAMP function E-8

description of E-7

RETURNING clause E-9

USING clause E-7

USING DESCRIPTOR clause E-7

Execution plans P-22
EXISTS predicate E-12
EXIT command E-13
Expiration date A-32, N-5
EXPLAIN directive E-13
Exploded record length F-16
Exponents N-13
Expressions

CASE C-2

character C-14

date-time E-22

date-time, evaluation E-25

description of E-21

INTERVAL E-22

numeric E-22

with date-time items E-25

EXTEND function E-28
EXTENT file attribute E-30
Extents

Available space in file or object F-19

Extents (continued)
MAXEXTENTS file attribute M-2

EXTENTS ALLOCATED display, FILEINFO
command F-19
EXTENTS display, FILEINFO
command F-21
EXTENTS option, FILEINFO
command F-10

F
FastSort Z-4
FC command, prompt S-60
FETCH statement

and cursors F-4

and SQLDA F-3

description of F-3

INTO clause F-3

lock realease summary L-48

lock release summary L-48

USING DESCRIPTOR clause F-3

Fetching rows F-3
Field conversion C-126, L-36
Field formats

and copying data C-126

and loading data L-36

File attributes
ALLOCATE A-7

ALTER INDEX statement A-15

ALTER TABLE statement A-32

AUDIT A-74

AUDITCOMPRESS A-75

BLOCKSIZE B-5

BUFFERED B-11

CLEARONPURGE C-26

CREATE INDEX statement C-146

CREATE TABLE statement C-160

DCOMPRESS D-18

DEALLOCATE A-7

description of F-6

displaying F-18
HP NonStop SQL/MP Reference Manual—523352-013
Index-20

Index F
File attributes (continued)
DSLACK D-68

EXTENT E-30

ICOMPRESS I-1

ISLACK I-29

LOCKLENGTH L-51

MAXEXTENTS M-2

NOPURGEUNTIL N-5

OWNER O-10

PROGID P-28

RECLENGTH R-1

RESETBROKEN R-20

SECURE S-11

SERIALWRITES S-32

SLACK S-57

TABLECODE T-1

VERIFIEDWRITES F-30, V-1

FILE IS option, CONVERT command C-97
File labels, used by SQL D-1
File names

Guardian G-7

simple G-7

File organizations F-8
File Utility Program (FUP) F-33/F-36
FILEFORMAT, in FILES table F-28
FILEINFO command

BRIEF option F-10, F-11, F-21

description of F-9

DETAIL display F-15

DETAIL display for OSS files F-21

DETAIL display for views F-20

DETAIL option F-10, F-11

DETAIL option for objects F-14

EXTENTS display F-19, F-21

EXTENTS option F-10

STATISTICS display F-22

STATISTICS option F-10

VERSION option F-16

FILENAME
in BASETABS table B-1

in FILES table F-27

in INDEXES table I-10

in PARTNS table P-20

FILENAMES command F-25
Files

attributes of F-26

available space F-19

CNVSRC C-97

code F-8, T-1

directing output to O-7

displaying contents of C-113

displaying name of F-25

edit F-8

Enscribe F-8

entry-sequenced F-8

key-sequenced F-8

LOG L-52, Z-12

logging to L-52

MESSAGE M-3, Z-18

OBEY O-1

open state F-11, F-19

organization of F-8

OUT_REPORT O-8

ownership S-14

position of C-176

relative F-8

set size E-30

SQL messages Z-18

statistics F-22

structured F-8

temporary, size limit L-13

unstructured F-8

FILES catalog table F-27
FILES command F-26
Filesets

description of F-29

qualified list Q-1
HP NonStop SQL/MP Reference Manual—523352-013
Index-21

Index F
FILETYPE, in FILES table F-27
File, formats, Enscribe Q-4
File-system errors D-21
Filler characters, overflow O-10
FIRST KEY clause

ALTER INDEX statement A-18

ALTER TABLE statement A-37

defaults for unspecified columns P-17

First key, size limit L-8
FIRST option

COPY command C-116

LOAD command L-21

FIRSTKEY, in PARTNS table P-20
Fixing command F-1
FLOAT data syntax D-5
FOLD option, COPY command C-119
Folding a line L-53
Footing

See PAGE FOOTING command

Footings
break B-6

page P-1

report R-2

FOR PROTECTION clause, CREATE VIEW
statement C-168
FOR UPDATE OF clause

DECLARE CURSOR statement D-23

SELECT statement S-24

Forced page break D-49
FORCE, in PROGRAMS table P-32
FOREIGN KEY table constraint S-68
Form feeds for reports P-3
Form name for reports O-9
Format

dates and times C-174

Enscribe files Q-4

file F-30

print item A-60

type A-25

Format 2 partitions
description of F-30

EXTENT sizes E-30

FORMAT file attribute F-30

limits L-9

MAXEXTENTS M-2

migration A-46

PARTITION clause P-16

Format 2-enabled
indexes A-25, C-149

Format 2-enabled tables
command C-156

example C-163, C-165

partition A-47

partition array A-33, A-45, C-159

partition array parameter C-162

partition formats C-161

FORMAT file attribute F-30
Formatting commands

See also Report

FORTRAN data types, converting to
SQL C-105, S-69
FREE RESOURCES statement

and COMMIT WORK statement C-57

and ROLLBACK WORK
statement R-22

description of F-30

lock realease summary L-48

lock release summary L-48

FROM clause
limit on tables L-8

SELECT statement S-20

FSDATATYPE in COLUMNS table C-46
Functions

aggregate A-6, F-32

AVG A-76

CAST C-4

CHAR_LENGTH C-20

COMPUTE_TIMESTAMP C-62

CONVERTTIMESTAMP C-113
HP NonStop SQL/MP Reference Manual—523352-013
Index-22

Index G
Functions (continued)
COUNT C-130

CURRENT C-173

CURRENT_TIMESTAMP C-174

DATEFORMAT D-14

date-time D-10

DAYOFWEEK D-17

description of F-32

EXTEND E-28

JULIANTIMESTAMP J-4

LINE NUMBER L-14

MAX M-1

MIN M-3

PAGE_NUMBER P-3

POSITION P-23

scalar F-33, S-46

SETSCALE S-46

string S-80

SUBSTRING S-84

SUM S-89

TRIM T-11

UPSHIFT U-14

FUP command F-33/F-36
FUP LICENSE command F-35

G
Generalized owner G-1, S-9, S-14
Generic lock L-51
GET CATALOG OF SYSTEM
statement G-1
GET VERSION OF PROGRAM
statement G-4
GET VERSION statement G-2
GOAWAY command G-6, U-17
GRANT statement S-68
Granularity L-49
GROUP BY clause

and null values N-9

and UNION operator S-27

SELECT statement S-22, S-25

Group manager G-7, S-12
Group number S-12
Grouped rows, conditions S-21
Grouped view

description of S-24

FROM clause S-19

view creation C-170

GROUPID
in PROGRAMS table P-31

in TABLES table T-2

Groups
and GROUP BY clause S-22

and SECURE file attribute S-11

and SELECT statement S-27

Guardian names G-7
Guardian processes E-2
Guardian user IDs S-12

H
HASH JOIN option, CONTROL QUERY
directive C-75
Hash joins

restrictions on C-80

with CONTROL QUERY directive C-75

HAVING clause
and UNION operator S-27

SELECT statement S-21

HEADING clause
ALTER VIEW statement A-50

CREATE TABLE statement C-157

CREATE VIEW statement C-167

description of H-1

HEADING in COLUMNS table C-47
Headings

concatenated print items C-64

multiple line N-4

print item D-48

print item default D-50

suppressing in reports H-1

HEADINGS layout option H-2, R-10
HP NonStop SQL/MP Reference Manual—523352-013
Index-23

Index I
HEADINGTEXT in COLUMNS table C-47
HELP command H-2
HELP TEXT statement H-4
Help text, deleting H-4
Hidden text C-51
HISTORY command H-5
Host and SQL communication H-6
Host identifiers H-5
Host object SQL version (HOSV) V-8
Host programming language

compiler versions V-8

description of E-2, H-5

Host programs H-6
Host variables

declaration B-2

description of H-6

substituting values in a query H-6

TYPE AS clause H-6

HOSV (host object SQL version) V-8

I
ICOMPRESS file attribute

description of I-1

displaying F-17

ICOMPRESS, in FILES table F-27
Identifiers, SQL S-59
IDs S-12
IF/THEN/ELSE clause

description of I-1

report writer option R-10

IN predicate I-3, L-8
INCLUDE SQLDA directive

collation buffer I-5

description of I-4

names buffer I-5

INCLUDE SQLSA directive I-6
INCLUDE STRUCTURES directive I-7
Index

address of EOF F-19

ALTER INDEX statement A-13

Index (continued)
altering attributes A-15

alternate access path E-16

available space F-19

block length F-17

catalog description of I-10

column limit L-6

configuration file for parallel
loading P-5

CREATE INDEX statement C-142

data, loading into L-18

date-caused program
recompilation F-19

dependencies on base table C-148

displaying physical characteristics F-9

DROP statement D-64

dropping P-33

expiration date, setting N-5

file statistics F-22

for catalog tables C-9

keytags I-9

levels and ICOMPRESS I-1

limit per table L-8

open state F-19

partitioned P-19

physical file attributes C-107

size limit L-8

sorting and null values C-149

specifying file attributes of an C-146

unique and nonunique I-9

unpartitioned P-19

using subsorts C-145

versions V-7

Index keys I-9
Index loading

partitions in parallel C-145, P-5

using subsorts C-151

Index partitions
adding A-18

null values P-17
HP NonStop SQL/MP Reference Manual—523352-013
Index-24

Index I
INDEXES catalog table I-10
INDEXES option, DUP command D-74
INDEXLEVELS, in INDEXES table I-10
INDEXNAME

in INDEXES table I-10

in KEYS table K-1

INDICATOR clause
host variable H-6

parameter name P-12

INDICATOR parameter I-11
Indicator variable H-6, I-11, P-12
INFO DEFINE command I-12
Initial object

DISPLAY USE OF command D-56

type D-56

INITIALIZE SQL command I-13
Initializing columns A-33, D-7
Inner joins J-1, J-2
Inner query S-83, S-84
Inoperable plan P-22
Input host variables D-41
INSERT operations, buffered C-82
INSERT statement

access options I-15

and ORDER BY S-23

ANYWHERE clause I-16

APPEND clause I-16

description of I-14

exceptions S-68

INTO clause I-15

RETURNING clause I-15

scale of S-46

SYSKEY clause I-14

INSERTABLE, in VIEWS table V-10
Inserting

and check option I-17

and constraints I-17

compatible data types I-16

date-time values I-17

null values I-17

Inserting (continued)
rows I-14

Inserts, sequential C-83, C-87
INTEGER data syntax D-5
Integrity constraint, creating C-139
INTERACTIVE ACCESS option, CONTROL
QUERY directive C-75
Interactive interface

See SQLCI

INTERVAL
data syntax D-7

data type I-19

literals I-22

Interval expressions E-22
INTERVAL values

in host variables H-6

LOAD command L-38

INTO clause
FETCH statement F-3

INSERT statement I-15

SELECT statement S-19

Invalid object V-3
Invalid plan P-22
Invalid program P-22
INVALIDATE clause, CREATE INDEX
statement C-144
INVOKE directive

and BIND NAMES option C-74

and command I-25

NULL STRUCTURE clause I-27

IS NULL predicate N-6
ISLACK file attribute I-29
ISLACK option, LOAD command L-29
ISO

8859 character sets C-18

character sets, ASCII A-70

SQL, compatibility with S-67

Isolation Level S-70
IXINDE01 file C-9
HP NonStop SQL/MP Reference Manual—523352-013
Index-25

Index J
IXPART01
catalog table, limits L-10, L-11

file C-9

IXPROG01 file C-9
IXTABL01 file C-9
IXUSAG01 file C-9
I/O (input/output)

serial or parallel writes S-32

verify disk writes V-1

J
JIS X0208 (Japanese) character set C-18
JOIN METHOD option, CONTROL TABLE
directive C-80
Join queries J-1
JOIN SEQUENCE option, CONTROL
TABLE directive C-81
Joins

controlling C-86

description of J-1

example of S-30

inner J-1, J-2

left outer J-1

SELECT specification S-20

Julian timestamp
and COMPUTE_TIMESTAMP C-62

formatting A-60

JULIANTIMESTAMP function J-4
Justification A-61, A-63, A-64, A-65, A-66

K
Kanji character set C-18
KEY clause

CLUSTERING, CREATE TABLE
statement C-157

PRIMARY, CREATE TABLE
statement C-157

KEY option, LOAD command L-21
Keys

clustering C-28

Keys (continued)
column length F-17

description of K-1

displaying F-17

first, specifying value of A-18, A-37

for indexes I-9

INDEX I-9

maximum values L-13

nonunique primary C-28

physical primary P-27

primary P-27, S-90

system-defined primary S-90

user-defined primary U-16

KEYS catalog table K-1
Keys specifier

description of C-145

displaying F-17

KEYSEQNUMBER, in KEYS table K-1
KEYTAG clause, CREATE INDEX
statement C-145
Keytags I-9
KEYTAG, in INDEXES table I-10
Key-sequenced block size B-5
Key-sequenced files F-8
Key-sequenced tables S-90
KSC5601 (Korean) character set C-19

L
Labels

for subtotal S-88

Language
displaying using ENV command E-3

elements H-2

LARGEINT data syntax D-5
Layout options

default R-13

displaying S-50

resetting R-13

saving in file S-2

setting S-34
HP NonStop SQL/MP Reference Manual—523352-013
Index-26

Index L
LAYOUT option, SAVE command S-3
LC_COLLATE section C-32
LC_CTYPE section C-35
LC_TDMCODESET section C-37
Left justification A-61, A-63, A-64, A-65
LEFT OUTER JOIN operator S-70
Left outer joins J-1
LEFT_MARGIN layout option L-1, R-10
Length of page P-2
Levels of index, displaying F-19
Licensing F-35
LIKE clause, CREATE TABLE
statement C-155
LIKE predicate L-2
Limits on concurrency C-68, L-6
Lines

folding L-53

new line character N-4

number on page P-2

resetting number of L-14

skipping in report D-49

spacing L-16

splitting L-53

truncating or wrapping S-42

LINE_NUMBER function L-14, R-11
LINE_NUMBER, default display
format L-15
LINE_SPACING layout option L-16, R-10
LIST command L-16
LISTALL option

DUP command D-72

PURGE command P-34

PURGEDATA command P-37

SECURE command S-9

LIST_COUNT option
RESET SESSION command R-19

SET SESSION command S-41

Literals
DATE D-11

DATETIME D-11

date-time D-10

Literals (continued)
description of L-18

INTERVAL I-22

numeric N-13

string S-80

TIME D-11

TIMESTAMP D-11

LOAD command
and AUDIT attribute L-18, L-34

authorization requirements L-33

compared to APPEND A-55

compared to COPY L-33

conversion and loading errors L-37,
L-38

description of L-18

examples of L-45

field conversion L-36

field formats L-36

operations L-33

TMF and L-18, L-33

using tapes with L-34

LOAD command options
ALLOWERRORS L-20

BLOCKIN L-24

COMPACT L-24

EBCDICIN L-24

FIRST L-21

MOVEBYNAME L-30

MOVEBYORDER L-31

RECIN L-25

REDEFINE L-31

REELS L-26

REPLACE SPACES WITH
ZEROES L-22

REWINDIN L-26

SHARE L-26

SKIPIN L-26

SOURCEDICT L-29

SQLNULLABLE L-23

TARGETDICT L-30
HP NonStop SQL/MP Reference Manual—523352-013
Index-27

Index M
LOAD command options (continued)
TARGETREC L-30

TRIM L-26

TRUNC L-31

UNLOADIN L-27

UPSHIFT L-23

VARIN L-27

LOAD option, CONVERT command C-97
Loading data, rules for tape use L-34
Local autonomy C-87
Local user S-14
LOCK TABLE statement

and CONTROL TABLE directive L-46

description of L-45

EXCLUSIVE clause L-45

SHARE clause L-45

Lock waits, CONTROL TABLE
directive C-82
Locking L-47
LOCKLENGTH file attribute

description of L-51

displaying F-17

in FILES table F-27

Locks
access by cursors F-4

and FETCH F-4

control system chosen C-84

control timeout C-84

duration L-48

exclusive mode on SELECT S-21

granularity L-49

holder L-50

in EXPLAIN report E-17

limits L-8

LOCK TABLE statement L-45

mechanism description L-47

mode L-50

realease summary L-48

return control C-82

share mode on SELECT S-21

Locks escalation
considerations D-25

description of L-49

LOCKS, release summary L-48
LOG command

CLEAR option L-52

COMMAND option L-52

description of L-52

LOG file, displaying name of E-3
LOGFILE Z-12
Logging to a file L-52
Logical lines, in reports D-50
Logical names D-27
Logical operators S-5
Logical table C-166
LOGICAL_FOLDING layout option L-53,
R-10

M
Magnitude E-24
Manager, group G-7
MANDATORY_REPORT option, SET
SESSION command S-41
MAP DEFINEs D-32, D-33
MAP NAME option

CONVERT command C-96

DUP command D-70

Margins
setting left L-1

setting right R-20

Masks, default decimal point D-22
Matching values L-2
MAX function M-1
MAX option, LOAD command L-28
MAXEXTENTS clause, ALTER INDEX
statement A-18
MAXEXTENTS file attribute

description of M-2

limits L-9

MAXEXTS, in FILES table F-27
HP NonStop SQL/MP Reference Manual—523352-013
Index-28

Index N
MDAM option
CONTROL QUERY directive C-75

CONTROL TABLE directive C-81

Memory limits L-10, L-11
Message file M-3, Z-17

alternate Z-18

versions of V-6

MESSAGEFILE, displaying name of E-3
Messages

compiler event Z-11

displaying warning S-42

error and warning E-6

from SQLCOMP compiler Z-13

non-English Z-18

MIN function M-3
Mixed views, AUDIT file attribute A-74
MODE, parameter for FastSort Z-4
Modifiers, display A-60
MODIFY CATALOG command

REPLACE NODENAME M-4

REPLACE VOLUME M-11

MODIFY LABEL command
REPLACE NODENUMBER M-19

REPLACE VOLUME M-30

MODIFY REGISTER command M-40
Modifying data U-3
Module language S-69
MOVE clause

ALTER INDEX statement A-16

ALTER TABLE statement A-34

MOVE options
ALTER INDEX statement A-16

MOVEBYNAME option, LOAD
command L-30
MOVEBYORDER option, LOAD
command L-31
Moving

partitions A-34

tables A-34

Multibyte character sets M-43, S-25
Multiple line heading N-4

Multivalue predicates C-60

N
NAME clause, DETAIL command D-49
NAME command N-1
NAME option N-2
Name resolution N-2
Name substitution with DEFINEs D-27
Names

alias A-6

catalog C-8

column C-45

correlation C-128

cursor C-175

DEFINE D-27

description of N-3

detail alias D-46

Guardian G-7

OSS O-6

partition P-19

pathnames O-6

subvolume C-8

syntax and usage rules for N-3

views V-9

ZYQ O-6

Names buffer
DESCRIBE statement D-44

INCLUDE SQLDA directive I-5

National character sets M-43
National data type M-43
NATIONAL option, CONVERT
command C-99
NCLUDE SQLCA Directive I-4
NEED clause

DETAIL command D-49

report writer option R-11

Nested subqueries S-83
Network access S-11
NEWLINE_CHAR layout option N-4, R-10
NO AUDIT attribute, processing rules T-7
HP NonStop SQL/MP Reference Manual—523352-013
Index-29

Index O
NO PROGID file attribute, description
of P-28
NOAUDITCOMPRESS attribute, turned off
for WITH SHARED ACCESS W-6
Nonaudited objects

consistency considerations for T-9

control opens C-77

FREE RESOURCES
considerations F-30

lock holder L-50

lock release summary L-48

Nonaudited tables
BUFFERED file attribute B-11

description of N-4

unlocking U-1

virtual sequential block
buffering(VSBB) C-89

NONEMPTYBLOCKCOUNT, in FILES
table F-28
NonStop SMF S-78
NonStop SQL/MP

dictionary D-1

statements S-73

statements, catalog tables and C-9

version information from
FILEINFO F-16

versions of components V-6

NonStop Storage Management Foundation
(SMF) S-78
Nonunique indexes I-9
NOPURGEUNTIL

ALTER CATALOG statement A-8

file attribute N-5

in FILES table F-27

NOSCRATCHON, parameter for
FastSort Z-4
NOT NULL clause, CREATE TABLE
statement C-157
NOT operator S-5
NOTCPUS, parameter for FastSort Z-4
NULL predicate N-6

NULL STRUCTURE clause, INVOKE
directive I-27
Null values

and aggregate functions A-77

and AVG A-77

and COUNT C-130

and index sorting C-149

and INSERT I-17

and MAX M-2

and MIN M-4

and SUM S-89

and unique index C-143

copying from Enscribe C-117

defining columns N-8

description of N-7

expression evaluation N-9, N-10

for Enscribe fields L-23

inserting I-14

loading from Enscribe L-23

specifying for UPDATE U-3

use in partitioned indexes P-17

NULLALLOWED in COLUMNS table C-46
NULL_DISPLAY layout option N-10, R-10
Numbering lines in a report L-14
Numbers, comparing C-59
Numeric

data, comparing C-59

expressions E-22

literals N-13

NUMERIC data syntax D-4
Numeric data types

description of N-11

exact N-11, N-12

O
OBEY command O-1
OBEY command files O-1
Object type, displaying F-15
HP NonStop SQL/MP Reference Manual—523352-013
Index-30

Index O
Objects
deleting damaged C-21

dependencies U-15, V-7

determining catalog in which
defined F-16

dropping P-33

names of G-7

programs as P-31

versions V-7

Objects displaying
ownership of D-56

security of D-56

use of D-54

OBJECTVERSION
in INDEXES table I-10

in TABLES table T-3

OBJNAME, in COMMENTS table C-51
OBJSUBNAME, in COMMENTS table C-51
OBJTYPE, in COMMENTS table C-51
OC modifier O-10
OCTET_LENGTH function O-4
OFFSET in COLUMNS table C-46
One-way partition split, ALTER TABLE
statement A-40
Online dumps W-5, W-6
On-demand opens C-82
OPEN option, CONTROL TABLE
directive C-82
Open state of file F-11
OPEN statement

and SQLDA O-5

cursors O-5

description of O-5

USING DESCRIPTOR clause O-5

Open states, file F-19
Opening and closing tables T-1
Opens, on-demand C-82
Operable plan P-22
Operation cost, in EXPLAIN report E-18
Operations on catalog tables C-9

Operators
AND S-5

Boolean or logical S-5

comparison C-60

NOT S-5

OR S-5

Optimal plan P-22
Options

CENTER_REPORT C-12

COMMIT C-52

DATE FORMAT D-8

DECIMAL POINT D-22

HEADINGS H-2

LEFT_MARGIN L-1

LINE_SPACING L-16

LOGICAL_FOLDING L-53

NAME N-2

NEWLINE_CHAR N-4

NULL_DISPLAY N-10

OVERFLOW_CHAR O-10

PAGE_COUNT P-1

PAGE_LENGTH P-2

REPORT R-3

resetting R-19

RIGHT MARGIN R-20

ROLLBACK C-55

ROWCOUNT R-23

setting S-45

SPACE S-58

SUBTOTAL_LABEL S-88

TIME_FORMAT T-4

UNDERLINE_CHAR U-1

VARCHAR_WIDTH V-1

WINDOW W-2

WITH SHARED ACCESS W-4

OR operator S-5
ORDER BY clause

and null values N-9

and UNION operator S-26
HP NonStop SQL/MP Reference Manual—523352-013
Index-31

Index P
ORDER BY clause (continued)
relation to break groups B-8

SELECT statement S-23

ORDERING, in KEYS table K-1
ORGANIZATION clause, CREATE TABLE
statement C-158
Organization of files F-8
Orphans, preventing in report D-49
OSS names O-6
OSS processes E-2
OSSFILE, in PROGRAMS table P-32
OUT command

CLEAR option O-7

description of O-7

OUT file
description of O-7

displaying name of E-3

Outer joins J-1
Outer query S-83
Outer reference S-83
Output

device width R-20, S-42

directing to a file O-7

host variables D-43

lines, truncating or wrapping S-42

Output host variables D-43
OUT_REPORT command O-8
OUT_REPORT file

current O-9

displaying name of E-3

specifying O-8

OVERFLOW_CHAR layout option O-10,
R-10
OWNER file attribute

ALTER CATALOG statement A-8

ALTER COLLATION statement A-10

ALTER PROGRAM statement A-27

ALTER TABLE statement A-32

ALTER VIEW statement A-50

description of O-10

SECURE command S-8

Ownership
displaying D-56, F-12

of a file, description of S-14

Ownership changing
program A-27

table A-32

Owner, generalized G-1, S-9, S-14

P
Packed record length F-16
PAD option

COPY command C-119

LOAD command L-22

Page
advancing to next D-49

conditional break D-48

length P-2

maximum in report P-1

size for PERUSE O-9

text at bottom of P-1

PAGE clause
DETAIL command D-49

report writer option R-11

PAGE FOOTING command
AS clause A-60

COMPUTE_TIMESTAMP
function C-62

CONCAT clause C-63

CURRENT_TIMESTAMP
function C-174

description of P-1

IF/THEN/ELSE clause I-1

PAGE TITLE command
AS clause A-60

COMPUTE_TIMESTAMP
function C-62

CONCAT clause C-63

CURRENT_TIMESTAMP
function C-174

description of P-4
HP NonStop SQL/MP Reference Manual—523352-013
Index-32

Index P
PAGE TITLE command (continued)
IF/THEN/ELSE clause I-1

PAGE_COUNT layout option P-1, R-10
PAGE_LENGTH layout option P-2, R-10
PAGE_NUMBER function P-3, R-11
PAID (Process Access ID) S-13
Parallel execution

in EXPLAIN report E-18

loading indexes C-145

query C-73, C-74

similarity, effect on S-54

PARALLEL EXECUTION clause, CREATE
INDEX statement C-145
PARALLEL EXECUTION option, LOAD
command L-32
Parallel index loading

description of P-5

partitions C-145

Parallel writes
compared to serial S-32

description of S-32

PARAM attribute, SAVE command S-2
Parameters

description of P-11

displaying current value S-50

dynamic SQL and default data
types P-13

indicator I-11

name P-13

prepared commands P-25

resetting R-14

saving in a file S-2

setting value for S-35

specifying type of C-4, P-14

unnamed P-13

using P-13

PART option, CONVERT command C-97
Partial query results C-87
PARTITION ARRAY attribute,
displaying F-20

PARTITION ARRAY clause
ALTER TABLE statement A-33

CREATE TABLE statement C-159

PARTITION clause
CREATE INDEX statement C-145

CREATE TABLE statement C-158

description of P-16

Partition format A-46
PARTITIONARRAY, in FILES table F-28
PARTITIONED, in FILES table F-27
PARTITIONNAME, in PARTNS table P-20
Partitions

allocating disk space for A-7

attributes C-108

catalog description of P-20

changing array size A-33

defaults for first key columns P-17

defining P-16

description of P-19

format P-19

FORMAT file attribute F-30

in catalog D-55

in EXPLAIN report E-16, E-17

loading in parallel C-145

lock for L-48, L-49, L-50

memory errors L-10, L-11

modifying partition array A-47

moving, index A-25

names G-7

number limit L-9

performance considerations C-134

primary P-19

reusing A-37, A-47

secondary P-19

size limit L-9

skip/stop at unavailable C-83

statistics for U-10

table, adding A-40
HP NonStop SQL/MP Reference Manual—523352-013
Index-33

Index P
Partitions adding
index A-20

table A-35

Partitions altering file attributes
index A-15

table A-32

Partitions dropping
index A-25

table A-34, A-47

Partitions Format 2
description F-30

EXTENT sizes E-30

MAXEXTENTS M-2

migration A-46

PARTITION clause P-16

PARTNS catalog table
description of P-20

limits L-10, L-11

PARTOF option, LOAD command L-27
PARTONLY option, LOAD command L-27
PARTONLYIN option, LOAD
command L-27
Pascal language

and embedded SQL E-2

record definition, invoking I-26

Pathnames O-6
Pattern matching L-2
Pause while displaying rows S-41
PCV (program catalog version) V-8
Performance

buffered attribute for indexes A-39

catalog considerations for C-132

SQL statement efficiency E-18, E-19,
E-20

Performance considerations
catalogs C-134

DDL C-134

partitions C-134

Peripheral Utility Program (PUP) C-134

PERUSE
command P-21

page size O-9

PFV (program format version) V-8
Physical characteristics of object F-9
Physical primary keys

description of P-27

for indexes I-9

PHYSVOL clause
CREATE INDEX statement C-144

CREATE TABLE statement C-158

PICTURE 9 data syntax D-6
PICTURE X data syntax D-4
PICTURETEXT in COLUMNS table C-47
Plans

altered P-22

description of P-22

inoperable P-22

invalid P-22

operable P-22

optimal P-22

valid P-22

PL/1 S-69
POSITION function P-23
Precision

of expression results E-24

of numeric results E-24

PRECISION in COLUMNS table C-46
Predicates

BETWEEN B-4

comparison C-58

description of P-24

EXISTS E-12

IN I-3

in EXPLAIN report E-16

IS NULL N-6

LIKE L-2

multivalue C-60

NULL N-6

quantified Q-6
HP NonStop SQL/MP Reference Manual—523352-013
Index-34

Index P
PREPARE dynamic SQL P-5
PREPARE statement P-25
Prepared command

displaying S-51

resetting R-16

Primary access path E-16
PRIMARY KEY clause, CREATE TABLE
statement C-157
Primary keys

catalog description of K-1

description of P-27

for indexes I-9

length limit L-13

system-defined, data types S-90

updateable S-69

user-defined U-16

Primary partition P-19
PRIMARYEXT2, in FILES table F-28
PRIMARYEXT, in FILES table F-27
PRIMARYPARTITION, in PARTNS
table P-20
Print item headings, default D-50
Print items

concatenating C-63

conditional printing of I-1

default space before S-58

description of P-28

display formats A-60

headings D-48

overflow of field O-10

tab before printing D-49

width of VARCHAR text V-1

Print list output limit
BREAK FOOTING command B-6

BREAK TITLE command B-10

DETAIL command D-50

PAGE FOOTING command P-2

PAGE TITLE command P-4

REPORT FOOTING command R-2

REPORT TITLE command R-6

Print lists P-28
Printer, device width R-20
PRI, parameter for FastSort Z-4
Process

alter owner A-27, A-28

device width used R-20

Process Access ID (PAID) S-13
Process File Segment (PFS), limits L-10,
L-11
Process File Segment(PFS)

and DEFINEs D-27

increasing L-10

memory requirements L-10, L-11

Processing
concepts for TMF transactions T-6

control locking C-77

control parallel execution C-73, C-74

control query processing C-74

control table opens C-77

Processing rules
audited objects T-7

DDL and DML statements T-7

NO AUDIT attribute T-7

SQLCI T-8

PROCESSNAME, in TRANSIDS table T-11
PROGID attributes, in PROGRAMS
table P-31
PROGID attribute, alter owner A-27, A-28
PROGID file attribute

and security S-13

description of P-28

SECURE command S-9

Program catalog version (PCV) V-8
Program execution

authority for S-15

cost, in EXPLAIN report E-18, E-19,
E-20

displaying cost D-52

dynamic E-11

in EXPLAIN report E-14, E-18

Program file, validation P-28
HP NonStop SQL/MP Reference Manual—523352-013
Index-35

Index Q
Program format version (PFV) V-8
PROGRAM INVALIDATION P-28
PROGRAMCATALOGVERSION, in
PROGRAMS table P-32
PROGRAMFORMATVERSION, in
PROGRAMS table P-32
Programmatic SQL E-2
Programming language, description of E-2
PROGRAMNAME, in PROGRAMS
table P-31
Programs

ALTER PROGRAM statement A-27

altering security attributes A-27

catalog description of object in P-31

compiling from Guardian S-67

compiling from OSS C-176

dependent, effect of CLEANUP C-23

DROP statement D-65

dropping D-65, P-33

duplicating D-69, D-75

file recompilation P-28

HOSV V-8

invalid P-22

names G-7

ownership changes A-27

PCV V-8

PFV V-8

purging D-64

renaming A-27

Safeguard protection A-28

security changes A-27

using DEFINEs from D-31

versions of V-8

PROGRAMS catalog table
and program invalidation P-28, P-31

description of P-31

PROGRAM, parameter for FastSort Z-4
Prompts S-60

Protection views
AUDIT file attribute A-74

description of P-32, V-9

limit per table L-14

similarity S-55

PROTECTION, in VIEWS table V-10
PS Text Edit T-3
PUP utility U-17
PUP (Peripheral Utility Program) C-134
Purge

access S-14

date and time, changing A-32

objects D-63

PURGE command
and TMF P-34, P-35

description of P-33

LISTALL option P-34

SHADOWSONLY option P-34

PURGEDATA command
and TMF P-37, P-38

description of P-36

LISTALL option P-37

Q
Qualified column names C-46
Qualified fileset list Q-1
Quantified predicate Q-6
Queries

inner J-1

join J-1

outer J-1

Query execution plans P-22
Query optimization

CONTROL EXECUTOR directive C-73

CONTROL QUERY directive C-75

equijoin for parallel execution C-73

parallel processing C-73, C-74

using current statistics S-78
HP NonStop SQL/MP Reference Manual—523352-013
Index-36

Index R
Query processing
getting partial results C-87

table reference limit L-13

Quotation marks within string literals S-81

R
Random access block size B-5
Range of values, selecting B-4
Read access S-14
READ COMMITTED S-70
READ operations, buffered C-82
READ UNCOMMITTED S-70
Reading

data S-17

row F-3

REAL data syntax D-5
RECIN option, LOAD command L-25
RECLENGTH file attribute R-1
RECOMPILEMODE, in PROGRAMS
table P-32
RECOMPILETIME, in PROGRAMS
table P-31
Record

definition, invoking I-26

descriptions, catalog tables B-1

descriptions, tables and views I-25

nonconvertible C-116, L-20

Record length
displaying F-16

RECLENGTH file attribute R-1

RECORDSIZE, in FILES table F-28
RECOUT option, COPY command C-119
REDEFINE option

CONVERT command C-98

LOAD command L-31

Redefinition time F-19
REDEFTIME, in TABLES table T-2
REELS option, LOAD command L-26

REFERENCES
column constraint S-68

column privileges S-68

REGISTERONLY, in PROGRAMS
table P-32
RELATIONSHIPTYPE, in USAGES U-15
Relative files F-8
Relative tables

and SYSKEYS S-90

file attribute summary F-7

organization F-8

reserved row length R-1

system key data type S-90

RELEASE statement R-1
Releases V-6
Remote objects and CLEANUP C-24
Remote user S-14
RENAME clause

ALTER COLLATION statement A-10

ALTER INDEX statement A-15

ALTER PROGRAM statement A-27

ALTER TABLE statement A-32

ALTER VIEW statement A-50

Renaming
collations A-10

program A-27

tables A-32

views A-50

REPAIR option V-3
Repairing Views V-5
REPEATABLE access

description of A-2

in EXPLAIN report E-16

nonaudited tables A-2

REPEATABLE READ S-70
Repeating command F-1, O-1, Z-1
REPLACE SPACES WITH option

COPY command C-116

LOAD command L-22

REPORT R-2
HP NonStop SQL/MP Reference Manual—523352-013
Index-37

Index R
Report
cancelling C-2

centering contents of C-12

copies O-9

default format D-50

default right margin L-53

file, closing O-8

file, specifying O-8

file, specifying or closing O-8

form feed for P-2

form name O-9

headings D-50

line length D-50

logical lines D-50

naming O-9

number of copies, specifying O-9

number of rows before pause S-41

numbering lines L-14

page size for PERUSE O-9

preventing orphans D-49

preventing widows D-49

summaries D-50

width L-53

REPORT FOOTING command
AS clause A-60

COMPUTE_TIMESTAMP
function C-62

CONCAT clause C-63

CURRENT_TIMESTAMP
function C-174

description of R-2

IF/THEN/ELSE clause I-1

Report formatting commands
deleting stored R-16

saving in file S-2

Report layout options
CENTER_REPORT C-12, R-10

DATE_FORMAT D-8, R-10

DECIMAL_POINT D-22, R-10

HEADINGS H-2, R-10

Report layout options (continued)
LEFT_MARGIN L-1, R-10

LINE_SPACING L-16, R-10

LOGICAL_FOLDING L-53, R-10

NEWLINE_CHAR N-4, R-10

NULL_DISPLAY N-10, R-10

OVERFLOW_CHAR O-10, R-10

PAGE_COUNT P-1, R-10

PAGE_LENGTH P-2, R-10

RIGHT_MARGIN R-10, R-20

ROWCOUNT R-10, R-23

SPACE R-10, S-58

SUBTOTAL_LABEL R-10, S-88

TIME_FORMAT R-10, T-4

UNDERLINE_CHAR R-10, U-1

VARCHAR_WIDTH R-10, V-1

WINDOW R-10, W-2

REPORT option, SAVE command S-3
REPORT TITLE command

AS clause A-60

COMPUTE_TIMESTAMP
function C-62

CONCAT clause C-63

CURRENT_TIMESTAMP
function C-174

description of R-6

IF/THEN/ELSE clause I-1

Report writer R-7
Report writer clauses

AS A-60

AS DATE/TIME A-67

CONCAT C-63

IF/THEN/ELSE I-1

NEED D-49

PAGE D-49

SKIP D-49

SPACE D-49

TAB D-49
HP NonStop SQL/MP Reference Manual—523352-013
Index-38

Index S
Report writer functions
COMPUTE_TIMESTAMP C-62

CURRENT_TIMESTAMP C-174

LINE_NUMBER L-14

Reports
form feeds P-3

summary D-50

suppressing headings H-1

Reserved words R-11
RESET DEFINE command R-12
RESET LAYOUT command R-13
RESET PARAM command R-14
RESET PREPARED command R-16
RESET REPORT command R-16
RESET SESSION command R-19
RESET STYLE command R-19
RESETBROKEN clause, ALTER INDEX
statement A-18
RESETBROKEN file attribute R-20
RESTORE utility U-17
Return control of locks C-82
RETURN IF LOCKED option

and converted Enscribe
applications C-82

CONTROL TABLE directive C-82

RETURNING clause
EXECUTE statement E-9

INSERT statement I-15

REUSE PARTITION clause, ALTER TABLE
statement A-37
Reusing partitions

description of A-47

table A-37

REVOKE statement, ANSI/ISO SQL S-68
REWINDIN option, LOAD command L-26
REWINDOUT, COPY command C-120
Right justification A-61, A-63, A-64, A-65
RIGHT_MARGIN layout option R-10, R-20
ROLLBACK option C-55
ROLLBACK WORK statement R-21
Row count display, suppressing R-23

ROWCOUNT layout option R-10, R-23
ROWCOUNT, in BASETABS table B-1
Rows

deleting D-39

displaying definition of I-25

displaying or printing L-16

displaying subset of W-3

fetching F-3

inserting I-14

length limit L-12

pausing while displaying S-41

RECLENGTH file attribute R-1

report format for D-47

selecting S-17

specifying number to display S-41

updating U-3

ROWSIZE
in BASETABS table B-1

in INDEXES table I-10

RPTSQL R-3
rwep security string S-14

S
Safeguard

program file security A-28

security system S-11, S-13, S-68

Sample database S-1
SAVE command

ALL option S-2

COMMAND option S-3

DEFINES option S-2

description of S-2

ENV option S-2

LAYOUT option S-3

PARAM option S-2

REPORT option S-3

section header S-4

SESSION option S-3

STYLE option S-3
HP NonStop SQL/MP Reference Manual—523352-013
Index-39

Index S
SAVEALL option, DUP command D-73
Saved commands, executing O-1
SAVEID option, DUP command D-73
Saving commands in a file S-2
SBB, in EXPLAIN report E-19
Scale

of expression results E-24

of numeric results E-24

SETSCALE function S-46

SCALE in COLUMNS table C-46
Scientific notation N-13
SCRATCH option, LOAD command L-28
SCRATCHON, parameter for FastSort Z-4
SCRATCH, parameter for FastSort Z-4
Search conditions

description of S-5

table selectivity E-19

WHERE clauses W-2

SEARCH DEFINEs D-32
Secondary partition P-19
SECONDARYEXT2, in FILES table F-28
SECONDARYEXT, in FILES table F-27
SECONDHIGHVALUE in COLUMNS
table C-46
SECONDLOWVALUE in COLUMNS
table C-46
Section header

in OBEY file O-1

using with SAVE command S-4

Section names, in command files O-2
SECURE clause

CREATE CATALOG statement C-132

CREATE TABLE statement C-159

CREATE VIEW statement C-168

SECURE command
ALLOWERRORS option S-8

and REVOKE S-68

CLEARONPURGE option S-8

description of S-7

LISTALL option S-9

OWNER option S-8

SECURE command (continued)
PROGID option S-9

TMF and S-9

SECURE file attribute
ALTER CATALOG statement A-8

ALTER COLLATION statement A-10

ALTER INDEX statement A-15

ALTER PROGRAM statement A-27

ALTER TABLE statement A-32

ALTER VIEW statement A-50

description of S-11

Security
catalogs and A-9

description of S-11

displaying D-56, F-12

Safeguard subsystem and A-28

specifying view C-168

super ID S-13

table and view dependencies and A-38

Security changing
index A-15

program A-27

table A-32

view A-50

Security file attributes for
CLEARONPURGE C-26

NOPURGEUNTIL N-5

OWNER O-10

SECURE S-11

VERIFIEDWRITES V-1

Security strings S-14
Security string, file attribute setting S-11
SECURITYMODE

in INDEXES table I-10

in PROGRAMS table P-31

in TABLES table T-3

SECURITYVECTOR
in INDEXES table I-10

in PROGRAMS table P-31

in TABLES table T-2
HP NonStop SQL/MP Reference Manual—523352-013
Index-40

Index S
SEGMENT, parameter for FastSort Z-4
SELECT command, directing output of O-8
SELECT DISTINCT clause, and CREATE
VIEW statement S-68
SELECT statement

and scale S-47

BROWSE access S-21

cancelling, in SQLCI C-2

description of S-18

DISTINCT clause D-57, S-19

dynamic SQL S-24

FOR UPDATE OF clause S-24

FROM clause S-20

GROUP BY clause S-22

HAVING clause S-21

INTO clause S-19

lock mode option S-21

lock realease summary L-48

lock release summary L-48

ORDER BY clause S-23

restrictions for view definitions C-167

suppressing row count display R-23

table privileges S-68

UNION operator S-23

Selecting data
cursor declaration D-23, D-24

distinct rows S-19

matching values L-2

search conditions S-5

value comparisons C-60

values from a list B-4

values to insert I-14

values within a range B-4

Selecting from catalog tables S-30
Selecting rows

for DELETE operation D-39

for INSERT operation I-14

for UPDATE operation U-3

Select-in-progress prompt S-60

Select-list
dependencies on GROUP BY S-25

for distinct rows S-19

Self join S-30
SEQNUMBER

in COMMENTS table C-51

in CONSTRNT table C-70

in CPRLSRCE table C-131

Sequential access block size B-5
SEQUENTIAL BLOCKSPLIT option,
CONTROL TABLE directive C-83
Sequential blocksplits E-19
Sequential cache E-16
Sequential inserts C-83
SEQUENTIAL option, CONTROL TABLE
directive C-82
Serial writes

compared to parallel S-32

description of S-32

SERIALIZABLE, ISO Isolation Level S-70
SERIALWRITES file attribute S-32
SERIALWRITES, in FILES table F-27
Session

ending E-13

Session options
displaying S-53

resetting R-19

saving in file S-2

setting S-39

SESSION option, SAVE command S-3
SET DEFINE command S-32
SET DEFMODE command S-34
SET LAYOUT command S-34
Set operation

DELETE statement D-39

UPDATE statement U-3

SET PARAM command
COMPUTE_TIMESTAMP
function C-62

CURRENT_TIMESTAMP
function C-174, S-35
HP NonStop SQL/MP Reference Manual—523352-013
Index-41

Index S
SET PARAM command (continued)
description of S-35

SET SESSION command
AUTOWORK option S-39

BREAK_KEY option S-40

description of S-39

DISPLAY_ERROR option S-40

ERROR_ABORT option S-40

ERROR_TEXT option S-41

LIST_COUNT option S-41

MANDATORY_REPORT option S-41

STATISTICS option S-41

WARNINGS option S-42

WRAP option S-42

SET STYLE command S-45
SETMODE 91,3 option C-83
SETSCALE function S-46
shadow label

and CLEANUP C-22

and FILEINFO F-10

description of F-12

Shadow labels
and CLEANUP command C-22

and FILEINFO command F-10

description of F-12

purging P-33

SHADOWSONLY option, PURGE
command P-34
SHARE clause, LOCK TABLE
statement L-45
SHARE option, LOAD command L-26
SHARED ACCESS on DDL
statements W-4
Shared lock

description of L-50

on SELECT statement S-21

SHARE clause L-45

SHAREOUT option, COPY
command C-122
Shift JIS character set C-18

Shorthand views
and UNION operator C-170

AUDIT file attribute A-74

based on joins C-170

description of S-48, V-9

SHOW CONTROL command S-48
SHOW DEFINE command S-48
SHOW DEFMODE command S-49
SHOW LAYOUT command S-50
SHOW PARAM command S-50
SHOW PREPARED command S-51
SHOW REPORT command S-52
SHOW SESSION command S-53
SHOW STYLE command S-54
Similarity between protection views S-55
Similarity between tables S-55
SIMILARITY CHECK clause

ALTER TABLE statement A-32

ALTER VIEW statement A-51

CREATE TABLE statement C-160

CREATE VIEW statement C-168

Similarity checks S-54
SIMILARITYCHECK, in TABLES table T-3
SIMILARITYINFO, in PROGRAMS
table P-32
Simple file names G-7
Simple fileset list F-29
Single spacing L-16
SKIP clause

DETAIL command D-49

report writer option R-11

SKIP option, CONTROL TABLE
directive C-83
SKIPIN option, LOAD command L-26
SKIPOUT option, COPY command C-120
SLACK file attribute S-57
SLACK option, LOAD command L-29
SMALLINT data syntax D-5
SMF (Storage Management
Foundation) S-78
SOME, in quantified predicate Q-6
HP NonStop SQL/MP Reference Manual—523352-013
Index-42

Index S
SORT DEFINEs D-32
SORTED option, LOAD command L-27
Sorting

ORDER BY clause on SELECT S-23

parameters for Z-4

performance Z-4

SORTPROG process, controlling S-25
SOURCE option, CONVERT
command C-97
SOURCEDATE option, DUP
command D-73
SOURCEDICT option, LOAD
command L-29
SOURCEREC option, LOAD
command L-29
Space available in file F-19
SPACE clause, DETAIL command D-49
SPACE clause, report writer option R-11
SPACE layout option R-10, S-58
Spaces, suppressing in printing C-63
Splitting

indexes A-19

partitions, ALTER TABLE
statement A-34

tables A-34

the default detail line L-53

SPOOL DEFINEs D-33
Spooler

device width R-20

use of O-8

SQL
and host communication H-6

compilation, prepare statements P-25

compiler event messages Z-11

identifiers S-59

message file Z-18

programmatic E-2

statement execution time D-52

statements S-73

static S-77

SQL compiler event messages Z-11

SQL directive S-59
SQL SENSITIVE flag F-35
SQL tables

converting an Enscribe file to C-94

loading data into L-18

rules for copying C-124

SQL VALID flag F-35
SQLCA

description of I-4

effect of DECLARE CURSOR D-24

SQLCI
commands S-63

description of S-60

processing rules T-8

prompts S-60

summary of report writer
commands R-7

using DEFINEs from D-30

SQLCODE S-67
SQLCOMP command

authority for S-15

description of S-67

with CATALOG DEFINE D-37

with DEFINEs D-31

SQLDA
and FETCH statement F-3

and OPEN statement O-5

DESCRIBE INPUT statement D-41

description of I-4

INCLUDE SQLDA directive I-4

SQLNULLABLE option
COPY command C-117

LOAD command L-23

load operations L-40

SQLSA
description of I-6

effect of DECLARE CURSOR D-24

INCLUDE SQLSA directive I-6

SQLSTATE status codes S-69
HP NonStop SQL/MP Reference Manual—523352-013
Index-43

Index S
SQL.CATALOGS table
See also CATALOGS table

and CREATE CATALOG C-134

and CREATE SYSTEM CATALOG
command C-152

description of C-11

STABLE access
concurrency summary A-3

description of A-1

in EXPLAIN report E-16

nonaudited tables A-2

UPDATE statement U-3

Standard prompt S-60
Standards conformance S-67
Starting to log to a file L-52
Statements

ALTER CATALOG A-8

ALTER COLLATION A-10

ALTER INDEX A-13

ALTER PROGRAM A-27

ALTER TABLE A-29

ALTER TABLE ADD
CONSTRAINT S-70

ALTER TABLE DROP
CONSTRAINT S-70

ALTER VIEW A-50

atomicity S-68

BEGIN WORK B-3

CLOSE C-26

COMMENT C-48

COMMIT WORK C-56

CONTINUE C-70

cost of executing D-52

CREATE ASSERTION (ANSI/ISO
SQL) S-71

CREATE CATALOG C-132

CREATE COLLATION C-137

CREATE CONSTRAINT C-139

CREATE INDEX C-142

CREATE TABLE C-154

Statements (continued)
CREATE VIEW C-166

DCL D-18

DDL D-20

DECLARE CURSOR D-23

DELETE D-39

DESCRIBE D-43

DESCRIBE INPUT D-41

description of S-73

DROP D-63

DROP ASSERTION S-71

DSL D-67

EXECUTE E-7

EXECUTE IMMEDIATE E-11

FETCH F-3

FREE RESOURCES F-30

GET CATALOG OF SYSTEM G-1

GET VERSION G-2

GET VERSION OF PROGRAM G-4

HELP TEXT H-4

INSERT I-14

LOCK TABLE L-45

maximum length L-13

name of P-25

OPEN O-5

PREPARE P-25

prepared P-25

RELEASE R-1

ROLLBACK WORK R-21

SELECT S-18

summary S-73

UNLOCK TABLE U-1

UPDATE U-3

UPDATE STATISTICS U-7

use with catalog tables C-9

Static SQL S-77
Statistics

description of S-78

displaying D-52
HP NonStop SQL/MP Reference Manual—523352-013
Index-44

Index S
Statistics (continued)
enabling display of S-41

file F-22

for partition U-10

from PREPARE P-25

retrieving from catalog tables U-10

selecting current compiler with U-9

updating U-7

using for better access plan S-78

STATISTICS display, FILEINFO
command F-22
STATISTICS option

FILEINFO command F-10

SET SESSION command S-41

STATISTICSTIME, in BASETABS table B-1
Status, checking with SQLCA I-4
STOP AT option, CONTROL TABLE
directive C-83
Stopping a SELECT command C-2
Storage Management Foundation
(SMF) S-78
Stored commands

deleting R-16

displaying S-52

stored Commands
displaying S-52

stored commands
deleting R-16

displaying S-52

String functions S-80
String literals

and quotation marks S-81

description of S-80

Structured files F-8
Style options

displaying S-54

resetting R-19

saving in file S-2

setting S-45

UNDERLINE_CHAR U-1

STYLE option, SAVE command S-3

Subqueries
comparing expression to results Q-6

correlated S-83

description of S-82

in EXISTS predicate E-12

nested S-83

nesting limit of L-13

SUBSORT DEFINEs D-33
Subsorts for loading indexes C-145
SUBSORTS, parameter for FastSort Z-4
Substituting values with parameters P-11
SUBSTRING function S-84
SUBSYSTEMNAME

in CATALOGS table C-11

in VERSIONS table V-9

SUBTOTAL command
and BREAK ON command S-86

description of S-86

SUBTOTAL_LABEL layout option R-10,
S-88
Subvolumes

default V-11

names of C-8

SUM function S-89
Summary reports D-50
Super ID

description of S-90

used by audit fix-up process W-6

SUPER.SUPER user S-13
Suppressing headings in reports H-1
Suppressing row count display R-23
SWAP, parameter for FastSort Z-4
SYNCDEPTH option, CONTROL TABLE
directive C-84
SYSKEY

and user-defined keys U-16

column C-28, S-90

SYSKEY clause, INSERT statement I-14
SYSKEYs S-90
SYSNUMBER, in TRANSIDS table T-11
HP NonStop SQL/MP Reference Manual—523352-013
Index-45

Index T
System catalog (continued)
creating C-152

description of S-92

dropping D-66

upgrading U-13

versions V-7

SYSTEM command S-93
System default multibyte character
set M-43
SYSTEM default value D-27
System defines

summary S-94

=_AUDSERV_XSWAP_node Z-2

=_DEFAULTS Z-3

=_SORT_DEFAULTS Z-4

=_SQL_AUD_node Z-14

=_SQL_CAT_HEAP_LIMIT Z-6

=_SQL_CAT_node Z-14

=_SQL_CI2_node Z-14

=_SQL_CMP_CPUS_node Z-7

=_SQL_CMP_DOUBLE_SBB_OFF Z-8

=_SQL_CMP_DOUBLE_SBB_ON Z-9

=_SQL_CMP_EQ_LIMIT Z-10

=_SQL_CMP_EVENT Z-11

=_SQL_CMP_EVENT_NO0 Z-12

=_SQL_CMP_node Z-14

=_SQL_cmp_node Z-14

=_SQL_CMP_NO_KS_MJOIN Z-14

=_SQL_EXE_DOUBLE_SHUTOFF Z-1
5

=_SQL_EXE_ESPS_CK_CMON Z-16

=_SQL_EXE_USE_SWAPVOL Z-17

=_SQL_MSG_node Z-18

=_SQL_RECGEN_node Z-20

=_SQL_TM_node_vol Z-20

=_SQL_UTL_node Z-14

SYSTEM, default S-93
System, default E-3

System-defined primary key
description of S-90

maximum values L-13

returned value on INSERT I-17

S> prompt S-60

T
TAB clause

DETAIL command D-49

report writer option R-11

use with report window W-2

Table
BASETABS catalog table B-1

CATALOGS catalog table C-11

CPRLSRCE catalog table C-131

CPRULES catalog table C-131

FILES catalog table F-27

INDEXES catalog table I-10

PARTNS catalog table P-20

PROGRAMS catalog table P-31

TABLES catalog table T-2

TRANSIDS catalog table T-11

USAGES catalog table U-15

VERSIONS catalog table V-9

VIEWS catalog table V-10

TABLECODE
in INDEXES table I-10

in TABLES table T-2

TABLECODE file attribute T-1
TABLECOLNUMBER, in KEYS table K-1
TABLELOCK option, CONTROL TABLE
directive C-84
TABLENAME

in BASETABS table B-1

in COLUMNS table C-46

in CONSTRNT table C-70

in INDEXES table I-10

in TABLES table T-2
HP NonStop SQL/MP Reference Manual—523352-013
Index-46

Index T
Tables
address of EOF F-19

altering attributes A-32

attribute specification C-154

available space F-19

base T-1

catalog C-8

catalog description of T-2

clearing data from P-36

column limit L-6

COLUMNS C-46

COMMENTS C-51

CONSTRNT C-70

copying to an Enscribe file C-113

CREATE TABLE statement C-154

date-caused program
recompilation F-19

description of T-1

displaying C-123

DROP statement D-65

dropping P-33

duplicating D-69, D-74

expiration date, setting N-5

file statistics F-22

fragmented, updating statistics U-9

index dependencies C-148

inserting with check option I-17

joining S-30

limit on tables per query L-13

loading data into L-18

locking L-45, L-50

moving A-34

names G-7

organizations F-8

ownership change A-32

partitioned P-19

partitioning L-12

physical file attributes C-108

purging D-64

Tables (continued)
renaming A-32

row definition I-25

security change S-7

selecting from S-17

selectivity E-19

setting organization for C-158

similarity rules for S-55

specifying file attributes of C-160

temporary T-4, Z-17

transaction limit L-13

unlocking nonaudited U-1

unpartitioned P-19

updating rows of U-3

updating statistics for U-7

using ALTER TABLE statement A-29

versions V-7

view, limit L-6, L-8, L-13

view, security dependencies A-38

TABLES catalog table T-2
Tables partitions

adding A-35

dropping A-34

TABLETYPE, in TABLES table T-2
TAL language

and embedded SQL E-2

record definition, invoking I-26

TAPE DEFINEs D-33
Tapes, using with LOAD command L-34
TARGET option, DUP command D-73
TARGETDICT option, LOAD
command L-30
TARGETREC option, LOAD
command L-30
TEDIT command T-3
temporal scoping C-76
Temporary files, size limit L-13
Temporary tables

and DEFINE Z-17

description of T-4
HP NonStop SQL/MP Reference Manual—523352-013
Index-47

Index T
Terminal, device width R-20
Terminating a SELECT command C-2
Testing for errors W-1
Text editor T-3
Text, display format A-60
TEXT, in CPRLSRCE table C-131
The M-3
Time

compilation and execution of D-52

computing for report C-62, C-173

of expiration A-32

print item display format A-67

TIME data type T-5
TIME literal D-11
TIME values

in host variables H-6

LOAD command L-38

TIMEOUT option, CONTROL TABLE
directive C-84
TIMESTAMP

data type T-5

literal D-11

TIMESTAMP values
in host variables H-6

LOAD command L-38

Timestamps, Julian A-60, C-62, J-4
TIME_FORMAT layout option R-10, T-4
Titles

break B-10

page P-4

report R-6

TMF audit trails W-5, W-6
TMF transaction

aborting R-22

and COMMIT WORK C-56

and SECURE S-9

audit fix-up phase W-6

AUTOWORK T-8

BEGIN WORK statement B-3

beginning B-3

TMF transaction (continued)
commit phase W-7

committing C-56

CONTINUE statement not
allowed C-71

control statements T-6

copying data from C-124

description of T-6

displaying status E-3

ending C-56

file recovery protection A-44

IDs T-11

initialization and load phase W-6

limit per table L-13

processing concepts T-6

TMF transaction utility
AUTOWORK T-8

LOAD L-33

PURGE P-33

PURGEDATA P-36

SECURE S-8

VERIFY V-4

TO R-3
TOTAL command T-9
Transaction ID, displaying current E-3
Transaction integrity, audited tables A-76
Transaction Management Facility

See TMF transaction

TRANSIDS catalog table T-11
TRANSID, in TRANSIDS table T-11
TRIM function T-11
TRIM option, LOAD command L-26
TRUNC option, LOAD command L-31
Truncating display line S-42
Two-way partition split, ALTER TABLE
statement A-41
TYPE AS clause, DATETIME HOST
VARIABLE H-6
Type of object, displaying F-15
HP NonStop SQL/MP Reference Manual—523352-013
Index-48

Index U
U
UNAVAILABLE PARTITION option,
CONTROL TABLE directive C-83
UNDERLINE_CHAR layout option R-10,
U-1
UNION columns S-25
UNION operator

and GROUP BY clause S-27

and HAVING clause S-27

and ORDER BY clause S-26

and shorthand views C-170

SELECT statement S-23

UNION ALL and associativity S-27

using S-25

UNIQUE clause, CREATE INDEX
statement C-143
UNIQUE index

and duplicate values C-143

and null values C-143

description of C-143

keys for I-9

UNIQUEENTRYCOUNT in COLUMNS
table C-46
UNIQUEVALUE, in INDEXES table I-10
UNITS specifier E-22
UNLOADIN option, LOAD command L-27
UNLOADOUT option, COPY
command C-121
UNLOCK TABLE statement

description of U-1

lock realease summary L-48

lock release summary L-48

Unnamed parameter P-13
Unpartitioned table P-19
Unstructured files F-8
UNSTRUCTURED option

COPY command C-117

LOAD command L-22

Unsupported data types L-36

unsupported Data types
COMPLEX L-36

LOGICAL L-36

UPDATE operations
buffered C-82

file organization dependent F-8

UPDATE statement
and scale S-46

and SETSCALE S-46

column privileges S-68

description of U-3

lock release summary L-48

table privileges S-68

UPDATE STATISTICS statement
concurrent DML operations C-65

description of U-7

Updateable primary keys S-69
UPGRADE CATALOG command U-11
UPGRADE SYSTEM CATALOG
command U-13
UPSHIFT clause, and data type D-3
UPSHIFT function U-14
UPSHIFT in COLUMNS table C-47
UPSHIFT option

COPY command C-117

LOAD command L-23

USAGES catalog table
and DISPLAY USE OF D-54, D-55

and program invalidation P-29

description of U-15

Use of object, displaying D-54
USEDCATALOGNAME, in USAGES
table U-15
USEDOBJNAME, in USAGES table U-15
USEDOBJTYPE, in USAGES table U-15
User groups S-11, S-12
User IDs S-12
User number S-12
USER option, FILEINFO command F-9
HP NonStop SQL/MP Reference Manual—523352-013
Index-49

Index V
USERID
in PROGRAMS table P-31

in TABLES table T-2

User-defined primary key
description of C-158, U-16

length limit L-13

specifying C-158

USESQLNULLS option
COPY command C-117

LOAD command L-23

USING clause
CURRENT_TIMESTAMP function E-8

EXECUTE statement E-7

USING DESCRIPTOR clause
EXECUTE statement E-7

FETCH statement F-3

OPEN statement O-5

USING host variables clause O-5
USINGCATALOGNAME, in USAGES
table U-15
USINGOBJNAME, in USAGES table U-15
USINGOBJTYPE, in USAGES table U-15
Utilities

APPEND A-52

APPENDCANCEL A-56

APPENDRESTART A-58

CLEANUP C-21

CONVERT C-94

COPY C-113

description of U-16

DISPLAY USE OF D-54

DUP D-69

FILEINFO F-9

FILENAMES F-25

FILES F-26

FUP F-33

LOAD L-18

PURGE P-33

PURGEDATA P-36

SECURE S-7

Utilities (continued)
VERIFY V-2

Utility operations, and concurrency C-68

V
Valid plan P-22
Validation, program file P-28
VALIDDATA

in BASETABS table B-1

in INDEXES table I-10

VALIDDEF
in BASETABS table B-1

in INDEXES table I-10

in VIEWS table V-10

VALID, in PROGRAMS table P-31
Value substitution P-11
Values

compatible I-16

matching L-2

search conditions for S-5

searching for existing E-12

selecting a range of B-4

selecting from a list I-1

VARCHARS option, CONVERT
command C-97
VARCHAR_WIDTH layout option R-10, V-1
Variables

in host programs H-6

SQLCODE S-67

Variable-length string, and CONVERT
command C-97
VARIN option, LOAD command L-27
VAROUT option, COPY command C-121
VERIFIEDWRITES

file attribute V-1

in FILES table F-27

VERIFY command
authorization requirement V-3

description of V-2
HP NonStop SQL/MP Reference Manual—523352-013
Index-50

Index V
VERSION
in CATALOGS table C-11

in VERSIONS table V-9

Version
description of V-6

displaying E-3

information from FILEINFO F-16

information in catalogs V-9

numbers V-6

Version management
Data Status Language D-67

DOWNGRADE CATALOG D-58

DOWNGRADE SYSTEM
CATALOG D-61

GET CATALOG OF SYSTEM G-1

GET VERSION G-2

GET VERSION OF PROGRAM G-4

UPGRADE CATALOG U-11

UPGRADE SYSTEM CATALOG U-13

VERSION option, FILEINFO
command F-16
VERSIONS catalog table V-9
VERSIONUPGRADETIME

in CATALOGS table C-11

in VERSIONS table V-9

Vertical printing of detail line D-51
vi text editor F-8
VIEW option, DUP command D-74
VIEWNAME, in VIEWS table V-10
Views

ALTER VIEW statement A-50

altering security attributes of A-50

AUDIT file attribute A-74

catalog description of T-2, V-10

column limit C-170, L-6

CREATE VIEW statement C-166

definition text limit L-13

description V-9

displaying physical characteristics F-9

DROP statement D-65

Views (continued)
dropping P-34, P-35

duplicating D-69, D-75

grouped S-19, S-24

inserting with check option I-17

limit per table L-13

locking L-45

names G-7, V-9

ownership changes A-50

protection L-14, P-32

purging D-64

renaming A-50

row definition I-25

security changes A-50

selecting data from S-19, S-24

shorthand C-170, S-48

similarity S-55

specifying security attributes C-168

table security dependencies A-38

unlocking nonaudited U-1

versions V-7

VIEWS catalog table V-10
VIEWTEXT, in VIEWS table V-10
Virtual sequential block buffering (VSBB)

cursor operation C-91

description of C-68

effect on concurrency C-68

in EXPLAIN report E-19

syntax C-82

using C-89

VLM, parameter for FastSort Z-4
Volume

current default Z-3

displaying current default E-3

setting default V-11

VOLUME command V-11
VSBB

See Virtual sequential block buffering
HP NonStop SQL/MP Reference Manual—523352-013
Index-51

Index W
W
WAIT IF LOCKED option, CONTROL
TABLE directive C-82
Wait time for lock requests C-84
Warnings

1618 C-53, C-56, C-72, W-7

1619 C-53, C-56, C-70, C-71, C-72,
W-7

8239 C-83

displaying S-42

WARNINGS option, SET SESSION
command S-42
WHENEVER directive W-1
WHERE clause

DELETE statement D-39

description of W-2

UPDATE statement U-3

WHERE CURRENT OF clause
DELETE statement D-39

UPDATE statement U-4

Widows, preventing in report D-49
Width of report L-53
Wild-card characters

in LIKE predicate L-3

in qualified filesets Q-2

WINDOW layout option R-10, W-2
WITH CHECK OPTION clause, CREATE
VIEW statement C-169
WITH DATA MOVEMENT clause

ALTER INDEX A-18

ALTER TABLE A-37

WITH HEADINGS clause, CREATE VIEW
statement C-169
WITH HELP TEXT clause, CREATE VIEW
statement C-169
WITH SHARED ACCESS clause, ALTER
INDEX statement A-17
WITH SHARED ACCESS clause, CREATE
INDEX statement C-146
WITH SHARED ACCESS option W-4
WITHCHECKOPTION, in VIEWS
table V-10

Working attribute set D-34
WRAP option, SET SESSION
command S-42
Wrapping display line S-42
Write access S-11, S-14

Z
ZYQ names O-6

Special Characters
! (exclamation point) command Z-1
+> prompt S-60
.. prompt S-60
= Z-18
=_AUDSERV_XSWAP_node DEFINE Z-2
=_DEFAULTS_DEFINE Z-3
=_SORT_DEFAULTS DEFINE Z-4
=_SQL_AUD_node define Z-14
=_SQL_CAT_HEAP_LIMIT DEFINE Z-6
=_SQL_CAT_node define Z-14
=_SQL_CI2_node define Z-14
=_SQL_CMP_CPUS_node DEFINE Z-7
=_SQL_CMP_DOUBLE_SBB_OFF
DEFINE Z-8
=_SQL_CMP_DOUBLE_SBB_ON
DEFINE Z-9
=_SQL_CMP_EQ_LIMIT DEFINE Z-10
=_SQL_CMP_EVENT DEFINE Z-11
=_SQL_CMP_EVENT_NO0 DEFINE Z-12
=_SQL_CMP_node define Z-14
=_SQL_CMP_NO_KS_MJOIN
DEFINE Z-14
=_SQL_EXE_DOUBLE_SHUTOFF
DEFINE Z-15
=_SQL_EXE_ESPS_CK_CMON
DEFINE Z-16
=_SQL_EXE_USE_SWAPVOL
DEFINE Z-17
=_SQL_MSG_node DEFINE Z-18
=_SQL_RECGEN _node DEFINE Z-20
=_SQL_TM_node_vol DEFINE Z-20
=_SQL_UTL_node define Z-14
HP NonStop SQL/MP Reference Manual—523352-013
Index-52

Index Special Characters
>> prompt S-60
? unnamed parameter P-13
HP NonStop SQL/MP Reference Manual—523352-013
Index-53

Index Special Characters
HP NonStop SQL/MP Reference Manual—523352-013
Index-54

	HP NonStop SQL/MP Reference Manual
	Legal Notices
	Contents
	What’s New in This Manual
	New and Changed Information
	Changes to the 523352-012 manual:
	Changes to the H06.16/J06.05 Manual
	Changes to the H06.15/J06.04 Manual
	Changes to the G06.32 Manual
	Changes to the G06.30 Manual

	About This Manual
	Related Manuals
	Notation Conventions
	HP Encourages Your Comments

	A
	Access Options
	Access Options on DML Statements
	Access Options on DDL Statements
	Summary: Effect of Access Options on Concurrency

	ADD DEFINE Command
	Considerations-ADD DEFINE
	Examples-ADD DEFINE

	AGGREGATE Functions
	Alias
	ALLOCATE File Attribute
	Considerations-ALLOCATE

	ALTER CATALOG Statement
	Considerations-ALTER CATALOG
	Example-ALTER CATALOG

	ALTER COLLATION Statement
	Considerations-ALTER COLLATION
	Examples-ALTER COLLATION

	ALTER DEFINE Command
	Considerations-ALTER DEFINE
	Example-ALTER DEFINE

	ALTER INDEX Statement
	Considerations-ALTER INDEX
	Examples-ALTER INDEX

	ALTER PROGRAM Statement
	Considerations-ALTER PROGRAM
	Example-ALTER PROGRAM

	ALTER TABLE Statement
	Considerations-ALTER TABLE
	Examples-ALTER TABLE

	ALTER VIEW Statement
	Considerations-ALTER VIEW
	Example-ALTER VIEW

	APPEND Command
	Considerations-APPEND

	APPENDCANCEL Command
	Considerations-APPENDCANCEL

	APPENDRESTART Command
	Considerations-APPENDRESTART

	AS Clause
	Decorations
	Examples-AS

	AS DATE/TIME Clause
	Examples-AS DATE/TIME

	ASCII Character Set
	AUDIT File Attribute
	Considerations-AUDIT

	AUDITCOMPRESS File Attribute
	Considerations-AUDITCOMPRESS

	Audited Tables
	AVG Function
	Considerations-AVG
	Examples-AVG

	B
	BACKUP Utility
	BASETABS Table
	BEGIN DECLARE SECTION Directive
	Examples-BEGIN DECLARE SECTION

	BEGIN WORK Statement
	Example-BEGIN WORK

	BETWEEN Predicate
	Considerations-BETWEEN
	Examples-BETWEEN

	BLOCKSIZE File Attribute
	Considerations-BLOCKSIZE

	BREAK FOOTING Command
	Considerations-BREAK FOOTING
	Example-BREAK FOOTING

	BREAK ON Command
	Considerations-BREAK ON
	Examples-BREAK ON

	BREAK TITLE Command
	Considerations-BREAK TITLE
	Example-BREAK TITLE

	BUFFERED File Attribute
	Considerations-BUFFERED

	C
	CANCEL Command
	Consideration-CANCEL
	Example-CANCEL

	CASE Expression
	Considerations-CASE Expression
	Examples-CASE Expression

	CAST Function
	Valid Considerations-CAST
	Examples-CAST

	CATALOG Command
	Considerations-CATALOG
	Example-CATALOG

	Catalogs
	Operations on Catalog Tables

	CATALOGS Table
	CENTER_REPORT Option
	Consideration-CENTER_REPORT
	Example-CENTER REPORT

	Character Data Types
	Character Expressions
	Considerations-Character Expressions
	Examples-Character Expressions

	Character Sets
	ISO 8859 Character Sets
	Kanji Character Set
	KSC5601 Character Set

	CHAR_LENGTH Function
	Considerations-CHAR_LENGTH Function
	Examples-CHAR_LENGTH Function

	CLEANUP Command
	Considerations-CLEANUP
	CLEANUP Exception Cases
	Example-CLEANUP

	CLEARONPURGE File Attribute
	Considerations-CLEARONPURGE

	CLOSE Statement
	Considerations-CLOSE
	Example-CLOSE

	Clustering Keys
	Example-CLUSTERING KEYS

	COLLATE Clause
	Collation Definitions
	Comment and Escape Characters in Collation Definitions
	The LC_COLLATE Section of a Collation Definition
	The LC_CTYPE Section of a Collation Definition
	The LC_TDMCODESET Section of a Collation Definition
	Considerations-Collation Definitions
	Examples-Collation Definitions
	Collations

	Column Identifier
	Example-Column Identifiers

	Columns
	COLUMNS Table
	COMMENT Statement
	Considerations-COMMENT
	Examples-COMMENT

	Comments
	Example-Comments

	COMMENTS Table
	COMMIT Option
	Considerations-COMMIT Option
	Example-COMMIT Option

	COMMIT WORK Statement
	Considerations-COMMIT WORK
	Example-COMMIT WORK

	Comparison Predicate
	Considerations-Comparison Predicate
	Examples-Comparison Predicate

	COMPUTE_TIMESTAMP Function
	Considerations-COMPUTE_TIMESTAMP
	Example-COMPUTE_TIMESTAMP

	CONCAT Clause
	Considerations-CONCAT
	Example-CONCAT

	Concurrency
	Effect of VSBB on Concurrency

	Constraints
	CONSTRNT Table
	CONTINUE Statement
	Considerations-CONTINUE
	Examples-CONTINUE

	CONTROL EXECUTOR Directive
	Considerations-CONTROL EXECUTOR
	Example-CONTROL EXECUTOR

	CONTROL QUERY Directive
	Considerations-CONTROL QUERY
	Examples-CONTROL QUERY

	CONTROL TABLE Directive
	Considerations-CONTROL TABLE
	Examples-CONTROL TABLE

	CONVERT Command
	CONVERT Behavior
	Enscribe Files and DDL Record Definitions
	DDL Primary Keys and Alternate Keys
	DDL Clause Mapping
	Conversion of DDL Elementary Items
	DDL Groups
	Physical File Attributes of Tables and Indexes
	Partition Attributes of Tables and Indexes
	Examples-CONVERT

	CONVERTTIMESTAMP Function
	Example-CONVERTTIMESTAMP

	COPY Command
	Considerations-COPY
	Enscribe Field Formats
	Field Conversions
	Examples-COPY

	Correlation Names
	COUNT Function
	Considerations-COUNT
	Example-COUNT

	CPRLSRCE Table
	CPRULES Table
	CREATE CATALOG Statement
	Considerations-CREATE CATALOG
	Examples-CREATE CATALOG

	CREATE COLLATION Statement
	Consideration-CREATE COLLATION
	Example-CREATE COLLATION

	CREATE CONSTRAINT Statement
	Considerations-CREATE CONSTRAINT
	Examples-CREATE CONSTRAINT

	CREATE INDEX Statement
	Considerations-CREATE INDEX
	Examples-CREATE INDEX

	CREATE SYSTEM CATALOG Command
	Considerations-CREATE SYSTEM CATALOG
	Examples-CREATE SYSTEM CATALOG

	CREATE TABLE Statement
	Considerations-CREATE TABLE
	Examples-CREATE TABLE

	CREATE VIEW Statement
	Considerations-CREATE VIEW
	Examples-CREATE VIEW

	CURRENT Function
	Example-CURRENT

	CURRENT_TIMESTAMP Function
	Considerations-CURRENT_TIMESTAMP
	Example-CURRENT_TIMESTAMP

	Cursors
	Cursor Position
	Cursor Stability

	C89

	D
	Data Dictionary
	Data Types
	DATE Data Type
	Example-DATE Data Type

	DATE_FORMAT Option
	Example-DATE_FORMAT

	Date-Time Data Types
	Date-Time Functions
	Date-Time Literals
	Examples-Date-Time Literals

	DATEFORMAT Function
	Example-DATEFORMAT

	DATETIME Data Type
	Considerations-DATETIME DATA TYPE
	Example-DATETIME

	DAYOFWEEK Function
	Example-DAYOFWEEK

	DCL (Data Control Language) Statements
	DCOMPRESS File Attribute
	Considerations-DCOMPRESS

	DDL (Data Definition Language) Statements
	DDL Statements

	Deadlocks
	DECIMAL_POINT Option
	Considerations-DECIMAL_POINT
	Examples-DECIMAL_POINT

	DECLARE CURSOR Statement
	Considerations-DECLARE CURSOR
	Examples-DECLARE CURSOR

	DEFAULT Clause
	Example-DEFAULT

	DEFINEs
	Using DEFINEs
	Using DEFINEs From SQLCI
	Using DEFINEs With SQL Programs
	DEFINE Attributes
	DEFINEs of Class CATALOG
	DEFINEs of Class DEFAULT
	DEFINEs of Class MAP
	Summary of DEFINE Attributes
	Examples-DEFINEs Used With SQL Programs

	DELETE DEFINE Command
	Examples-DELETE DEFINE

	DELETE Statement
	Considerations-DELETE
	Examples-DELETE

	DESCRIBE INPUT Statement
	Example-DESCRIBE INPUT

	DESCRIBE Statement
	Example-DESCRIBE

	Detail Alias
	DETAIL Command
	Considerations-DETAIL
	Examples-DETAIL

	DISPLAY STATISTICS Command
	Considerations-DISPLAY STATISTICS
	Example-DISPLAY STATISTICS

	DISPLAY USE OF Command
	Considerations-DISPLAY USE OF
	Examples-DISPLAY USE OF

	DML Statements
	DOWNGRADE CATALOG Command
	Considerations-DOWNGRADE CATALOG
	Examples-DOWNGRADE CATALOG

	DOWNGRADE SYSTEM CATALOG Command
	Considerations-DOWNGRADE SYSTEM CATALOG
	Example-DOWNGRADE SYSTEM CATALOG

	DROP Statement
	Considerations-DROP
	Example-DROP

	DROP SYSTEM CATALOG Command
	Considerations-DROP SYSTEM CATALOG
	Examples-DROP SYSTEM CATALOG

	DSL Statements
	DSLACK File Attribute
	Considerations-DSLACK

	DUP Command
	Considerations-DUP
	Examples-DUP

	Dynamic SQL
	Summary of Dynamic SQL Statements
	Determining When to Use Dynamic SQL
	Features of Dynamic SQL

	E
	EDIT Command
	Examples-EDIT

	Embedded SQL
	END DECLARE SECTION Directive
	Example-END DECLARE SECTION

	ENV Command
	Considerations-ENV
	Example-ENV

	ERROR Command
	Examples-ERROR

	Error Messages
	EXECUTE Statement
	Considerations-EXECUTE
	Examples-EXECUTE

	EXECUTE IMMEDIATE Statement
	Considerations-EXECUTE IMMEDIATE
	Example-EXECUTE IMMEDIATE

	EXISTS Predicate
	Examples-EXISTS

	EXIT Command
	Example-EXIT

	EXPLAIN Directive
	Considerations-EXPLAIN
	Examples-EXPLAIN

	Expressions
	Numeric, Date-Time, and Interval Expressions
	Considerations-Expressions
	Examples-Expressions

	EXTEND Function
	Considerations-EXTEND
	Examples-EXTEND

	EXTENT File Attribute
	Considerations-EXTENT

	F
	FC Command
	Considerations-FC
	Examples-FC

	FETCH Statement
	Considerations-FETCH
	Examples-FETCH

	File Attributes
	File Attributes of SQL Objects

	File Organizations
	FILEINFO Command
	Considerations-FILEINFO
	BRIEF Display for SQL Objects and Guardian Files
	DETAIL Display for Objects (Except Views) and Guardian Files
	DETAIL Display for Views
	BRIEF and DETAIL Display for OSS Files
	EXTENTS Display
	STATISTICS Display
	Examples-FILEINFO

	FILENAMES Command
	Example-FILENAMES

	FILES Command
	Example-FILES

	FILES Table
	Filesets
	Examples-Filesets

	FORMAT File Attribute
	Considerations-FORMAT

	FREE RESOURCES Statement
	Considerations-FREE RESOURCES
	Examples-FREE RESOURCES

	Functions
	FUP Command
	FUP Commands and SQL Objects
	Considerations-FUP
	Examples-FUP

	G
	Generalized Owner
	GET CATALOG OF SYSTEM Statement
	Considerations-GET CATALOG OF SYSTEM
	Examples-GET CATALOG OF SYSTEM

	GET VERSION Statement
	Consideration-GET VERSION
	Examples-GET VERSION

	GET VERSION OF PROGRAM Statement
	Consideration-GET VERSION OF PROGRAM
	Examples-GET VERSION OF PROGRAM

	GOAWAY Command
	Considerations-GOAWAY
	Examples-GOAWAY

	Group Manager
	Guardian Names
	Considerations-Guardian Names
	Example-Guardian Names

	H
	HEADING Clause
	Consideration-HEADING
	Example-HEADING

	HEADINGS Option
	Example-HEADINGS

	HELP Command
	Considerations-HELP
	Examples-HELP

	HELP TEXT Statement
	Consideration-HELP TEXT
	Example-HELP TEXT

	HISTORY Command
	Example-HISTORY

	Host Identifiers
	Host Programs
	Host Variables

	I
	ICOMPRESS File Attribute
	Considerations-ICOMPRESS

	IF/THEN/ELSE Clause
	Considerations-IF/THEN/ELSE
	Examples-IF/THEN/ELSE

	IN Predicate
	Considerations-IN
	Examples-IN

	INCLUDE SQLCA Directive
	Consideration-INCLUDE SQLCA
	Example-INCLUDE SQLCA

	INCLUDE SQLDA Directive
	Consideration-INCLUDE SQLDA
	Example-INCLUDE SQLDA

	INCLUDE SQLSA Directive
	Consideration-INCLUDE SQLSA
	Example-INCLUDE SQLSA

	INCLUDE STRUCTURES Directive
	Considerations-INCLUDE STRUCTURES
	Examples-INCLUDE STRUCTURES

	Index Keys
	INDEXES Table
	Indicator Variables and Indicator Parameters
	INFO DEFINE Command
	Consideration-INFO DEFINE
	Examples-INFO DEFINE

	INITIALIZE SQL Command
	Considerations-INITIALIZE SQL
	Example-INITIALIZE SQL

	INSERT Statement
	Considerations-INSERT
	Examples-INSERT

	INTERVAL Data Type
	Considerations-INTERVAL Data Type
	Example-INTERVAL Data Type

	INTERVAL Literals
	Example-Interval Literals

	INVOKE Directive and Command
	Considerations-INVOKE
	Examples-INVOKE

	ISLACK File Attribute
	Considerations-ISLACK

	J
	Joins
	Examples - Joins

	JULIANTIMESTAMP Function
	Example-JULIANTIMESTAMP

	K
	Keys
	KEYS Table

	L
	LEFT_MARGIN Option
	Example-LEFT_MARGIN

	LIKE Predicate
	Considerations-LIKE
	Examples-LIKE

	Limits
	LINE_NUMBER Function
	Considerations-LINE_NUMBER
	Examples-LINE_NUMBER

	LINE_SPACING Option
	Examples-LINE_SPACING

	LIST Command
	Considerations-LIST
	Example-LIST

	Literals
	LOAD Command
	Considerations-LOAD
	Example-LOAD

	LOCK TABLE Statement
	Considerations-LOCK TABLE
	Examples-LOCK TABLE

	Locking
	Lock Duration
	Lock Mode
	Lock Holder

	LOCKLENGTH File Attribute
	Consideration-LOCKLENGTH
	Example-LOCKLENGTH

	LOG Command
	Example-LOG

	LOGICAL_FOLDING Option
	Considerations-LOGICAL_FOLDING
	Example-LOGICAL_FOLDING

	M
	MAX Function
	Considerations-MAX
	Example-MAX

	MAXEXTENTS File Attribute
	Considerations-MAXEXTENTS

	Message File
	MIN Function
	Considerations-MIN
	Example-MIN

	MODIFY CATALOG
	MODIFY CATALOG with REPLACE NODENAME
	Considerations-MODIFY CATALOG with REPLACE NODENAME
	Examples-MODIFY CATALOG with REPLACE NODENAME
	MODIFY CATALOG with REPLACE VOLUME
	Considerations-MODIFY CATALOG with REPLACE VOLUME
	Examples-MODIFY CATALOG with REPLACE VOLUME

	MODIFY LABEL
	MODIFY LABEL with REPLACE NODENUMBER
	Considerations-MODIFY LABEL with REPLACE NODENUMBER
	Examples-MODIFY LABEL with REPLACE NODENUMBER
	MODIFY LABEL with REPLACE VOLUME
	Considerations-MODIFY LABEL with REPLACE VOLUME
	Examples-MODIFY LABEL with REPLACE VOLUME
	MODIFY LABEL with REPLACE VOLUME and Partitioned Objects

	MODIFY REGISTER Command
	Considerations-MODIFY REGISTER
	Examples-MODIFY REGISTER

	Multibyte Character Sets
	System Default National Character Set

	N
	NAME Command
	Consideration-NAME Command
	Example-NAME Command

	NAME Option
	Consideration-NAME Option
	Example-NAME Option

	Name Resolution
	Names
	NEWLINE_CHAR Option
	Consideration-NEWLINE_CHAR
	Example-NEWLINE_CHAR

	Nonaudited Tables
	NOPURGEUNTIL File Attribute
	Defaults
	Example-NOPURGEUNTIL

	NULL Predicate
	Considerations-NULL
	Examples-NULL

	Null Values
	Using Null Values Versus Default Values
	Defining Columns That Allow or Prohibit Nulls
	Determining Whether a Column Allows Nulls
	Specifying Null Values in Host Programs
	DISTINCT, GROUP BY, and ORDER BY With Null Values
	Null Values and Expression Evaluation

	NULL_DISPLAY Option
	Example-NULL_DISPLAY

	Numeric Data Types
	Considerations-Numeric Data Types

	Numeric Literals
	Example-Numeric Literals

	O
	OBEY Command
	Considerations-OBEY
	Examples-OBEY

	OCTET_LENGTH Function
	Considerations-OCTET LENGTH Function
	Examples-OCTET LENGTH Function

	OPEN Statement
	Considerations-OPEN
	Example-OPEN

	OSS NAMES
	OUT Command
	Consideration-OUT
	Example-OUT

	OUT_REPORT COMMAND
	Considerations-OUT_REPORT
	Examples-OUT_REPORT

	OVERFLOW_ CHAR OPTION
	Consideration-OVERFLOW_CHAR
	Example-OVERFLOW_CHAR

	OWNER FILE ATTRIBUTE

	P
	PAGE_COUNT Option
	Consideration-PAGE_COUNT
	Example-PAGE_COUNT

	PAGE FOOTING Command
	Considerations-PAGE FOOTING
	Example-PAGE FOOTING

	PAGE_LENGTH Option
	Considerations-PAGE_LENGTH
	Example-PAGE_LENGTH

	PAGE_NUMBER Function
	Considerations-PAGE_NUMBER
	Example-PAGE_NUMBER

	PAGE TITLE Command
	Considerations-PAGE TITLE
	Example-PAGE TITLE

	Parallel Index Loading
	Default Configuration for Parallel Index Loading
	Specifying Configuration for Parallel Index Loading
	Consideration-Parallel Index Loading
	Sample Configuration File

	Parameters
	Considerations-Parameters
	Example-Parameters

	PARTITION Clause
	Consideration-PARTITION
	Example-PARTITION

	Partitions
	PARTNS Table
	PERUSE Command
	Example-PERUSE

	Plans
	POSITION Function
	Considerations-POSITION Function
	Examples-POSITION Function

	Predicates
	PREPARE Statement
	Considerations-PREPARE
	Examples-PREPARE

	Primary Keys
	Print Item
	PROGID File Attribute
	Program Invalidation
	Operations That Invalidate a Program
	Preventing Program Invalidation Caused by DDL Operations

	PROGRAMS Table
	Protection View
	PURGE Command
	Considerations-PURGE
	Examples-PURGE

	PURGEDATA Command
	Considerations-PURGEDATA
	Examples-PURGEDATA

	Q
	Qualified Fileset List
	Examples-Qualified Fileset List

	Quantified Predicate
	Considerations-Quantified Predicate
	Examples-Quantified Predicate

	R
	RECLENGTH File Attribute
	Considerations-RECLENGTH

	RELEASE Statement
	REPORT FOOTING Command
	Considerations-REPORT FOOTING
	Example-REPORT FOOTING

	REPORT Option
	Considerations-REPORT Option
	Examples-REPORT Option

	REPORT TITLE Command
	Considerations-REPORT TITLE
	Examples-REPORT TITLE

	Report Writer
	Reserved Words
	RESET DEFINE Command
	Considerations-RESET DEFINE
	Example-RESET DEFINE

	RESET LAYOUT Command
	Example-RESET LAYOUT

	RESET PARAM Command
	Considerations-RESET PARAM
	Examples-RESET PARAM

	RESET PREPARED Command
	Example-RESET PREPARED

	RESET REPORT Command
	Consideration-RESET REPORT
	Examples-RESET REPORT

	RESET SESSION Command
	Example-RESET SESSION

	RESET STYLE Command
	Example-RESET STYLE

	RESETBROKEN File Attribute
	RIGHT_MARGIN Option
	Consideration-RIGHT_MARGIN
	Example-RIGHT_MARGIN

	ROLLBACK WORK Statement
	Considerations-ROLLBACK WORK
	Example-ROLLBACK WORK

	ROWCOUNT Option
	Example-ROWCOUNT

	S
	Sample Database
	SAVE Command
	Example-SAVE

	Search Conditions
	Considerations-Search Conditions
	Examples-Search Conditions

	SECURE Command
	Considerations-SECURE Command
	Examples-SECURE Command

	SECURE File Attribute
	Considerations-SECURE File Attribute
	Examples-SECURE File Attribute

	Security
	User IDs
	Group Manager and Super ID
	Process Access IDs
	File Ownership
	Security Strings
	Authorization Requirements for SQL Statements

	SELECT Statement
	Considerations-SELECT
	Considerations for UNION
	Characteristics of UNION Columns
	ORDER BY clause and UNION operator
	GROUP BY Clause, HAVING Clause, and the UNION Operator
	UNION ALL and Associativity
	Examples-SELECT

	SERIALWRITES File Attribute
	Considerations-SERIALWRITES

	SET DEFINE Command
	Considerations-SET DEFINE
	Example-SET DEFINE

	SET DEFMODE Command
	Example-SET DEFMODE

	SET LAYOUT Command
	Example-SET LAYOUT

	SET PARAM Command
	Considerations-SET PARAM
	Examples-SET PARAM

	SET SESSION Command
	Considerations-SET SESSION
	Examples-SET SESSION

	SET STYLE Command
	Consideration-SET STYLE
	Example-SET STYLE

	SETSCALE Function
	Consideration-SETSCALE
	Examples-SETSCALE

	Shorthand View
	SHOW CONTROL Command
	Example-SHOW CONTROL

	SHOW DEFINE Command
	Consideration-SHOW DEFINE
	Examples-SHOW DEFINE

	SHOW DEFMODE Command
	Example-SHOW DEFMODE

	SHOW LAYOUT Command
	Example-SHOW LAYOUT

	SHOW PARAM Command
	Examples-SHOW PARAM

	SHOW PREPARED Command
	Example-SHOW PREPARED

	SHOW REPORT Command
	Example-SHOW REPORT

	SHOW SESSION Command
	Example-SHOW SESSION

	SHOW STYLE Command
	Example-SHOW STYLE

	Similarity Checks
	General Rules for Similarity
	Similarity Between Protection Views
	Similarity Between Tables
	Similarity Between Collations
	Displaying the Similarity Check Attribute

	SLACK File Attribute
	Purpose of SLACK

	SPACE Option
	Considerations-SPACE
	Examples-SPACE

	SQL Directive
	SQL Identifiers
	SQLCI
	An SQLCI Session
	The SQLCI Command
	Considerations-SQLCI
	Example-SQLCI

	SQLCI Commands
	SQLCODE
	SQLCOMP Command
	Standards Conformance
	Exceptions to Conformance With Entry Level SQL 1992
	SQL/MP Features From Intermediate Level SQL 1992
	SQL/MP Features From Full Level SQL 1992
	SQL/MP Extensions to SQL 1992

	Statements
	Static SQL
	Statistics
	Storage Management Foundation (SMF)
	Considerations-SMF

	String Functions
	String Literals
	Considerations-String Literals
	Examples-String Literals

	Subqueries
	Considerations-Subqueries

	SUBSTRING Function
	Considerations-SUBSTRING Function
	Examples-SUBSTRING Function

	SUBTOTAL Command
	Considerations-SUBTOTAL
	Examples-SUBTOTAL

	SUBTOTAL_LABEL Option
	Considerations-SUBTOTAL_LABEL
	Example-SUBTOTAL_LABEL

	SUM Function
	Considerations-SUM
	Example-SUM

	Super ID
	Syskeys
	System Catalog
	SYSTEM Command
	Considerations-SYSTEM
	Example-SYSTEM

	System DEFINEs

	T
	TABLECODE File Attribute
	Tables
	TABLES Table
	TEDIT Command
	Example-TEDIT

	Temporary Tables
	TIME_FORMAT Option
	Example-TIME_FORMAT

	TIME Data Type
	Example-TIME Data Type

	TIMESTAMP Data Type
	Example-TIMESTAMP Data Type

	TMF Transactions
	Transaction Control Statements
	User-Defined and System-Defined Transactions
	Rules for DDL and DML Statements
	Rules for SQLCI
	Rules for Host Programs

	TOTAL Command
	Considerations-TOTAL
	Examples-TOTAL

	TRANSIDS Table
	TRIM Function
	Consideration-TRIM Function
	Examples-TRIM Function

	U
	UNDERLINE_CHAR Option
	Example-UNDERLINE_CHAR

	UNLOCK TABLE Statement
	Considerations-UNLOCK TABLE
	Examples-UNLOCK TABLE

	UPDATE Statement
	Considerations-UPDATE
	Examples-UPDATE

	UPDATE STATISTICS Statement
	Considerations-UPDATE STATISTICS
	Examples-UPDATE STATISTICS

	UPGRADE CATALOG Command
	Considerations-UPGRADE CATALOG
	Examples-UPGRADE CATALOG

	UPGRADE SYSTEM CATALOG Command
	Considerations-UPGRADE SYSTEM CATALOG
	Example-UPGRADE SYSTEM CATALOG

	UPSHIFT Function
	Considerations-UPSHIFT
	Examples-UPSHIFT

	USAGES Table
	User-Defined Keys
	Utilities

	V
	VARCHAR_WIDTH Option
	Consideration-VARCHAR_WIDTH
	Example-VARCHAR_WIDTH

	VERIFIEDWRITES File Attribute
	Consideration-VERIFIEDWRITES

	VERIFY Command
	Considerations-VERIFY
	Examples-VERIFY

	Versions
	SQL/MP Component Versions
	Catalog Versions
	Object Versions
	Program Versions
	Host language compiler versions

	VERSIONS Table
	Views
	VIEWS Table
	VOLUME Command
	Considerations-VOLUME
	Examples-VOLUME

	W
	WHENEVER DIRECTIVE
	Consideration-WHENEVER Directive

	WHERE CLAUSE
	WINDOW OPTION
	Consideration-WINDOW
	Examples-WINDOW

	WITH SHARED ACCESS OPTION
	Considerations-WITH SHARED ACCESS
	Example-WITH SHARED ACCESS

	Z
	! Command
	Examples-!

	=_AUDSERV_XSWAP_node DEFINE
	Consideration-=_AUDSERV_XSWAP_node
	Example-=_AUDSERV_XSWAP_node

	=_DEFAULTS DEFINE
	Considerations-=_DEFAULTS
	Examples-=_DEFAULTS

	=_SORT_DEFAULTS DEFINE
	Considerations-=_SORT_DEFAULTS
	Example-=_SORT_DEFAULTS

	=_SQL_CAT_HEAP_LIMIT DEFINE
	Considerations-=_SQL_CAT_HEAP_LIMIT
	Examples-=_SQL_CAT_HEAP_LIMIT

	=_SQL_CMP_CPUS_node DEFINE
	Considerations-=_SQL_CMP_CPUS_node

	=_SQL_CMP_DOUBLE_SBB_OFF DEFINE
	Consideration-=_SQL_CMP_DOUBLE_SBB_OFF

	=_SQL_CMP_DOUBLE_SBB_ON DEFINE
	Considerations-=_SQL_CMP_DOUBLE_SBB_ON

	=_SQL_CMP_EQ_LIMIT DEFINE
	Consideration-=_SQL_CMP_EQ_LIMIT
	Examples-=_SQL_CMP_EQ_LIMIT

	=_SQL_CMP_EVENT DEFINE
	Format of SQL Compiler Event Messages
	Considerations-=_SQL_CMP_EVENT
	Examples-=_SQL_CMP_EVENT

	=_SQL_CMP_EVENT_NO0 DEFINE
	Default Event Messages
	Consideration-=_SQL_CMP_EVENT_NO0
	Example-=_SQL_CMP_EVENT_NO0

	=_SQL_CMP_NO_KS_MJOIN DEFINE
	Examples-=_SQL_CMP_NO_KS_MJOIN

	=_SQL_cmp_node DEFINE
	Consideration-=_SQL_cmp_node
	Example-=_SQL_cmp_node

	=_SQL_EXE_DOUBLE_SHUTOFF DEFINE
	Considerations-=_SQL_EXE_DOUBLE_SHUTOFF

	=_SQL_EXE_ESPS_CK_CMON DEFINE
	Consideration-=_SQL_EXE_ESPS_CK_CMON
	Example-=_SQL_EXE_ESPS_CK_CMON

	=_SQL_EXE_USE_SWAPVOL DEFINE
	Considerations-=_SQL_EXE_USE_SWAPVOL
	Examples-=_SQL_EXE_USE_SWAPVOL

	=_SQL_MSG_node DEFINE
	Considerations-=_SQL_MSG_node
	Examples-=_SQL_MSG_node

	=_SQL_RECGEN_node DEFINE
	Example-=_SQL_RECGEN_node

	=_SQL_TM_node_vol DEFINE
	Considerations-=_SQL_TM_node_vol
	Examples-=_SQL_TM_node_vol

	Index

